Horn belief contraction: remainders, envelopes, complexity

K. Adaricheva, R. H. Sloan, B. Szörényi, Gy. Turán

Sept 12, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- belief contraction
- Horn formulas
- Horn belief contraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

open problems

Belief change

- how to handle knowledge which is incomplete, imperfect and changing?
- revision: how to incorporate new information which contradicts previous knowledge?
 - scientific theory, knowledge base
- contraction: how to delete knowledge we do not believe anymore to be true?
- (Levi identity) revision with φ : contract $\neg \varphi$, add φ
- Alchourrón, Makinson, Gärdenfors (1985)
- Fermé, Hansson (2011): AGM 25 years

Belief contraction: an example

- knowledge base:
 - $\{a \rightarrow b, b \rightarrow c\}$
- consequence:

 \blacktriangleright a \rightarrow c

- contract the consequence!
 - new knowledge base, version I:

 \blacktriangleright a \rightarrow b

new knowledge base, version II:

- ▶ $a, c \rightarrow b$
- ▶ $b \rightarrow c$

Belief contraction: basic notions

K: theory in full propositional logic (belief set), set of formulas closed under logical consequence

- φ : consequence of K to be contracted
- -: contraction operator
- $K \varphi$: result of the contraction

Belief contraction: (basic) AGM postulates

- (closure) $K \varphi$ is a belief set
- (inclusion) $K \varphi \subseteq K$
- (vacuity) if $\varphi \notin K$ then $K \varphi = K$
- ▶ (success) if φ is not a tautology then $\varphi \notin \dot{K-\varphi}$

- (extensionality) if $\varphi \equiv \psi$ then $\dot{K-\varphi} = \dot{K-\psi}$
- (recovery) $K \subseteq Cn((K \varphi) \cup \{\varphi\})$

Partial meet contraction

- remainder of K with respect to φ: maximal subtheory of K not implying φ; add a single counter-model of φ to K
- $K \perp \varphi$: family of all remainders
- selection: $\gamma(\varphi) \subseteq K \perp \varphi$
- partial meet contraction:

$$K \dot{-} arphi = igcap_{X \in \gamma(arphi)} X$$

Theorem

(AGM) A contraction operator satisfies the AGM postulates iff it is a partial meet contraction.

Computational issues

- reasoning in propositional logic is computationally hard
- belief change is even harder: Eiter, Gottlob (1992), Nebel (1998), Liberatore (2000)
- consider belief change in computationally tractable fragments of propositional logic
- Flouris, Plexousakis, Antoniou (2004): belief contraction in arbitrary logics

Horn Formulas, entailment

- Horn clause: at most one unnegated variable, e.g.
 C = ā ∨ b ∨ c, written as a, b → c, Body(C) = {a, b},
 Head(C) = c
- definite clause: exactly one unnegated variable
- (definite) formula: conjunction of (definite) Horn clauses

- Horn function: representable by a Horn formula
- ▶ entailment: $(a, b \rightarrow c) \land (c \rightarrow d) \models (a, b \rightarrow d)$
- implicate: $K \models C$
- prime implicate: no subclause is an implicate
- forward chaining efficient

Horn logic in Al

reasoning in Horn logic is computationally easy

- equivalent formalisms: closures, lattices, functional dependencies
- Horn logic is the framework for many applications, it is natural for human reasoning
- Poole Mackworth: Artificial Intelligence: Foundations of Computational Agents, 2010:
 - 'uses rational computational agents and Horn clause logic as unifying threads in this vast field'

Horn belief contraction

- Booth, Meyer, Varzinczak (2009)
- Booth, Meyer, Varzinczak, Wasserman (2010, 2011)
- Creignou, Papini, Pichler, Woltran (2012) + other fragments
- Delgrande (2008)
- Delgrande, Peppas (2011): revision
- Delgrande, Wassermann (2010, 2011)
- Fotinopoulos, Papadopoulos (2009)
- Langlois, Sloan, Szörényi, T. (2008)
- Ribeiro (2010)
- Wu, Zhang, Zhang (2011)
- ► Zhuang, Pagnucco (2010, 2010, 2011, 2012)

Our results

- positive computational result on finding remainders represented by counter-model
- negative computational result on the Horn formula size of the contraction

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Horn formulas and intersection closure

▶ intersection of two vectors: $(1,0,1) \cap (0,1,1) = (0,0,1)$

a Boolean function f is closed under intersection if f(x) = f(y) = 1 implies f(x ∩ y) = 1 (or: T(f) is closed under intersection)

Theorem

(McKinsey, 1943) A Boolean function is Horn if and only if it is closed under intersection.

• $x \oplus y$ is not Horn: $1 \oplus 0 = 1$, $0 \oplus 1 = 1$, $0 \oplus 0 = 0$.

Horn envelope or Horn LUB

- $Env(\psi)$ is the conjunction of all Horn implicates of ψ
- $T(Env(\psi))$ is the closure of $T(\psi)$ under intersection

•
$$Env(x \oplus y) = \bar{x} \lor \bar{y}$$

Remainders for Horn formulas

- Horn belief set K, consequence φ to be contracted
- remainder (reminder): a maximal subset of K which does not imply φ
- in terms of truth assignments: a minimal extension of T(K) not contained in T(φ); not all counter-models work!

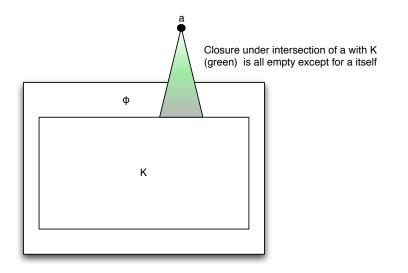
• $Env(K \lor C_a) : T(Env(K \lor C_a)) \land F(\varphi) = \{a\}$

•
$$a = (1,0,1)$$
: $C_a = x \wedge \overline{y} \wedge z$

Question

► which counter-models of \(\varphi\) can be added as a single point extension?

Picture of what we need



Example

variables a, b, c

•
$$K = a \wedge b, \ \varphi = a \wedge b$$

- models: 110, 111
- add counter-model 000: new formula is

$$(a
ightarrow b) \land (b
ightarrow a) \land (c
ightarrow a)$$

 add counter-model 001: envelope includes 000, new formula for envelope is

$$(a
ightarrow b) \land (b
ightarrow a)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

not maximal

Closure, body - building formula

Definition (Closure) X: set of variables

$$Cl_{K}(X) = \{v : K \models (X \rightarrow v)\}$$

Definition

(Body-building formula)

$$\mathcal{K}^{arphi} = igwedge_{C \in arphi} \ igwedge_{v
otin Cl_{\mathcal{K}}(Body(C))} (Body(C), v
ightarrow Head(C))$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Characterization of remainders

Theorem Env($K \lor C_a$) is a remainder iff a satisfies K^{φ} and falsifies φ .

new characterization of quasi-closed sets for closures

Corollary

Remainders represented by their 'generating' truth assignments can be listed with polynomial delay.

Example continued

$$\blacktriangleright \ K = a \wedge b, \ \varphi = a \wedge b$$

•
$$Cl_{\mathcal{K}}(\emptyset) = \{a, b\}$$

•
$$K^{arphi} = (c
ightarrow a) \wedge (c
ightarrow b)$$

remainders: 000,010,100, but not 001,011,101

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Partial meet contractions

a partial meet contraction is an intersection of remainders

$$\mathsf{Env}\left(\mathsf{K}\vee\bigvee_{\mathsf{a}\in\mathsf{A}}\mathsf{C}_{\mathsf{a}}\right)$$

where $A \subseteq T(K^{\varphi}) \wedge F(\varphi)$

maxichoice: singleton, full meet: equality

Question

- can the new belief sets can be computed efficiently?
- Eiter, Makino (2008): negative results for envelopes of Horn disjunctions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Formula that blows up after contraction

belief set K_n

$$x_i \rightarrow v_i, y_i \rightarrow v_i, 1 \le i \le n$$

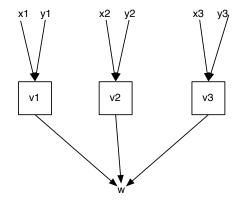
$$v_1,\ldots,v_n\to w$$

• consequence φ_n to be contracted

 $x_1, y_1, \ldots, x_n, y_n, w \rightarrow v_1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Formula that blows up after contraction (n = 3)



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

A blow-up result

Theorem

- Every Horn formula representation of the full meet contraction of φ_n from K_n has at least 2ⁿ clauses.
- ► For every $\epsilon > 0$ and for almost all maxichoice contractions of φ_n from K_n , every Horn formula representation has at least $2^{((1/2)-\epsilon)n}$ clauses.
- For almost all partial meet contractions of φ_n from K_n, every Horn formula representation has at least 2ⁿ clauses.

also applies to weak remainders

Lower bound lemma

In the provided HTML state in the provided HTML state is always set to 1, v₁ is always set to 0, and there are altogether k variables which are set to 0 in some a ∈ A

Theorem Every Horn formula representing

$$Env\left(K \lor \bigvee_{a \in A} C_a\right)$$

contains at least 2^k clauses.

Open problems

- are there examples where every maxichoice/partial meet contraction is large?
- infra-remainders (Booth et al.), epistemic entrenchment (Zhuang, Pagnucco - Horn cores), semantic approaches
- Horn belief revision (Delgrande, Peppas)
- integration of reasoning, revision and learning into an efficient framework for developing knowledge bases (belief revision + theory revision?)