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          Principal Results 
 
 Space-time is developed from a constructible set 

theoretical foundation 
 The real line is countable and functions of a real 

variable are locally homeomorphic with the real line 
 Space-time is relational and its differential properties 

fulfill the requirements of Einstein-Weyl causality 
 The Schrӧdinger equation is developed in this theory 
 This result also infers that quantum mechanics in this 

relational space-time framework can be considered 
conceptually cumulative with prior physics. 
 
 

 



   Agenda 

(1) Axioms of a constructible set theory are presented. 
(2) Continuous and differentiable functions of a real 

variable are developed in this theory.    
(3) A nonlinear sigma model is postulated and the 

Schrödinger equation is shown to be a special case. 
(4) Implications of the theory to space-time are then 

presented. 
(5) Other examples are given of questions in physics 

that now may be answered by this approach. 



ZF – Axiom Schema of Subsets  – Power Set + Constructibility  

Extensionality Two sets with just the same members are equal. 

Pairs For every two sets, there is a set that contains just them. 
  

Union For every set of sets, there is a set with just all their members.  

Infinity There is at least one set ω* which contains the null set and for every 
member there is a next member that contains just all its predecessors 

Arithmetic The Peano axioms without the induction axiom 
Regularity Every non-empty set has a minimal member (i.e. “weak” regularity). 

Replacement Replacing members of a set one-for-one creates a set. (i.e. bijective 
replacement) 

Constructibility     
 

Subsets of ω* are countably constructible. 



The power set axiom and the axiom schema of subsets 
are deleted and an axiom of constructibility adjoined.  

Then: 
 The theory is uniformly dependent on ω*  
 Both finite and infinite natural numbers exist in ω*   
 The set of constructible subsets of ω* is countable 
 All sets of finite natural numbers are finite  
 Convergence of “infinite series” is undecidable. 
 



The set of all ratios of any two elements of ω* is called Q*. 

Q* is an enlargement of the usual set of rational numbers Q. 

 Two members of Q* are called “identical” if their ratio is 1.  

We can now employ the symbol “≡” for “is identical to”.  



An “infinitesimal” is a member of Q* “equal” to 0, i.e., letting y 

signify the member and employing the symbol “=” to signify 

equality,  y = 0 ↔ ∀n[y < 1/n] where n is an integer.  

The reciprocal of an infinitesimal is “infinite”.  A member of Q* 

that is not an infinitesimal and not infinite is “finite”.  

 Note that  x ≡ y  →  x = y  but not the converse. 



 The constructibility axiom well-orders the set of  

constructible subsets of ω*, creating a metric space. 

These subsets are binimals making up a real line R*.   

. 

 

. 



An equality-preserving bijective map Ф(x,u) between   

intervals X and U of R* in which x∈X and u∈U 

 

 

creates pieces biunique and homeomorphic with R*.  

Note that U can be infinitesimal if and only if  X is, i.e, 

the range vanishes if and only if the domain vanishes.  
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u(x)  is a function of a real variable in this theory if 

and only if it is a constant or a sequence in x of 

continuously connected biunique pieces such that           

the derivative with respect to x is also a function of 

a real variable.  These functions are of bounded 

variation, locally homeomorphic with the real line 

R* and, if not constant, the range of u(x) is finite  

(range u(x) ≠ 0) if and only if its domain is finite.  



  
If some derivative is a constant, these are polynomials. 
If no derivative is a constant, these functions do not 
exist in this theory.  They can, however, be approached 
as closely as necessary by a sum of polynomials of  
sufficiently high degree obtained by many iterations of  
the following algorithm, thereby creating effectively a 
finite dimensional Hilbert space: 
 
  
 



Polynomials of sufficiently high degree are obtained by 
iteratively minimizing λ for a given p, q and r.  They are 
effectively Sturm-Liouville eigenfunctions and are of 
bounded variation and locally homeomorphic with R*.   
 
This has both physical and philosophical implications. 
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Consider a fixed string of finite length: 

 
 
 
 

The ux and ut can be effectively obtained by 
iteration subject to the constraint λx− λt ≡ 0  

 
This can be generalized to more complex 

fields and to finitely many dimensions of a  
compactified space-time.  
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( )xiu mi )x(u jmjLet            and                        be eigenfunctions with        

positive eigenvalues            and            respectively.   

We now define a “field” as a sum of eigenstates  

                                                           

subject to the novel postulate that for every eigenstate m the value 

of the integral of the Lagrange density over dsdτ , where 

                                                , is identically null:  For all m 

 

 

 

 over a compactified space-time; this is a nonlinear sigma model 

.  

λ mi λ mj



 The postulate asserts that the two 
symmetric components of the nonlinear 
sigma model have identical magnitudes.  



 

In this nonlinear sigma model the P and Q can be 

functions of any of the       and      , 

thus of any         as well, subject to the condition 

that all the eigenvalues are finite and positive. 

xi x j
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        The         are effectively given by iteration, 

subject to the constraint 
Ψm
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and 

I. α(Ψ) is positive and closed to addition and to the absolute value 
of subtraction, so it is either continuous or discrete.   
 

II. α(Ψ) ≡ 0 ↔ Ψ ≡ 0; otherwise, as Ψ is a function of real variables, 
the range Ψ ≠ 0 and ∀Ψ α(Ψ) ≠ 0, thus α(Ψ) is not continuous.  
 

III. ∴α(Ψ) is discrete; α(Ψ) ≡ nκ , where n is any integer 
  and κ is some finite unit which must be obtained empirically.       
        

Let both 

 
 

be represented by α(Ψ) 





    
 

  

 
 

  

 
     
     
 
 
   

  

Going back to the statement ∀Ψ α(Ψ) ≠ 0, we must 
recognize we have assumed that space-time exists, i.e., 
 that the upper and lower limits of at least one of the 
multiple integrals over all space-time are not equal. 

  Otherwise,  space-time does not exist → ∀Ψ α(Ψ) = 0   
thus we obtain a necessary and sufficient condition: 

space-time exists ↔ ∃Ψ α(Ψ) ≠ 0       
This is a description of a relational space-time.  

 



Furthermore, it has been shown by others that Q2 is an 
ordered space that fulfills the strict Hausdorff topology 

requirements for Einstein-Weyl causality.   Also, if Q2  can 
be embedded in R2 so that fields are locally homeomorphic  
with R, this will even apply to Rn (n is any positive integer). 

 
In this theory, Q*2 is an ordered space one-to-one with R*2, 
fields are by definition locally homeomorphic with R* and  
so R*n fulfills the requirements for Einstein-Weyl causality. 



        For Further Discussion  
 This theory proposes that the physical universe is composed 

entirely of constructible sets; accordingly, the universe will not 
have non-constructible sets which can lead to physical antimonies. 
This has to be intuitively satisfying since, were there any physical 
antinomies, the universe would tear itself apart.  

 Dyson’s well-known problem, that the QED perturbation series 
cannot converge and thus diverges, does not apply in this theory. 
Instead, convergence of the perturbation series is undecidable. 
This provides a solution and opportunity for new physical ideas.  

 Wigner’s philosophical question concerning the unreasonable 
effectiveness of mathematics in physics may be answered directly; 

     this effectiveness comes from their foundations being linked. 
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Arithmetic: 

The four formulae (a) to (d) below (Peano arithmetic axioms) can be consistently added to T.    
  
We use x’ for xU{x}.     
  
 a) ∀a a’ ≠ О 
  
 b) ∀x∀y (x’ = y’ → x = y) 
  
Let x,y,a,b be members of ω*and  [x,y] and [[x,y],z] represent ordered pairs. 
  
 c) ∃A∀x∀y E!z [[x, О],x] ∈A ∧ [[x,y],z] ∈A → [[x,y’],z’] ∈A; this is addition: x + y = z 
  
 d) ∃M∀x∀y E!z [[x, О],О] ∈M ∧ [[x,y],z] ∈M → [[x,y’],z+x] ∈M; this is multiplication: x•y = z 
  
Define [a,b]r such that [a1,b]r+ [a2,b]r ≡ [a1+a2,b]r and [a1,b1]r ≡ [a2,b2]r ↔ a1•b2 ≡ a2•b1. 
      The extended set of rationals Q* is the set of such pairs for all a and b in ω*. 
  
Theorem 
∀ω*∀x(∀ y1∀ y2∀ z1∀z2 ([[x,y1],z1] ∈ B ∧ [[x,y2],z2] ∈ B → ((z1= z2) ↔ (y1 = y2))) →  
 ∃t(x) ∀z(z∈t(x) ↔ ∃y(B(x,y,z))), where B represents A or M.    
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