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Abstract

FLe-algebras are algebraic models of the substructural logic FLe.
The classification of absorbent-continuous, sharp FLe-algebras over
weakly real chains is given: The algebra is determined by its nega-
tive cone, and the related cone operation can only be chosen from a
certain subclass of BL-algebras. It is shown that absorbent-continuity
is the most relaxed version of the naturally ordered condition under
which the classification theorem holds. The classification theorem does
not hold either if the algebra is not sharp.

Keywords: Substructural logics, Residuated lattice, involutive FLe-
algebra, ordinal sum, twin-rotation, classification

1 Introduction

Residuated lattices have been introduced in the 30s of the last century by
Ward and Dilworth [25] to investigate ideal theory of commutative rings with
unit. Examples of residuated lattices include Boolean algebras, Heyting al-
gebras [18], MV-algebras [3], BL-algebras, [7] and lattice-ordered groups; a
variety of other algebraic structures can be rendered as residuated lattices.
The topic did not become a leading trend on its own right back then. Nowa-
days the investigation of residuated lattices (roughly, residuated monoids on
lattices) has got a new impetus and has been staying in the focus of strong
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Pécs, Hungary, email:jenei@ttk.pte.hu
†Supported by the OTKA-76811 grant, the SROP-4.2.1.B-10/2/KONV-2010-0002

grant, and the MC ERG grant 267589.
‡Corresponding author.
§Department of Mathematics and Computer Sciences, Pian dei Mantellini 44, 53100

Siena, Italy, email: montagna@unisi.it

1



international attention. Beyond the algebraic interest, the reason is that
residuated lattices turned out to be algebraic counterparts of substructural
logics [24, 23]. Substructural logics encompass among many others, classical
logic, intuitionistic logic, relevance logics, many-valued logics, mathematical
fuzzy logics, linear logic and their non-commutative versions. These log-
ics had different motivations and methodology. The theory of substructural
logics has put all these logics, along with many others, under the same moti-
vational and methodological umbrella. Residuated lattices themselves have
been the key component in this remarkable unification. An extensive mono-
graph about residuated lattices and substructural logics went to print in 2007
[6]. Applications of substructural logics and residuated lattices span across
proof theory, algebra, and computer science. FLe-algebras are commutative
residuated lattices with an additional constant. For FLe-algebras, those with
an involutive negation are of special interest. Involutive FLe-algebras have
very interesting symmetry properties [11, 12, 10, 19] and, as a consequence,
for involutive FLe-algebras we have beautiful geometric constructions which
are lacking for general FLe-algebras [11, 17, 20]. Furthermore, not only in-
volutive FLe-algebras have very interesting symmetry properties, but some
of their logical calculi have important symmetry properties too: Both sides
of a sequent may contain more than one formula, while (hyper)sequent cal-
culi for their non-involutive counterparts admit at most one formula to the
right.

As for the classification problem of residuated lattices, as one naturally
expects, it is possible only by imposing additional postulates. A first precur-
sor is due to Hölder who proved in [8] that every cancellative, Archimedean,
naturally and totally ordered semigroup can be embedded into the additive
semigroup of the real numbers. Aczél used tools of analysis to investigate
continuous semigroup operations over intervals of real numbers1 and also
found in [1, page 256] the cancellative property2 to be sufficient and nec-
essary for the existence of an order-isomorphism to a subsemigroup of the
additive semigroup of the real numbers [1, page 268]. Clifford showed in [4]
that every Archimedean, naturally and totally ordered semigroup in which
the cancellation law does not hold can be embedded into either the real
numbers in the interval [0, 1] with the usual ordering and ab = max(a+ b, 1)
or the real numbers in the interval [0, 1] and the symbol ∞ with the usual
ordering and ab = a + b if a + b ≤ 1 and ab = ∞ if a + b > 1. For a
summary of the Hölder and Clifford theorems, see [5, Theorem 2 in Section

1Isotonicity of the semigroup operation is not assumed.
2He called is reducible.
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2 of Chapter XI]. Clifford also introduced the ordinal sum construction for a
family of totally ordered semigroups in [4] and proved that every naturally
totally ordered, commutative semigroup is uniquely expressible as the or-
dinial sum of a totally ordered set of ordinally irreducible such semigroups.
Mostert and Shields gave a complete description of topological semigroups
over compact manifolds with connected, regular boundary in [22] by using
a subclass of compact connected Lie groups and via classifying semigroups
on arcs such that one endpoint functions as an identity for the semigroup,
and the other functions as a zero. They classified such semigroups as or-
dinal sums of three basic multiplications which an arc may possess. The
word ‘topological’ refers to the continuity of the semigroup operation with
respect to the topology. In the next related classification result, the topolog-
ically connected property of the underlying chain was dropped whereas the
continuity condition was somewhat strengthened: Under the assumption of
divisibility3 4 5, residuated chains were classified as ordinal sums6 of linearly
ordered Wajsberg hoops in [2]. Postulating the divisibility condition proved
to be sufficient for the classification of residuated monoids over arbitrary
lattices, see [9], where the authors introduced the notion of poset sum of
hoops, a common generalization of ordinal sum and of direct product. They
proved that every commutative and divisible residuated lattice embeds into
the poset sum of a family of MV-chains and that the embedding is an iso-
morphism in the finite case. Next, SIU-algebras over arbitrary lattices were
classified in [16], see Theorem 3 below. Here the authors assume the exis-
tence of a dual-isomorphism between the positive and negative cones of the
algebra. For SIU-algebras over weakly real chains, this condition is equiv-
alent to postulating divisibility only for the negative cone of the algebra.
In the present paper we classify a class of residuated lattices by assuming
only a very weak form of continuity, called absorbent-continuity. It is a much

3Divisibility is the dual notion of the naturally ordered property; here semigroups are
negatively ordered.

4For residuated integral monoids, divisibility is equivalent to the continuity of the
semigroup operation in the order topology if the underlying chain is order dense.

5Divisibility is the algebraic analogue of the Intermediate Value Theorem in real anal-
ysis, and for residuated integral monoids over order-dense chains, it can be considered a
stronger version of continuity of the monoidal operation than the continuity of it with re-
spect to the order topology. Indeed, divisibility entails continuity on order-dense chains as
mentioned in the previous footnote. On the other hand, if the order topology of the chain
is the discrete one then every operation is continuous but obviously not all operations
obey the divisibility condition.

6The notion of ordinal sum has slightly been modified to ease the formulation of this
result.
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weaker condition than even the continuity condition of SIU-algebras; in fact,
it is the weakest possible continuity condition under which the statement of
our classification theorem still holds.

The goal of this paper is to classify absorbent-continuous, sharp FLe-
algebras on weakly real chains. Surprisingly, the restriction of those monoids
to their negative cone is necessarily continuous (everywhere) in the order
topology of their underlying chain. Equivalently, one may say that the
restriction of those monoids to their negative cones is necessarily divisible,
as divisibility and continuity are equivalent in our setting. The result holds
only under the sharpness condition, and hence a classification for involutive
FLe-monoids is still lacking, but in any case the result is very surprising,
as involutive integral monoids over chains, that can be more specific than
weakly real chains, may have discontinuities even below the fixed point of
their negation.

While for involutive integral monoids and even for involutive t-norms a
classification is still lacking, for sharp FLe-algebras on weakly real chains we
obtain here a classification. Since [0, 1], the unit interval of real numbers,
is a weakly real chain, our result also provides with the classification of
absorbent-continuous, sharp uninorms. Finally, we show that absorbent-
continuity can not be omitted from the conditions of the classification. Also
we show that closed intervals of the real numbers are not the only example
weakly real chains.

2 Preliminaries

Definition 1 We call a chain 〈X,≤〉 weakly real if

1. X is order-dense and complete,

2. there exists a dense Y ⊂ X with |Y | < |X|, and

3. for any x, y ∈ Y there exist u, v ∈ Y such that u > x, v > y, and there
exists a strictly increasing function from [x, u] into [y, v].

Definition 2 A commutative binary operation ∗◦ on a poset (X,≤) is
called residuated if there exists another binary operation →∗◦ on X such
that for x, y, z, x ∗◦ y ≤ z iff y →∗◦ z ≥ x. Call U = 〈X, ∗◦,≤, t, f〉 an FLe-
monoid if C = 〈X,≤〉 is a poset, (X, ∗◦) is a commutative, residuated monoid
over C with neutral element t, and f is an arbitrary constant. If X is a
lattice, we speak about FLe-algebras. Define the positive and the negative
cone of U by X+ = {x ∈ X | x ≥ t} and X− = {x ∈ X | x ≤ t},
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respectively. Both cones are closed with respect to the monoidal operation
∗◦; throughout the paper we will denote the negative and the positive cone
operation of ∗◦, by ⊗ and ⊕, respectively. Call U conic if every element of
X is comparable with t, that is, if X = X+ ∪ X−. Call U representable
if it can be represented as subdirect product of chains. Call U finite if
X is a finite set, bounded if X has top > and bottom element ⊥. If X
is linearly ordered, we speak about FLe-chains. Call U involutive, if for
x ∈ X, (x′)′ = x holds, where x′ = x →∗◦ f . Call an involutive FLe-
monoid sharp, if t = f . Call a representable, bounded, sharp FLe-monoid
a SIU-algebra, if for x, y ∈ X−, x′ ∗◦ y′ = (x ∗◦ y)′ holds. A po-monoid
is integral (resp. dually integral) if it has a top (resp. bottom) element
which is also the unit element of ∗◦. Monoidal operations of FLe-algebras
over [0, 1] are called uninorms, of integral FLe-algebras over [0, 1] are called
t-norms. BL-algebras are divisible, representable, bounded, integral FLe-
algebras with f = ⊥. MV-algebras are BL-algebras satisfying x′′ = x.
Hoops are divisible, commutative integral residuated po-monoids. Wajsberg
hoops are MV-algebras deprived of ⊥. Commutative residuated lattices are
exactly the f -free reducts of FLe-algebras.

Any residuated operation it is also partially ordered (isotone), and therefore,
′ : X → X is an order-reversing involution. A residuated operation on an

order-dense chain (viewed as a two-place function) is left-continuous in the
square of the order topology.

We recall a result from [4]. This theorem discusses a certain way of
constructing a new semigroup from a family of semigroups.

Definition 3 (Ordinal sum construction - Clifford sense) Let A 6=
∅ be a totally ordered set and (Gα)α∈A with Gα = (Xα, ∗α) be a family of
semigroups. Assume that for all α, β ∈ A with α < β the sets Xα and Xβ

are either disjoint or that Xα ∩ Xβ = {xαβ}, where xαβ is both the unit
element of Gα and the annihilator of Gβ, and where for each γ ∈ A with
α < γ < β we have Xγ = {xαβ}. Put X =

⋃
α∈AXα and define the binary

operation ∗ on X by

x ∗ y =


x ∗α y if (x, y) ∈ Xα ×Xα,
x if (x, y) ∈ Xα ×Xβ and α < β,
y if (x, y) ∈ Xα ×Xβ and α > β.

(1)

Then G = (X, ∗) is a semigroup. The semigroup G is commutative if and
only if for each α ∈ A the semigroup Gα is commutative. We call G the
ordinal sum of the Gα’s, and each Gα will be called a summand of G.
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Definition 4 (Ordinals sum construction - Aglianó-Montagna
sense) [2]

Let (I,≤) be a totally ordered set. For each i ∈ I let Ai = 〈Ai, ·i,→i, 1〉
be a hoop such that for every i 6= i, Ai ∩ Aj = 1. Then we can define the
ordinal sum as the hoop

⊕
i∈I Ai = 〈∪i∈I , ·,→, 1〉 where the operations ·,→i

are given by:

x · y =


x ·i y if x, y ∈ Ai,
x if x ∈ Ai \ {1}, y ∈ Aj and i < j,
y if y ∈ Ai \ {1}, x ∈ Aj and i < j.

x→ y =


1 if x ∈ Ai \ {1}, y ∈ Aj and i < j,
x→i y if x, y ∈ Ai,
y if y ∈ Ai, x ∈ Aj and i < j.

If in addition I has a minimum i0 and Ai0 is a bounded hoop, then
⊕
i∈I Ai

denotes the bounded hoop whose operations ·,→i are defined as before,
and whose bottom element is the minimum of Ai0 . Each Ai is called a
component of

⊕
i∈I Ai.

In order to ease the distinction between the two ordinal sum constructions,
we will speak about summands in case of Clifford-style ordinal sums, whereas
we will speak about components in case of Aglianó-Montagna-style ordinal
sums.

Theorem 1 [2] Every totally ordered BL-algebra is the ordinal sum of
a family of Wajsberg hoops, whose first component is an MV-algebra.

The twin-rotation construction was introduced in [17]. Here we need a
special case of it:

Definition 5 (Twin-rotation construction – sharp case) Let X1

be a partially ordered set with top element t, and and X2 be a partially
ordered set with bottom element t such that the connected ordinal sum
osc〈X1, X2〉 of X1 and X2 (that is putting X1 under X2, and identifying
the top of X1 with the bottom of X2) has an order reversing involution ′

with fixed point t. Denote the partial order of osc〈X1, X2〉 also by ≤. Let
(X1,⊗) and (X2,⊕) be commutative semigroups, both with neutral element
t. Assume that (X1,⊗) is residuated and assume that all residua x→⊕ y
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exist if x, y ∈ X2, x ≤ y.7 Denote

U⊕⊗ = 〈osc〈X1, X2〉, ∗◦,≤, t, t〉

where ∗◦ is defined as follows:

x ∗◦ y =



x⊗ y if x, y ∈ X1

x⊕ y if x, y ∈ X2

(x→⊕ y′)′ if x ∈ X2, y ∈ X1, and x ≤ y′
(y→⊕ x′)′ if x ∈ X1, y ∈ X2, and x ≤ y′
(y→⊗ x′)′ if x ∈ X2, y ∈ X1, and x 6≤ y′
(x→⊗ y′)′ if x ∈ X1, y ∈ X2, and x 6≤ y′

. (2)

Call ∗◦ (resp. U⊕⊗ ) the twin-rotation of ⊗ and ⊕ (resp. of the first and the
second partially ordered monoid).

Theorem 2 [17] (Conic Representation Theorem – sharp case)
Any conic, sharp FLe-monoid can be represented as the twin-rotation of its
negative and positive cone.

We will also rely on the classification of SIU-algebras:

Theorem 3 [16] U = 〈X, ∗◦,≤, t, f〉 is a SIU -algebra if and only if its
negative cone is a BL-algebra with components which are either cancellative
or MV-algebras with two elements, and with no two consecutive cancellative
component, ⊕ is the dual of ⊗ with respect to ′, and ∗◦ is given by (2).

One of the two main tools in proving our classification theorem in Theorem 5
is the result in Lemma 4 about the relationship of two operations, both of
which are derived from ∗◦, as follows:

Definition 6 For a commutative complete residuated chain 〈X,≤, ∗◦,→,1〉
and for x, y ∈ X \ {>} define

x ∗◦co y = inf{x1 ∗◦ y1 | x1 > x, y1 > y},
x ∗◦Q y = inf{x ∗◦ y1 | y1 > y}.

Call ∗◦co and ∗◦Q the skewed modification [12, 10] and the companion [19] of
∗◦, respectively.

7This means that for x, y ∈ X2 and x ≤ y, the maximal element of the set {z | x⊕z ≤ y}
exists.
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In addition, assume X is a order-dense. Then x ∗◦co y = x ∗◦ y iff (x, y) is a
continuity point of ∗◦ (viewed as a two-place function) in the order topology
of the chain. Then, for ∗◦ being residuated is known to be equivalent to be-
ing left-continuous, as a two-place function (in the order topology) whereas
being co-residuated is known to be equivalent to being right-continuous. By
using that the chain is order-dense to-gether with that of the monotonic-
ity of ∗◦, it is an easy exercise to prove that x ∗◦co y is equal to the limit of
xi ∗◦ yi, xi and yi are being arbitrarily chosen sequences with xi > x and
yi > y, converging to x and y, respectively. The skewed modification is
right-continuous, by definition, therefore it is always a co-residuated opera-
tion since the chain is complete, that is, it is residuated with respect to ≥,
the dual ordering relation.

3 Classification

In [12, Corollary 4] (see as well [10]) it has been demonstrated that the
skewed modification and the companion of ∗◦ coincide whenever ∗◦ is an in-
tegral FLe-algebra on [0, 1], such that x 7→ x→∗◦ 0 is an involution of [0, 1]
with fixed point a, and x 7→ x→∗◦ a, is an involution of [a, 1]. We will prove
in this paper that ∗◦co and ∗◦Q also coincide when ∗◦ is any sharp FLe-algebra
on a weakly real chain.

Lemma 4 Let 〈X, ∗◦,≤, t, f〉 be a sharp FLe-algebra on a weakly real
chain. For > 6= x, y ∈ X,

x∗◦coy = x ∗◦Q y

holds.

In this section we present the main theorem of our paper (Theorem 5),
which states that U is an absorbent-continuous, sharp FLe-algebra on a
weakly real chain if and only if the negative cone of U is a BL-chain with
components which are either cancellative (that is, those components are
negative cones of totally ordered Abelian groups) or MV-algebras with two
elements, and with no two consecutive cancellative components, ⊕ is the dual
of ⊗ with respect to ′, and ∗◦ is given by (2). In other words, each absorbent-
continuous, sharp FLe-algebra on a weakly real chain is a SIU-chain. This
theorem can also be read as follows: For sharp FLe-algebras on weakly real
chains it is sufficient (and as we will see in Example 6, also necessary) to
assume absorbent-continuity, which is a very relaxed version of the naturally
ordered condition on the negative cone operation, and it implies continuity
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on the whole negative cone. To this end, we first introduce and investigate
the absorbent function of the monoidal operation of involutive FLe-algebras.
Introduced in [14] under the name ‘skeleton’, the absorbent region of a left-
continuous t-norm is the subset of its domain, where its value equals with
the minimum of the arguments. Exploitation of this notion leads to the
second main tool in proving our classification theorem.

Definition 7 For an involutive FLe-monoid U = 〈X, ∗◦,≤, t, f〉 on a
complete poset let

A(x) =

{
max{u ∈ X+ | u⊕ x = x}, if x ∈ X+

(inf{u ∈ X− | u⊗ x = x})′, if x ∈ X−

and call it the absorbent function of ∗◦. The maximum of the set in the first
line always exists since ⊕ is residuated and the infimum in the second line
exists since the poset is complete.

Definition 8 Let 〈X, ∗◦,≤, t, f〉 be a sharp FLe-monoid on a complete
poset. We call ∗◦ absorbent-continuous if

for x ∈ X−, A(x)′ ∗◦ x = x holds. (3)

The main result of this paper is a classification of absorbent-continuous,
sharp FLe-algebras on weakly real chains:

Theorem 5 U is an absorbent-continuous, sharp FLe-algebra on a weakly
real chain if and only if its negative cone is a BL-algebra with components
which are either cancellative or MV-algebras with two elements, and with no
two consecutive cancellative components, its positive cone is the dual of its
negative cone with respect to ′, and its monoidal operation is given by (2).

Absorbent-continuity can not be dropped from the conditions of Theo-
rem 5, as shown by Example 6.

Example 6 Let R∗ = 〈R ∪ {⊥,>},+, 0〉 be the ordered abelian group
of the reals added with two new elements ⊥ and > as follows: Let ⊥ <
x < > for x ∈ R. We extend the sum of the reals to R ∪ {⊥,>} by letting
⊥+x = x+⊥ = ⊥ for all x ∈ R∪{⊥,>} and x+> = >+x = > for x ∈ R.
We also extend the operation −x to R∗ by letting −> = ⊥ and −⊥ = >.
Note that R∗ is an ordered monoid and − is an order reversing involution.
Now denote Q the set of rational numbers, Q∗ the set of irrational numbers,
and let A be the set of all pairs (a, b) ∈ (R ∪ {⊥,>}) × (R ∪ {⊥,>}) such
that:
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i. If either a = > or a ∈ Q∗, then b = ⊥.

ii. If a = ⊥, then b = >.

In other words, A consists of (>,⊥), (⊥,>), of all (a,⊥) such that a is not
rational, and of all (a, b) such that a is rational and b ∈ R ∪ {⊥,>}. We
order A lexicographically, i.e., (a, b) � (c, d) if either a < c or a = c and
b ≤ d. We further define a monoid operation ∗◦ on A componentwise, i.e.,
(a, b) ∗◦ (c, d) = (a+ c, b+ d).
Then we can show that 〈A, ∗◦,≤, (0, 0), (0, 0)〉 is a sharp FLe-algebra on a
weakly real chain. However, ∗◦ is not absorbent-continuous and the negative
cone of A is not a BL-algebra.

Finally, let us note that the algebra A being complete, order-dense, and
separable, is isomorphic to a sharp uninorm algebra on [0, 1], and its negative
cone is not a BL-algebra, that is, the uninorm is not continuous in the
negative cone.

Finally, we will show that closed intervals of real numbers are not the
only example weakly real chains.

Theorem 7 There is a complete and order-dense set X with maximum
> and minimum ⊥ such that:

1. X has a dense subset Y with |Y | < |X|.

2. For every a, b < > there are c, d such that a < c < >, b < d < > and
there exists a strictly increasing function from [a, c] to [b, d].

3. X is not isomorphic to [0, 1].

Without detailed proof we give the example below:

Case (a) Cantor’s Continuum Hypothesis does not hold. Let

X = ((ℵ1 × [0, 1]) ∪ {>})\ {(α+ 1, 0) : α < ℵ1} .

Order X with the lexicographic order: (α, a) ≤ (β, b) if either α < β or
α = β and a ≤ b. Moreover, we stipulate that > is the top of X.

Case (b). Cantor’s Continuum Hypothesis holds. Let S = 2ℵ1 be the
set of all binary sequences of length ℵ1, that is, the set of all functions
from ℵ1 into {0, 1}. Let S1 = {s ∈ S : ∃α < ℵ1(sα = 0 ∧ ∀β > α(sβ = 1))},
and let > and ⊥ be the sequences which are constantly 1 and constantly 0,
respectively. Let X = S\S1. We order X by the lexicographic order. In
other words, if s 6= t, there is a minimum α such that sα 6= tα. Then s < t
iff sα < tα.
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