Tutorial on Axiomatization of Relativity Theory (part 2)

Gergely Székely

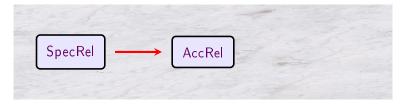
Alfréd Rényi Institute of Mathematics

2012.09.09., Budapest, Logic & Relativity 2012

Gergely Székely Logic & Relativity Tutorial (part 2)

(□) < 0 >

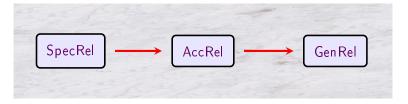
Theory in between



Gergely Székely Logic & Relativity Tutorial (part 2)

・ロト ・ ア・ ・ ア・ ・ ア・

Theory in between



Gergely Székely Logic & Relativity Tutorial (part 2)

・ロト ・西ト ・ヨト ・ヨト

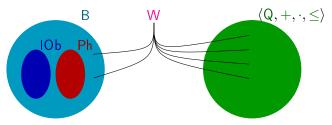
Theory in between

Gergely Székely Logic & Relativity Tutorial (part 2)

《曰》 《聞》 《臣》 《臣》

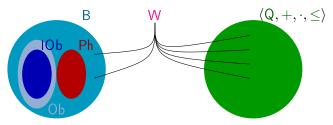
AccRel: a theory of accelerated observers

Gergely Székely Logic & Relativity Tutorial (part 2)


▲御 ▶ ▲ 臣 ▶

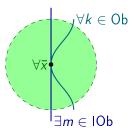
★国社

臣


A (1) > (1) > (1)

The language of AccRel is the same.

・ロン ・四と ・ ヨン ・ ヨン


The language of AccRel is the same.

Observers: $Ob(k) \iff \exists xyzt \ b \ W(k, b, x, y, z, t)$

AxCmv :

At each moment of its life, every observer coordinatizes the nearby world for a short while in the same way as an inertial observer does.

 $\forall k \in \text{Ob} \ \forall \bar{x} \in wline_k(k) \ \exists m \in \text{IOb} \quad d_{\bar{x}} w_{mk} = ld, \text{ where}$ $d_{\bar{x}} w_{mk} = L \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall \bar{y} \ |\bar{y} - \bar{x}| \le \delta$ $\rightarrow |w_{mk}(\bar{y}) - L(\bar{y})| \le \varepsilon |\bar{y} - \bar{x}|.$

$AxEv^-$:

Any observer encounters the events in which he was observed.

イロト イヨト イヨト イヨト

3

AxEv⁻ :

Any observer encounters the events in which he was observed.

AxSelf⁻ :

The worldline of an observer is an open interval of the time-axis, in his own worldview.

イロト イポト イヨト イヨト

AxEv⁻ :

Any observer encounters the events in which he was observed.

AxSelf⁻ :

The worldline of an observer is an open interval of the time-axis, in his own worldview.

AxDiff :

The worldview transformations have linear approximations at each point of their domain (i.e., they are differentiable).

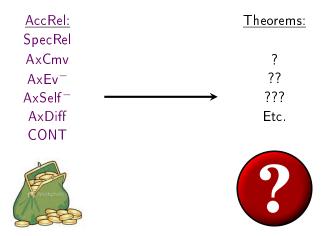
AxEv⁻ :

Any observer encounters the events in which he was observed.

AxSelf⁻ :

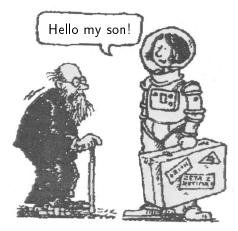
The worldline of an observer is an open interval of the time-axis, in his own worldview.

AxDiff :

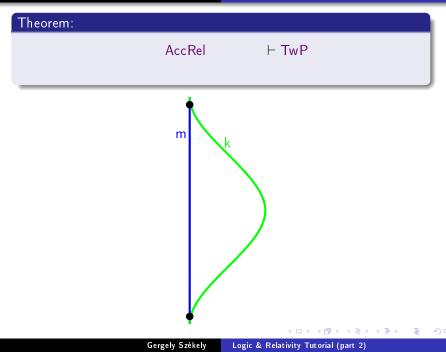

The worldview transformations have linear approximations at each point of their domain (i.e., they are differentiable).

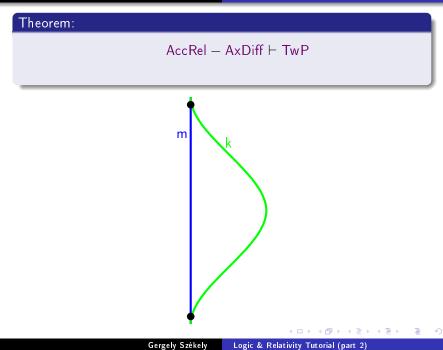
CONT :

Every definable, bounded and nonempty subset of ${\rm Q}$ has a supremum.

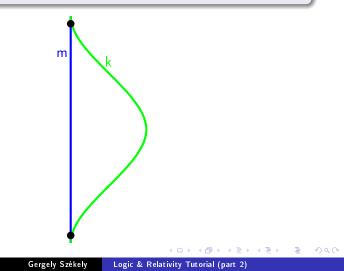

(D) (A) (A)

$AccRel = SpecRel + AxCmv + AxEv^{-} + AxSelf^{-} + AxDiff + CONT$

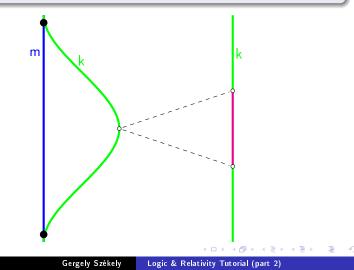


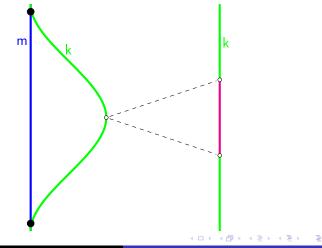

문 문 문

$\mathsf{Twin} \ \mathsf{paradox} \rightsquigarrow \mathsf{TwP}$



・ロト ・西ト ・ヨト ・ヨト




 $\begin{array}{l} AccRel - AxDiff \vdash TwP \\ AccRel - CONT \not\vdash TwP \end{array}$

 $\begin{array}{l} \mathsf{AccRel} - \mathsf{AxDiff} \vdash \mathsf{TwP} \\ \mathsf{AccRel} - \mathsf{CONT} \not\vdash \mathsf{TwP} \end{array}$

 $AccRel - AxDiff \vdash TwP$ Th(\mathbb{R}) + AccRel - CONT \nvdash TwP

Gergely Székely Logic & Relativity Tutorial (part 2)

AccRel ⊢ "Acceleration slows time down."

Gergely Székely Logic & Relativity Tutorial (part 2)

《曰》 《圖》 《臣》 《臣》

イロン イヨン イヨン イヨン

æ

GRAVITY CAUSES SLOW TIME

via Einstein's Principle of Equivalence

Every day use of relativity theories

GPS Relativistic corrections: 38 μ s/day -7 μ s/day because of motion 45 μ s/day because of gravity

Gergely Székely Logic & Relativity Tutorial (part 2)

0 km/h

Wave

20:11

R20

N248

N 4

Egmontstraat 11

Every day use of relativity theories

GPS Relativistic corrections: 38 μ s/day approx. 10km/day -7 μ s/day because of motion 45 μ s/day because of gravity

Gergely Székely Logic & R

Logic & Relativity Tutorial (part 2)

Every day use of relativity theories

GPS Relativistic corrections: 38 μ s/day approx. 10km/day -7 μ s/day because of motion 45 μ s/day because of gravity

Gergely Székely

Logic & Relativity Tutorial (part 2)

$AccRel = SpecRel + AxCmv + AxEv^{-} + AxSelf^{-} + AxDiff + CONT$

AccRel: SpecRel AxCmv AxEv⁻ AxSelf⁻ AxDiff CONT Theorems:

Twin Paradox Gravit. time dilation ► GenRel Etc.

문 문문

Relativistic computation

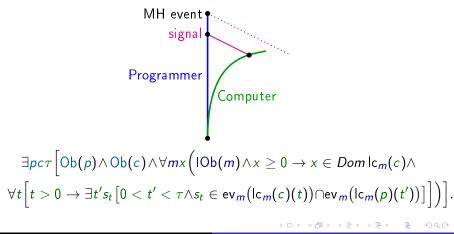
(日) (日)

< ≣ >

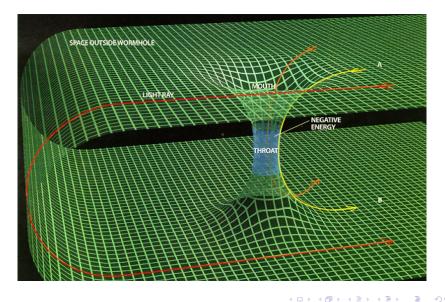
Basic idea of relativistic (hyper)computation

・ロト ・聞ト ・ヨト ・ヨト

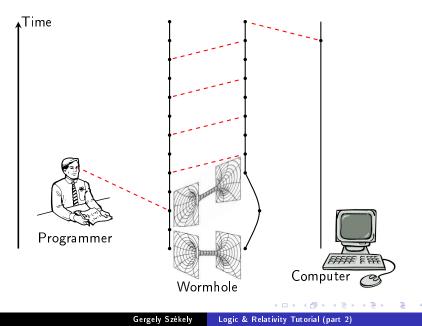
Basic idea of relativistic (hyper)computation


・ロト ・聞ト ・ヨト ・ヨト

Basic idea of relativistic (hyper)computation


・ロト ・聞ト ・ヨト ・ヨト

HypComp :


There is an event (MH event) such that the Computer has infinite time to compute sending signals reaching the Programmer before this event.

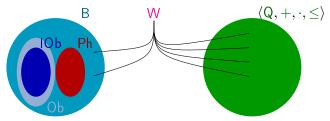
Wormholes connecting different parts of the same universe

Hypercomputation via wormholes:

The story of relativistic hypercomputation continues in Péter Németi's talk.

< 17 × 4

< 3 b


臣

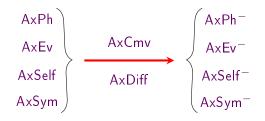
GenRel: an axiomatic theory of general relativity

Gergely Székely Logic & Relativity Tutorial (part 2)

< ∃ >

The language of GenRel is the same.

Observers:
$$Ob(k) \iff \exists xyzt \ b \ W(k, b, x, y, z, t)$$


A (1) < (1) < (2) </p>

Axioms of GenRel

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Axioms of GenRel

"Let all observers be equal at the level of axioms." (Einstein)

E.g., AxPh, $AxCmv \vdash AxPh^-$.

Axioms of GenRel

AxPh⁻:

The instantaneous velocity of photons is 1 in the moment when they are sent out according to the observer who sent them out, and any observer can send out a photon in any direction with this instantaneous velocity.

A (1) > (1) > (1)

Axioms of GenRel

AxPh⁻:

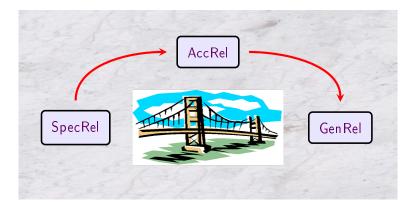
The instantaneous velocity of photons is 1 in the moment when they are sent out according to the observer who sent them out, and any observer can send out a photon in any direction with this instantaneous velocity.

AxSym⁻:

Any two observers meeting see each others' clocks behaving in the same way at the event of meeting.

A (1) > (1) > (1)

 $GenRel = AxFd + AxPh^{-} + AxEv^{-} + AxSelf^{-} + AxSym^{-} + AxDiff + CONT$


<u>GenRel:</u>	<u>Theorems:</u>
AxPh ⁻	
AxEv ⁻	?
AxOField	??
AxSelf [_]	???
AxDiff	Etc.
CONT	
	?

イロト イヨト イヨト イヨト

3

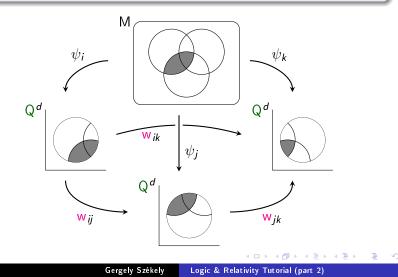
Theorem:

$SpecRel = AccRel \models GenRel.$

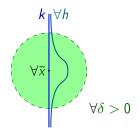
Gergely Székely Logic & Relativity Tutorial (part 2)

イロト イヨト イヨト イヨト

$GenRel = AxFd + AxPh^{-} + AxEv^{-} + AxSelf^{-} + AxSym^{-} + AxDiff + CONT$

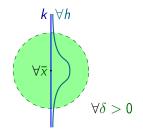

Theorem:

Gen Rel $\vdash \forall m, k \in Ob \ \forall \overline{x} \in wline_m(k) \cap wline_m(m) \rightarrow "w_{mk}$ is differentiable at \overline{x} and $d_{\overline{x}}w_{mk}$ is a Lorentz transformation."


・ロト ・聞 ト ・ ヨト ・ ヨトー

Theorem: (Completeness)

GenRel is complete with respect to the "standard models of GR", *i.e.*, the differentiable Lorentzian manifolds over real closed fields.



<u>Geodesics</u>: The worldline of an observer is called *timelike geodesic* if it "locally maximizes measured time."

▲圖> ▲ 国> ▲ 国>

<u>Geodesics</u>: The worldline of an observer is called *timelike geodesic* if it "locally maximizes measured time."

COMPR :

For any parametrically definable timelike curve in any observers worldview, there is another observer whose worldline is the range of this curve.

$$Gen Rel^+ = Gen Rel + COMPR$$

In GenRel⁺ the notion of geodesics coincides with its standard notion. Via geodesics, we can define the other notions of general relativity, such as Riemann curvature tensor.

4 日本

In GenRel⁺ the notion of geodesics coincides with its standard notion. Via geodesics, we can define the other notions of general relativity, such as Riemann curvature tensor.

Einstein's field equations:

$$R_{ij}-rac{1}{2}Rg_{ij}=T_{ij}$$

In GenRel⁺ the notion of geodesics coincides with its standard notion. Via geodesics, we can define the other notions of general relativity, such as Riemann curvature tensor.

Einstein's field equations:

$$R_{ij}-\frac{1}{2}Rg_{ij}=T_{ij}$$

Definition or axiom?

In GenRel⁺ the notion of geodesics coincides with its standard notion. Via geodesics, we can define the other notions of general relativity, such as Riemann curvature tensor.

Einstein's field equations:

$$R_{ij}-\frac{1}{2}Rg_{ij}=T_{ij}.$$

Definition or axiom? No real difference.

GenRel⁺: AxPh⁻ AxEv⁻ AxOField AxSelf⁻ AxSym⁻ AxDiff⁻ CONT COMPR

<u>Theorems:</u> Local Lorenz transf. — Completeness Geodesics eq.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

臣

Happy End?

Gergely Székely Logic & Relativity Tutorial (part 2)

< □ > < □ > < □ > < □ > < □ > .

Happy **End** Beginning!

Gergely Székely Logic & Relativity Tutorial (part 2)

・ 母 ト ・ ヨ ト ・ ヨ ト …