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An axiomatic foundation of relativistic spacetime 

Axiomatizations of the General Theory of Relativity.have occasionally been 

conducted to achieve precision and clarification of underlying concepts. Rigorous and 

inspiring work towards that aim based on first-order logic has been performed by 

Professor Németi and his working group (see references below). A complementary 

approach (Benda 2008) constructs the relativistic spacetime manifold ab initio in a 

theory ST, which is a conservative extension of Zermelo’s Z with urelemente, 

interpreted as worldlines. The present work contains a few modifications and 

continues towards the construction of a metric, from where the Einstein tensor is 

readily built. 

Two ideas characterize the present endeavour towards axiomatizing an important part 

of physics. First, there is a unified ontology of mathematics and physics, the set-

theoretical hierarchy with urelemente. Mathematical objects are pure sets, which arise 

from the empty set by power set formation and union. (Accordingly, numbers are not 

mathematical objects. Rather, being a number is a property, instantiated, e.g., by the 

von Neumann numbers.) Physical objects are all sets that arise from the empty set and 

a set of urelemente by power set formation and union and are not mathematical 

objects. Secondly, physics is to be geometrized. Thus the urelemente are interpreted 

as geometrical entities, not, however, as spacetime points, but as worldlines. This is 

work in progress which is restricted to a part of physics. Particularly that crucial 

component of physics, experience, does not yet enter the present considerations. 

To accommodate urelemente, the extension axiom of Z is modified and one axiom is 

added, stating that the urelemente form a set. In the language of ST, there are no 

individual constants and only two predicate constants, read “_is element of_” and 

“_intersects with_at_”. 14 proper axioms of ST are given in five groups, which 

roughly state in terms of the intended interpretation: Intersection is of a worldline 

with another worldline at a real number; it is non-reflexive and between any two 

worldlines occurs mutually. For any two given worldlines, further worldlines exist, 

connecting them between certain sections thereof, while excluding certain 

inaccessible sections. Any given local region is densely filled by worldlines which do 

not intersect there. Of any two given worldlines, mutually inaccessible sections 

smoothly co-vary. Points on each worldline are determined by therefrom inaccessible 

sections of two other worldlines. In spite of the suggestive language of the foregoing 

rough description in terms of the intended interpretation, no underlying space, in 

particular, no metric is presupposed. 

The axioms are motivated by interpreting worldlines as possible particle paths. Yet 

they are guided by formal deliberations, as well. To see this, we paraphrase the 

axioms of ST more accurately, albeit, for brevity, still in an incomplete manner. 

Emphasizing a formal motive for the axioms, we write “relates to” for “intersects” in 

the next paragraph. If a first object relates to a third object at some first real number 

and a second object relates to the third object at some second real number, we will 
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temporarily say that the first object “indirectly relates to” the second object at the first 

and second real numbers. In that case, we say that the second object at the second real 

number is “connectable” from the first object at the first real number. For any first 

object at a first real number, we also temporarily speak of a first real number 

“attached” to a first object. Symmetry of indirect relating is not presumed, so we 

speak of “backward” indirect relating and its converse, “forward” indirect relating, as 

well as of “backward connectable” and “forward connectable” real numbers attached 

to objects. We speak of a “dense” set of objects, if their relating to some further object 

occurs at all real numbers of some open interval of real numbers. What is called a 

“diamond” is a cartesian product of a set of urelemente and a set of real numbers, 

which are respectively backward and forward connectable from first and second real 

numbers that are attached to some guiding urelement. 

With that, our informal paraphrasing proceeds as follows. A ternary predicate 

constant, “relates to”, has only arguments the first and third of which are urelemente 

and the second of which is a real number, which is a pure set (P1). Relating is 

irreflexive in its urelement arguments (P2). No urelement relates to a second 

urelement more than finitely many times within any finite interval of real numbers 

(P3). Relating is not formally symmetric in its urelement arguments, yet swapping 

these again yields their relating at some real number (P4). A three-party symmetry of 

relating holds: If of three given urelemente two relate to the third at the same real 

number, then any two of those three urelemente relate to the remaining third 

urelement at a common real number (P4). For any two urelemente, another urelement 

exists, which relates to them indirectly, from a given first real number attached to a 

first urelement backward to some second real number attached to the second 

urelement (P5). From any first urelement, any second urelement at at least two real 

numbers is not connectable (P6). If two urelemente exist that relate to each other, they 

also relate indirectly to each other via more than countably many urelemente at pairs 

of real numbers in determined ranges (P7), (P8), (P9). Every pair of real numbers and 

urelemente attached thereto is contained in some diamond whose elements have dense 

first components (P10). Changing any first real number attached to a first urelement 

shifts the infimum of the set of not connectable second real number attached to a 

second urelement smoothly and monotonously (P11). Any set of real numbers on a 

second urelement that is not connectable from a given first real number attached to a 

first urelement is, after undergoing a linear shift, again a not connectable set from 

some real number attached to some urelement (P12). Not connectable sets of real 

numbers on any two urelemente are locally unique in that precisely all their elements 

are inaccessible from at most one pair of a real number and a urelement out of some 

diamond containing that pair (P13). 

Thus the axioms draw more from formal than from obviously physical considerations 

They are ontologically and conceptually parsimonious. The only primitive physical 

entities are worldlines. The only high-level mathematical entities mentioned are real 

numbers and smooth real functions, which are constructible from the frame theory Z. 
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Spacetime points are non-primitive, they are defined as sets of mutually intersecting 

worldlines and in turn form a set stp. Worldlines can now be visualized as connecting 

spacetime points, and each spacetime point on a given worldline is characterized by a 

unique real number. An Alexandroff topology is introduced. With that, to aid 

visualization further, a lightcone around a spacetime point p is definable as the set of 

topological boundary points of the set of spacetime points containing some common 

worldline with p. By the axioms of ST, spacetime points form a four-dimesional 

manifold, which is oriented and Haussdorf. Around each spacetime point p, a canonic 

coordinate system is found, mapping spacetime points in a neighborhood of p to a 

quadruple of real numbers that characterize the intersection points of two worldlines 

with the lightcone around p. All canonic coordinate systems form a unique atlas, a 

“standard spacetime atlas”. Later definitions of smooth functions involving 

coordinates will be carried out with respect to the standard spacetime atlas. 

From here, it is straightforward, if involved, using no more than the present theory ST 

and its frame Z, to define entities known from differential geometry and prove their 

properties: smooth real functions on spacetime, which form a set fst; curves; tangent 

vector fields, which form a set vst; connections; and tensors. Tangent vector fields are 

mappings on fst. Being fst-linear, they form a ring over the module of spacetime 

functions, having bases that are derivatives. Transformations of tangent vector fields 

are defined as those that preserve the chain rule of derivatives. Velocity tangent 

vectors along curves are defined as images of such transformations from derivatives 

on one-dimensional manifolds. Compositions of pairs of tangent vector fields define 

mappings from vst  vst to vst. Each of them is fst-linear in the first argument and ℝ-

linear in the second argument. Connections are now defined as analogues of such 

compositions, as mappings from vst  vst to vst with the same linearity properties. 

That is in accordance with the common definition. However, here no metric is yet 

available to specify connections further. For each connection, a thereby induced 

covariant derivative along a given curve is defined in the usual way. 02-tensors are 

defined as mappings from vst  vst to fst which are fst-bilinear, forming a set t02. 

Furthermore, from any given connection, a tensor derivation is constructed, that is, a 

set of ℝ-linear mappings on fst, vst and t02, which follow a product rule. 

Spacetime points that contain a common worldline form curves called “worldline 

curves” (what are called “worldlines” in common parlance). By the axioms of ST, 

there exists precisely one connection d, such that all worldline curves are free of 

acceleration, that is, the d-induced covariant derivatives of the velocity vector fields 

along all worldline curves vanish. From the connection d, a unique tensor derivation, t, 

is constructed. 

Only now, a metric g is defined: as a 02-tensor whose tensor derivation t vanishes. 

The metric is thereby, up to a constant g0, determined by the worldlines intersecting 

each other at given real numbers. By postulating a Lorentz signature for g0, the metric 

g has a Lorentz signature throughout spacetime. 



4 

 

Once the metric is in place, the Einstein tensor is obtained via a famous construction 

by Lovelock (1971), which was improved by Navarro (2010). It is determined up to a 

constant g0 times the scalar curvature s. This indeterminacy differs from the 

cosmological constant by the factor s. That may provide a testable condition. 

It is in the spirit of the present geometric approach to view the right-hand term in the 

Einstein equation, denoting the energy-momentum tensor, as being defined. With that, 

ST needs an extension, postulating a condition to make energy-momentum 

empirically accessible. 
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