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It is well-known in algebraic logic that ‘trouble’ starts from n > 3. Just to list a few cases: Both
the n-variable fragment of predicate logic, and the equational theory of its algebraic counterpart,
representable cylindric algebras of dimension n (RCA,,) are undecidable for n > 3, and decidable
for n < 3. Also, RCA,, has a finitely axiomatisable equational theory for n < 3, which becomes
nonfinitely axiomatisable for n > 3. In our talk we survey recent results in many-dimensional
modal logic, showing that from a certain perspective there can be a lot of ‘trouble’ in dimension
2 already.

In particular, we look at 2-dimensional cylindric set algebras as subalgebras of the full complex
algebra of ‘2-dimensional’ relational structures of the form

<U X U,Eo,El,Id01>, (1)
where, for all u,v e U x U,
u=gvVv <~ u; = v,
u=1v — ug = Vo,
ue€ ldy — Uy = U1-

Instead of equations in the algebraic language having operators cg, ¢1, and dy1, we use formulas of
the corresponding propositional multimodal language having unary diamonds <¢, <1 (and their
duals Op, O;7) and a modal constant §. As the variety RCA, is generated by cylindric set algebras,
equations valid in RCA, correspond to multimodal formulas valid in all structures described in
(1).

In this setting, the equationally expressible properties of cylindrifications and the diagonal con-
stant in 2-dimensional representable cylindric algebras can be divided into two groups of modally
expressible properties:

(i) Modal formulas saying that each <; is normal and distributes over Boolean V, and formulas
expressing that =; is an equivalence relation, for each ¢ = 0, 1:

O,p—p O;p — 0;0;p Oip — 0;04p. (2)

(ii) Multimodal formulas describing ‘dimension-connecting’ properties of the 2-dimensional struc-
tures in (1).



A way of generalising the 2-dimensional relational structures of (1) is to consider structures
where

e the universe is still a full Cartesian product of two sets, and the relations between the pairs
of points still ‘act coordinate-wise’ (so (ii) still holds),

e the relations between the pairs of points are not necessarily equivalence relations (so (i)
might not hold).

Note that this direction is kind of orthogonal to the one taken by relativised cylindric algebras [7,
Section 5.5], where (i) is kept unchanged, while generalisations of (ii) are considered.

Various refinements of the properties in (2) give rise to different two-dimensional relational
structures, and so to different two-dimensional modal logics. In this talk we give an overview of
recent results on axiomatisation and decision problems in this area [1, 2, 3, 4, 5, 6, 8, 9, 10, 11,
12, 13], describe some of the ideas behind the used methods, and give a list of open problems.
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