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Abstract

Belief change studies how to update knowledge bases used
for reasoning. Traditionally belief revision has been based on
full propositional logic. However, reasoning with full propo-
sitional knowledge bases is computationally hard, whereas
reasoning with Horn knowledge bases is fast. In the past sev-
eral years, there has been considerable work in belief revision
theory on developing a theory of belief contraction for knowl-
edge represented in Horn form.
Our main focus here is the computational complexity of be-
lief contraction, and, in particular, of various methods and
approaches suggested in the literature. This is a natural and
important question, especially in connection with one of the
primary motivations for considering Horn representation: ef-
ficiency.
The problems considered lead to questions about Horn en-
velopes (or Horn LUBs), introduced earlier in the context of
knowledge compilation. This work gives a syntactic charac-
terization of the remainders of a Horn belief set with respect
to a consequence to be contracted, as the Horn envelopes of
the belief set and an elementary conjunction corresponding
to a truth assignment satisfying a certain explicitly given for-
mula. This gives an efficient algorithm to generate all remain-
ders, each represented by a truth assignment.
On the negative side, examples are given of Horn belief sets
and consequences where Horn formulas representing the re-
sult of contraction, based either on remainders or on weak
remainders, must have exponential size for almost all possi-
ble choice functions (i.e., different possible choices of partial
meet contraction). Therefore using the Horn framework for
belief contraction does not by itself give us computational ef-
ficiency. Further work is required to explore the possibilities
for efficient belief change methods.
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1 Introduction
Belief revision attempts to answer the question of how to
update a set of beliefs when new information is obtained
that may be inconsistent with the current beliefs (Fermé
and Hansson 2011; Hansson 1999; Peppas 2008). The stan-
dard approach, called the AGM approach after (Alchourrón,
Gärdenfors, and Makinson 1985), is to formulate postulates
that need to be satisfied by rational agents performing be-
lief revision, and then to characterize all possible operations
that satisfy these postulates, with the usual set of postulates
being the AGM postulates. Until recently, work on AGM-
style belief revision focused on logics at least as rich as full
propositional logic, and assumed a language that was closed
under the basic operations of propositional logic: negation,
disjunction, and conjunction. For example, a central result
of AGM for contraction—that a contraction operator obeys
the AGM postulates if and only if that contraction opera-
tor consists of returning some intersection of remainder sets
(i.e., partial meet contraction)—relies on the language being
closed under those operations.

Evolving knowledge bases and ontologies appear to be
interesting potential application areas for belief revision.
These applications require tractable knowledge representa-
tion formalisms, such as Horn logic or some versions of de-
scription logic, which do not contain full propositional logic.
Thus it is of interest to develop a belief change theory for
these particular logics, and, furthermore, for arbitrary logics
in general.

In recent years, there have been a number of papers con-
sidering logics that are not necessarily closed under the ba-
sic operations. As far as we know, (Flouris, Plexousakis,
and Antoniou 2004) were the first to look into this ques-
tion. Flouris et al. wanted to develop a theory of belief revi-
sion that would apply to description logic. In the case with
closure under the basic propositional logic operators, a con-
traction operator obeying the AGM postulates always exists.
This is not always the case for logics not so closed. Flouris et
al. formulate a property called decomposability of the logic,
and show that decomposability is a necessary and sufficient
condition for the existence of an AGM-compliant belief con-
traction operator.

Starting in 2008, there has been a flurry of papers con-



sidering specifically the case of belief contraction for Horn
logic, that is, the subset of propositional logic consisting of
Horn formulas (Booth et al. 2011; Booth, Meyer, and Varz-
inczak 2009; Delgrande 2008; Delgrande and Peppas 2011;
Delgrande and Wassermann 2010; Fotinopoulos and Pa-
padopoulos 2009; Langlois et al. 2008; Zhuang and Pag-
nucco 2010a; 2010b; 2011). The problem was actually
studied much earlier, independently of the AGM framework
(Kleine Büning and Lettmann 1987).

Horn logic is a fragment of (propositional and predicate)
logic that is of central importance in AI. Horn clauses ex-
press rules that are natural and easy to understand for hu-
mans. Another main reason for interest in Horn logic is
that reasoning in propositional logic is computationally in-
tractable, but reasoning in Horn logic is efficient. Inciden-
tally, Horn logic is one of the six tractable cases of the con-
straint satisfaction problem in the sense of Schaefer’s fa-
mous dichotomy theorem (Schaefer 1978). 1

(Langlois et al. 2008) consider the framework of (Flouris,
Plexousakis, and Antoniou 2004) and show that Horn logic
is not decomposable. (See also (Ribeiro 2010).) They char-
acterize the Horn belief sets that have an AGM-compliant
contraction operator, and give a polynomial-time algorithm
to compute such a contraction when one exists. Their re-
sults use the notion of complement introduced by (Flouris,
Plexousakis, and Antoniou 2004), which, in standard belief
revision terms, is a remainder of a belief set with respect to
itself.

The papers (Booth et al. 2011; Booth, Meyer, and
Varzinczak 2009; Delgrande 2008; Delgrande and Wasser-
mann 2010; Zhuang and Pagnucco 2010a; 2010b; 2011) ask
the important question, “What sort of contraction operator
should we use for the full Horn logic?” They consider vari-
ations of both the definition of remainder set and of how
to combine remainder sets to obtain contraction operators
that are defined for all Horn knowledge bases K and con-
sequences ϕ, and give results relating those contraction op-
erators to various sets of postulates. A common feature is
that the recovery postulate, which is assumed in (Flouris,
Plexousakis, and Antoniou 2004), is replaced by other pos-
tulates. Computational efficiency issues are not considered
in these papers.

Since one major advantage of restricting oneself to a
Horn knowledge base is computational efficiency, it is im-
portant to understand the computational complexity of con-
tracting or revising for such knowledge bases. Here we
give initial results on the efficiency of some of the Horn
belief contraction methods from several of the papers dis-
cussed in the previous paragraph. Previous, mostly neg-
ative, complexity theoretic results on classical belief revi-
sion are given in (Eiter and Gottlob 1992; Liberatore 2000;
Nebel 1998). These papers contain results on revising Horn
belief sets. However, in the classical framework the result
of a contraction or a revision of a Horn belief set is not nec-
essarily Horn. Notice that while one of the motivations for
considering Horn logic is to gain in efficiency, for example

1Belief revision for some of the other tractable cases is dis-
cussed by Creignou et al. (2012).

in reasoning with the belief set, it may be the case that one
has to pay a price in the sense that some tasks become more
difficult due to the restricted nature of the logic. Some of our
results show that such a phenomenon does indeed occur.

Results

In this paper we focus on remainder sets and weak remain-
der sets. Given a Horn belief set K and a Horn formula ϕ
to be contracted, one can consider enlarging the set of truth
assignments satisfying K by a single truth assignment fal-
sifying ϕ. This sometimes produces a remainder set. How-
ever, as noted in (Delgrande and Wassermann 2010), not all
such truth assignments produce a remainder set, only those
which, when intersected componentwise with the truth as-
signments satisfying K, do not produce any other truth as-
signments falsifying ϕ. Weak remainder sets are defined in
(Delgrande and Wassermann 2010) similarly to remainder
sets, except that now an arbitrary truth assignment falsify-
ing ϕ can be added to the satisfying truth assignments of K.
Both remainders and weak remainders lead to interesting,
but different, theories of Horn belief contraction.

As not every truth assignment falsifying ϕ can be used to
build a remainder set of K with respect to ϕ, the first task is
to understand which truth assignments can in fact be added.
In Section 3, we give a logical characterization of those truth
assignments that do lead to a remainder set, using a gener-
alization of the body building formula from (Langlois et al.
2008).2 This result is essentially different from (Delgrande
and Wassermann 2010), as it leads to efficient algorithms.
(See Remark 5 for a detailed comparison.) The result gives
a characterization of quasi-closed sets of a closure system,
which appears to be different from those previously given
in the literature (Caspard and Monjardet 2003). Using this
characterization, an efficient listing algorithm is given to list
all such truth assignments. Thus, this algorithm produces
all possible remainder sets, represented by their ‘generating’
truth assignment.

In Sections 4 and 5, we consider the question of finding a
Horn formula representation for Horn belief sets produced
by the various contraction operators. We construct Horn
belief sets and Horn clause consequences to be contracted
with the property that for certain contraction operators every
Horn formula representing the new belief set must be expo-
nentially larger than the original belief set. In fact, this holds
for full meet contraction and, in an asymptotic sense, for
most maxichoice and most partial meet contractions, both
based on remainders and on weak remainders.3 Our result is
based on a new blowup result for computing Horn envelopes
(also called Horn LUB’s), which is connected to the study of
D-bases of closure systems (Adaricheva, Nation, and Rand
2011). A related earlier blowup result was given in (Kleine
Büning and Lettmann 1987). We also give some positive
results on cases where such a blowup cannot occur.

2In other words, an efficiently computable syntactic criterion is
given to distinguish remainders from weak remainders.

3For our example, the two actually coincide as every weak re-
mainder happens to be a remainder.



As it is indicated by the connection to bases of clo-
sure systems, Horn formulas are closely related to con-
cepts in algebra (lattices, closure systems, closure opera-
tors and implicational systems (Davey and Priestley 1990)).
There is a large body of work on problems related to the
ones studied in this paper (Bertet and Monjardet 2010;
Burosch, Demetrovics, and Katona 1987; Caspard and Mon-
jardet 2003; Freese 1995), and the study of belief contrac-
tion for general logics in (Flouris, Plexousakis, and Anto-
niou 2004) also uses a lattice theoretic framework. We plan
to give an account of these useful connections in the full ver-
sion of this paper.

2 Preliminaries
We assume a fixed finite set of propositional variables. We
use 0 and 1 for representing truth values. The set of truth as-
signments satisfying (resp., falsifying) a propositional for-
mula ψ is denoted by T (ψ) (resp., F (ψ)). For formulas
ψ,ϕ it holds that ψ |= ϕ (i.e., ϕ is a consequence of ψ) iff
T (ψ) ⊆ T (ϕ). For a truth assignment a and a variable x we
sometimes write x(a) for the value of the x-component of a.

Truth assignments are partially ordered by the relation
a ≤ b, which holds for a = (a1, . . . , an) and b =
(b1, . . . , bn) iff ai ≤ bi for every i = 1, . . . , n. We write
a < b if a ≤ b and a 6= b. The (componentwise) in-
tersection of a = (a1, . . . , an) and b = (b1, . . . , bn) is
a ∧ b = (a1 ∧ b1, . . . , an ∧ bn).

The elementary conjunction Ea corresponding to a truth
assignment a contains a variable (resp., the negation of a
variable) iff the component corresponding to that variable in
a is set to 1 (resp., 0). Thus, for example, Ea = x1∧ x̄2∧x3
for a = (1, 0, 1). Clearly T (Ea) = {a}.

A clause is a disjunction of literals (unnegated and
negated variables). A clause is Horn if it contains at most
one unnegated variable, and it is definite if it contains ex-
actly one unnegated variable. (See, e.g., (Crama and Ham-
mer 2011) for background on Horn formulas). A definite
Horn clause C is also written as Body(C) → Head(C),
where Body(C), resp., Head(C), are the body, resp., the
head of the clause. For example, the definite Horn clause
C = x̄∨ ȳ∨ z can be written as x, y → z, with Body(C) =
{x, y} and Head(C) = {z}. A (definite) Horn formula is a
conjunction of (definite) Horn clauses.

A clause C is an implicate of a formula ψ iff ψ |= C,
and it is a prime implicate if none of its subclauses is an im-
plicate. Every prime implicate of a (definite) Horn formula
is a (definite) Horn clause. Forward chaining is an efficient
procedure to decide ψ |= C, where ψ is a definite Horn for-
mula and C is a definite Horn clause. It starts by marking
all variables in the body of C. While there is a clause in ψ
with all its body variables marked, the head variable of that
clause is marked as well. Then ψ |= C iff the head of C gets
marked. Forward chaining is the basis of efficient satisfiabil-
ity, equivalence, and inference algorithms for Horn formulas
(Kleine Büning and Lettmann 1999).

A Boolean function f can be represented by a Horn
formula iff T (f) is closed under intersection (Horn 1951;
McKinsey 1943). Given an arbitrary propositional formula
ψ, its Horn envelope Env(ψ) is the conjunction of all Horn

implicates of ψ. (In fact it is easily seen that Env(ψ) de-
pends only on the function that ψ represents, and not the
particular formula ψ.) The Horn envelope is also referred to
as the Horn LUB (least upper bound) or the Horn closure of
ψ (Selman and Kautz 1996). It holds that T (Env(ψ)) is the
closure of T (ψ) under intersection.

The closure Clψ(S) of a set of variables S with respect to
a definite Horn formula ψ is the set of all variables that must
be true in every truth assignment satisfying ψ and having all
variables in S set to 1, in other words

Clψ(S) =

{
v : ψ |=

(∧
x∈S

x→ v

)}
.

This is a closure operator on the set of all variables that can
be computed by forward chaining. Note that Clψ(S) de-
pends only on the function represented by ψ and not on the
particular representation of ψ.

A Horn belief setK is a set of definite Horn clauses closed
under implication.4 As we are working with a fixed finite set
of variables, and we may assume without loss of generality
that clauses do not contain any repeated literals, belief sets
are finite. A finite set of clauses in the belief set can be also
thought of as the conjunction of the clauses in the set. For
representational and computational purposes we may rep-
resent K by a subset of its clauses that imply all the oth-
ers. Different logically equivalent formulas are considered
to represent the same belief set. This is different from the
belief base approach where clauses explicitly represented in
the base have a distinguished role, and different logically
equivalent representations are considered to be different as
belief bases.

3 Body building: a characterization of
remainders

The main result of this section is Theorem 4, which gives a
syntactic characterization of remainders.

If K is a Horn belief set and Horn formula ϕ is a conse-
quence of K, then an e-remainder set or, briefly, a remain-
der of K with respect to ϕ is a maximal subset K ′ ⊂ K
not implying ϕ. Since this paper is devoted exclusively to
Horn belief sets, and, as (Delgrande and Wassermann 2010)
points out, the general definition of remainder set restricted
to the Horn case gives e-remainder, we will just write “re-
mainder” in the rest of this paper. We will denote the set of
all remainders of K with respect to ϕ by K ↓ ϕ.

The following proposition, which follows directly from
the definitions, is implicit in (Delgrande and Wassermann
2010).

Proposition 1. K ↓ ϕ is equal to

{Env(K ∨ Ea) : T (Env(K ∨ Ea)) ∩ F (ϕ) = {a}} .

Proposition 1 gives a description of all remainders, but it
does not give an efficient algorithm to find any remainders

4In this paper we restrict our attention to definite Horn belief
sets for simplicity. The extension of the results to the general case
will be discussed in the final version.



as it does not tell how to find truth assignments a with the
required property. In order to provide a constructive descrip-
tion we introduce the following definition.
Definition 2 (Body building formula).

Kϕ =
∧
C∈ϕ

∧
v 6∈ClK(Body(C))

(Body(C), v → Head(C)).

Note that, by definition, Kϕ is a consequence of ϕ.
Proposition 3. The formula Kϕ can be computed in poly-
nomial time in the size of the representations of K and ϕ.

The definition of Kϕ generalizes the notion of a body
building formula introduced in (Langlois et al. 2008). The
definition in that paper corresponds toKK in the current no-
tation. Using Definition 2, remainders can be characterized
as follows.
Theorem 4. If K is a Horn belief set and definite Horn for-
mula ϕ is a consequence of K then

K ↓ ϕ = {Env(K ∨ Ea) : a ∈ T (Kϕ) ∩ F (ϕ)} .
Remark 5. While Theorem 4 looks quite similar to Propo-
sition 1 in terms of its syntax, the two statements are quite
different. Proposition 1 is in terms of Horn envelopes that
depend on a, and so it gives no hint on how to find a’s for
which the condition holds. Furthermore, as we will see, en-
velopes may be hard to compute. Theorem 4, on the other
hand, is in terms of the body building formula which is in-
dependent of a and thus can be used to find all suitable a’s
using standard methods (see Theorem 6). Also, as noted in
Proposition 3, the body building formula can be computed
efficiently.

Proof of Theorem 4. In order to prove the “⊆” part of the
theorem we show that if some a ∈ F (ϕ) falsifies Kϕ then

|T (Env(K ∨ Ea)) \ T (ϕ)| ≥ 2, (1)

and thus by Proposition 1 it is not a remainder of K with
respect to ϕ.

If Kϕ(a) = 0 then there is a definite clause C in ϕ
and a variable v 6∈ ClK(Body(C)) such that a falsifies
Body(C), v → Head(C). Thus Body(C)(a) = 1, v(a) =
1 and Head(C)(a) = 0.

As v 6∈ ClK(Body(C)), there is a b ∈ T (K) such that
Body(C)(b) = 1 and v(b) = 0. But as K |= ϕ and b ∈
T (K), it holds that b ∈ T (ϕ), and thus b must satisfy C.
Hence Head(C)(b) = 1.

Now consider the truth assignment d = a ∧ b. Claim (1)
follows if we show that d ∈ T (Env(K ∨ Ea)) \ T (ϕ) and
d 6= a.

We know that Env(K ∨ Ea) is closed under intersection
and so b ∈ T (K) implies that d ∈ T (Env(K ∨ Ea)).
As Body(C)(a) = Body(C)(b) = 1 it follows that
Body(C)(d) = 1. On the other hand, Head(C)(a) = 0 im-
plies Head(C)(d) = 0. Thus d falsifies clause C and so it
falsifies ϕ as well. Furthermore, v(b) = 0 implies v(d) = 0,
thus from v(a) = 1 we get a 6= d.

Thus a and d are two different points in Env(K ∨ a) out-
side T (ϕ) and so Env(K ∨ a) is not a remainder set of K
with respect to ϕ.

This proves the first half of the theorem.
For the “⊇” direction we show that if Env(K∨Ea) is not

a remainder set for a ∈ F (ϕ) then a falsifies Kϕ.
If Env(K ∨ Ea) is not a remainder set for a ∈ F (ϕ)

then by Proposition 1 there are at least two points satisfying
Env(K ∨Ea) but falsifying ϕ. The set T (Env(K ∨Ea)) is
obtained from T (K) and a by adding all truth assignments
of the form d = a ∧ b for every b ∈ T (K). By our as-
sumption, there is such a d 6= a with ϕ(d) = 0 for some
b ∈ T (K). The theorem is proved by using d to find a clause
of Kϕ falsified by a.

Now T (K) ⊆ T (ϕ) implies b ∈ T (ϕ) and so d 6= b.
Thus a and b are incomparable and so there is a variable v
such that v(a) = 1 and v(b) = 0. Let C be a clause of ϕ
falsified by d. Then

Body(C)(d) = 1 and Head(C)(d) = 0 . (2)

We are done if we show

v 6∈ ClK(Body(C)) (3)

and
(Body(C), v → Head(C))(a) = 0 . (4)

Claim (3) follows by considering the truth assignment b.
We have all the ingredients needed: b ∈ T (K),

Body(C)(b) = 1 (5)

(as Body(C)(d) = 1 and d < b), and v(b) = 0.
We now prove (4). First note that d < a and (2) together

imply
Body(C)(a) = 1 . (6)

Now ϕ(b) = 1 implies that C(b) = 1 which, combined with
(5), gives that Head(C)(b) = 1. Since Head(C)(b) = 1, it
must be that Head(C)(a) = 0, as otherwise, using the fact
that d = a∧b, we would get Head(C)(d) = 1, contradicting
(2). This, together with (6) and that v was chosen to satisfy
v(a) = 1, proves (4), completing the proof of the theorem.

We claim that Theorem 4 can be used to find remainders
efficiently, though precisely what we mean by efficiently
needs further discussion. A remainder can be obtained by
finding a truth assignment a ∈ T (Kϕ)∩F (ϕ). Such a truth
assignment can be found by running an efficient Horn sat-
isfiability algorithm on Kϕ ∧ ¬C for each clause C in ϕ.
Actually, an even stronger statement is true: all remainders
can be listed efficiently. As the number of remainders can be
large, i.e., superpolynomial in the size of the belief set, we
have to explain what is meant by efficient listing in general.

A listing algorithm (sometimes also called an enumera-
tion algorithm) is an algorithm to produce a list of objects.
For instance, a basic task in data mining is to produce a list
of potentially interesting association rules in a transaction
database, for some specific definition of interestingness. Us-
ing this list, the user is supposed to select those rules which
are found to be truly interesting. For belief change, such al-
gorithms could be used to produce a list of possible results
of contraction operators, again, letting the user decide which
one is preferred. Another possible application is in the ex-
perimental study of belief change algorithms, suggested in



Section 6 as a topic for further research, where a list of
possible contractions could be necessary to compute various
statistics.

Different efficiency criteria for listing algorithms are de-
scribed in (Goldberg 1993). Here we define only one. An
algorithm listing a set of objects works with polynomial de-
lay if the time spent before outputting the first object and the
time spent between outputting two successive objects (and
between the final output and termination) is bounded by a
polynomial function of the input size.

Theorem 6. There is a polynomial delay algorithm which,
given a Horn belief set K and a consequence ϕ of K, out-
puts a list of all truth assignments a such that Env(K ∨Ea)
is in K ↓ ϕ.

Theorem 6 is a direct consequence of Theorem 4 and
standard algorithms for Horn formulas. The algorithm does
backtracking for subproblems obtained by restricting vari-
ables to constants, and it uses Horn satisfiability to check
whether a new subtree contains any remainders.

The algorithm in Theorem 6 produces a list of all remain-
ders, where each remainder is represented by a truth assign-
ment, and not by a Horn formula for Env(K ∨ Ea). This
begs the question, considered in the next section, whether
Horn formulas for Env(K ∨ Ea) can be computed effi-
ciently?

4 Horn envelopes
As Proposition 1 shows, remainders are closely related to
Horn envelopes, which were introduced by (Selman and
Kautz 1996) in the context of knowledge compilation. Sel-
man and Kautz showed that Horn envelopes can blow up in
size or can be hard to compute. Computational aspects of
Horn envelopes are studied in (Langlois, Sloan, and Turán
2009). The special case of computing the Horn envelope of
the disjunction of two Horn formulas has been considered in
(Eiter, Ibaraki, and Makino 2001; Eiter and Makino 2008).
They showed negative results analogous to the general case.
Proposition 1 suggests considering the special case where
one of the two Horn formulas is an elementary conjunction,
i.e., it is satisfied by a single truth assignment.

Definition 7. The Singleton Horn Extension (SHE) problem
is to compute a formula for the Horn envelope Env(K∨Ea)
given definite Horn belief set K and a truth assignment a
falsifying K,

Later in this section we show that the SHE problem is in-
tractable in general, as it may be the case that every Horn
formula representing the output must be exponentially large
compared to the input size. This negative result is perhaps
surprising, as it says that adding a single additional true point
may result in an exponential blowup in formula size. The re-
sult does not depend on any unproven complexity theoretic
assumptions. On the other hand, it assumes that the output
has to be represented as a Horn formula. In view of the neg-
ative result it is of interest to identify cases where the prob-
lem has an efficient solution. We begin with such positive
results.

Positive results
In this subsection, we give some simple observations on
cases when the blowup outlined above cannot occur.

The following proposition shows that Env(K ∨ Ea) has
an explicit description in terms of the prime implicates of
K. Let PI(K) denote the set of prime implicates of K,
and PI1(K, a), resp., PI0(K, a) be the set of prime im-
plicates of K satisfied, resp., falsified by a. We write
a = (a1, . . . , an) and x1 = x, x0 = x̄.

Proposition 8. Env(K ∨ Ea) can be written as ∧
C∈PI1(K,a)

C

 ∧
 ∧
C∈PI0(K,a)

∧
{i:xi(a)=0}

(C ∨ x̄i)

 .

Proof. We show that Env(K ∨ Ea) is logically equivalent
to ∧

C∈PI(K), C∨xai
i definite

(C ∨ xaii ) . (7)

This, then, can be rewritten in the form stated in the propo-
sition. The ‘|=’ direction follows by noting that by distribu-
tivity, every clause in (7) is a Horn implicate of K ∨Ea, and
thus it is an implicate of Env(K ∨ Ea).

For the other direction, consider a Horn prime implicate
D of Env(K ∨ Ea). Then D is an implicate of K. As K is
definite, D is satisfied by the all 1’s vector and so D is also
definite. Let D′ ⊆ D be a prime implicate of K. Again, D′
is definite and so it contains the head of D. As Ea(a) = 1,
it holds that D(a) = 1 and so D contains a literal xaii . If
this literal is the head of D then D′ ∨xaii is equivalent to D′
and so D′ occurs in (7). Otherwise ai = 0, so D′ ∨ xaii is
definite, and it occurs in (7). In both cases we get that D is
an implicate of (7)

Proposition 8 does not lead to an efficient algorithm for
computing Env(K ∨ Ea) in general, as K can have expo-
nentially many prime implicates compared to its size. An
example is given in (Khardon 1995), and a similar example
is given in the next subsection. Nevertheless, one can draw
positive algorithmic consequences, and we formulate two of
those. We use the fact that the prime implicates of a Horn
formula can be listed efficiently (Boros, Crama, and Ham-
mer 1990).

Corollary 9. The SHE problem can be solved in time poly-
nomial in the size of K and the number of prime implicates
of K.

Proof. The algorithm first runs Boros et al.’s algorithm to
generate the prime implicates of K and then uses Proposi-
tion 8 to produce Env(K ∨ Ea).

Corollary 9 provides efficient algorithms for any class of
belief sets with small number of prime implicates. One such
class is quadratic Horn formulas. A definite Horn formula
is quadratic if all its clauses are of size two, i.e., they are of
the form x→ y.

Corollary 10. The SHE problem can be solved efficiently
for quadratic belief sets K.



Proof. The resolvent of size-two clauses is again of size
two, and hence an n-variable quadratic belief set has O(n2)
prime implicates.

Quadratic Horn formulas are one of the tractable sub-
classes of Horn formulas for problems which are hard for
Horn formulas in general, such as minimization. The other
tractable class is acyclic formulas: a definite Horn formula
is acyclic if the directed graph over the set of variables, ob-
tained by adding a directed edge from every body variable to
the head variable, has no directed cycles (Boros et al. 2010).
It is tempting to conjecture that the SHE problem might also
be tractable for acyclic formulas. The next subsection shows
that this is not the case.

Variants of Proposition 8 can be formulated for formulas
over other sets of clauses satisfying some general conditions,
along the lines of (del Val 2005). This may be of interest for
belief change over other restricted logics.

A negative result
We now give a negative result that is more general than just
showing an example where the SHE problem is difficult, be-
cause we give a blowup result for a set of extensions (The-
orem 11). The blowup result for the SHE problem itself is
an immediate corollary. We will use Theorem 11 to prove
hardness results for Horn contraction in Section 5.

Consider variables ui,j , vi and w, where 1 ≤ i ≤ n, 1 ≤
j ≤ 2, and let the Horn belief set Kn be given by the 2n+ 1
Horn clauses

ui,1 → vi

ui,2 → vi 1 ≤ i ≤ n, and
v1, . . . , vn → w.

Note that Kn is acyclic. The belief set K3 is shown in
Figure 1.

LetA be a set of truth assignments to the variables ui,j , vi
and w (where 1 ≤ i ≤ n, 1 ≤ j ≤ 2) such that in every
a ∈ A the u-variables and w are set to 1 and v1 is set to
0. Assume, furthermore, that there are altogether k ≥ 1
variables each of which is 0 in at least one a ∈ A. It can be
assumed w.l.o.g. that these variables are v1, . . . , vk.
Theorem 11. Every Horn formula representing

Env

(
Kn ∨

∨
a∈A

Ea

)
contains at least 2k clauses.

Proof. Let χ be a Horn formula representing
Env

(
Kn ∨

∨
a∈AEa

)
. Note that Kn is definite, so it

is satisfied by the all ones vector. Thus χ is also satisfied by
the all ones vector and so it is definite as well.

For every s = (s1, . . . , sk) such that 1 ≤ si ≤ 2 for
i = 1, . . . , k consider the clause

ψs = (u1,s1 , . . . , uk,sk , vk+1, . . . , vn → w).

The theorem follows if we show that χ contains ψs.
The clause ψs is an implicate of Kn, as after marking

its body variables, we can mark v1, . . . , vk and then we can

mark w. Also, ψs is satisfied by all a ∈ A. Thus ψs is an
implicate of χ as well.

It also holds that ψs is a prime implicate ofKn. Indeed, if
C ′ = ψs \ {ui,si} for some 1 ≤ i ≤ k, or if C ′ = ψs \ {vi}
for some k + 1 ≤ i ≤ n, then the truth assignment setting
ui,1, ui,2, vi and w to 0, and setting all other variables to 1,
satisfies Kn and falsifies C ′. If C ′ = ψs \ {w} then the all
ones truth assignment satisfies Kn and falsifies C ′.

Let b be the truth assignment for which every body vari-
able in ψs is set to 1 and all other variables are set to 0. As
b falsifies ψs, it also falsifies χ, and so there is a clause C in
χ such that C(b) = 0. Thus it must be the case that

Body(C) ⊆ {u1,s1 , . . . , uk,sk , vk+1, . . . , vn}.

Furthermore, C is an implicate of Kn thus its head is in

ClKn
(Body(C)) \ Body(C) ⊆ {v1, . . . , vk, w}.

NowC is satisfied by every a ∈ A. But every a ∈ A satisfies
the body of C, and every vi(1 ≤ i ≤ k) is falsified by some
a ∈ A. So the head of C cannot be a v-variable and thus
it must be w. So C must be a subclause of ψs, and as ψs
was shown to be a prime implicate of Kn, it must be equal
to ψs.

Corollary 12. There is a family of instances of the SHE
problem where every Horn formula representation of the re-
sult requires exponentially many clauses.

Proof. Let A = {an}, where an is the truth assignment
setting all u-variables to 1, all v-variables to 0 and w to 1.
Clearly an falsifies Kn.

A remark on characteristic models
For every Horn formula ψ the set T (ψ) of satisfying truth
assignments is closed under intersection (Horn 1951; McK-
insey 1943). Those satisfying truth assignments which can-
not be obtained as the intersection of others are called the
characteristic models or characteristic vectors of ψ (Kautz,
Kearns, and Selman 1995; Khardon and Roth 1996). Repre-
senting a Horn function by its set of characteristic vectors is
an alternative to the standard clausal representation. This
representation has various advantages and disadvantages.
The clausal and characteristic set representations are incom-
parable in the sense that there are examples where one has
polynomial size and the other has exponential size (Khardon
and Roth 1996).

(Delgrande and Wassermann 2010) discuss possible con-
nections of characteristic models to Horn belief contraction.
Let us assume that the Horn belief set K is represented by
its set of characteristic vectors Char(K). Then every truth
assignment b ∈ T (K ∨ Ea) is obtained as an intersection
of vectors in Char(K) ∪ {a}, hence Char(K ∨ Ea) ⊆
Char(K) ∪ {a}. The set Char(K ∨ Ea) can be found ef-
ficiently by eliminating those vectors from Char(K) ∪ {a}
which can be obtained as the intersection of vectors above
them in the set.

In view of the negative results of the previous subsection
one may ask whether Env(K∨Ea) has a short Horn formula
representation if, in addition, it holds that Char(K) is small.
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Figure 1: The belief set K3

Unfortunately, this is not the case as the characteristic set of
the belief set Kn considered above turns out to be small.

Proposition 13. |Char(Kn)| = Θ(n).

Proof. The characteristic models are the following: those
with a single ui,j = 0 and all other variables set to 1, those
with ui,1 = ui,2 = vi = w = 0 for a single i and all
other variables set to 1, those with ui,1 = ui,2 = vi = 0
for a single i and all other variables set to 1, and the all 1’s
vector.

5 Complexity of Horn belief contraction
In this section we draw conclusions from Theorem 11 for
Horn belief contraction.

A partial meet contraction K−̇ϕ is an intersection of re-
mainders, thus by Theorem 4 it is of the form

Env

(
K ∨

∨
a∈A

Ea

)
, (8)

where
A ⊆ T (Kϕ) ∩ F (ϕ). (9)

A maxichoice contraction corresponds to a singleton subset
in (9) and full meet contraction corresponds to equality in
(9).

If K is a Horn belief set and Horn formula ϕ is a con-
sequence of K then a weak remainder is a belief set of the
form Env(K∨Ea) for any a ∈ F (ϕ) and so the set of weak
remainders is

K ⇓ ϕ = {Env(K ∨ Ea) : a ∈ F (ϕ)} .

A partial meet contraction based on weak remainders
K−̇wϕ is of the form (8) where

A ⊆ F (ϕ). (10)

A maxichoice contraction based on weak remainders corre-
sponds to a singleton subset in (10) and full meet contraction
based on weak remainders corresponds to equality in (10).

In order to make use of Theorem 11 in the context of con-
tractions we also need to specify a consequence to be con-
tracted. Let the implicate to be contracted be

ϕn = u1,1, . . . , ui,j , . . . , un,2, w → v1.

It is clear that ϕn is an implicate because after marking u1,1
we can already mark v1.

Proposition 14.

Kn ↓ ϕn = Kn ⇓ ϕn = {Env(Kn ∨ Ea) : a ∈ F (ϕn)}

Proof. This follows from Theorem 4 noting that
ClKn(Body(ϕn)) is the set of all variables, thus the
body building formula Kϕ is the empty conjunction, and so
it is identically true.

Let us consider a partial meet contraction K ′ of the form

K ′ = Env

(
Kn ∨

∨
a∈A

Ea

)
, (11)

where
A ⊆ F (ϕn) (12)

and assume that there are k variables vi such that vi(a) = 0
for some a ∈ A. It follows from Theorem 11 that:

Corollary 15. Every representation of any partial meet
contraction or partial meet contraction based on weak re-
mainders of the form of K ′ in Equation (11) has at least 2k

clauses.

In the following theorem a size lower bound is said to hold
for almost all contractions if the fraction of contractions with
at least that size approaches 1 as n grows.

Theorem 16. Consider contractions, or weak remainder
based contractions, of the consequence ϕn from the belief
set Kn.

a) Every Horn formula representation of the full meet con-
traction contains at least 2n clauses.

b) For every ε > 0 and for almost all maxichoice
contractions, every Horn representation contains at least
2((1/2)−ε)n clauses.

c) For almost all partial meet contractions, every Horn
representation contains at least 2n clauses.

Proof. Part a) follows from Corollary 15 with A = F (ϕn).
Part b) also follows from Corollary 15 by noting that there

A is a single truth assignment, with all u variables and w set
to 1 and v1 set to 0. The remaining n − 1 v variables are
arbitrary. It follows from standard probability estimates that
for every ε > 0 there are o(2n) truth assignments with fewer
than ((1/2)− ε)n zeros. For the remaining (1− o(1))2n−1

truth assignments Corollary 15 implies a 2((1/2)−ε)n lower
bound.

In part c) we consider random partial meet contractions,
i.e., a random subsets of all truth assignments for which all u



variables andw are set to 1 and v1 is set to 0. The probability
that there is a variable vi which is never set to 0 is at most
(n−1)22

n−2

/22
n−1 → 0. For the other choices Corollary 15

implies a 2n lower bound.

6 Further remarks
We have shown that every Horn representation of the full
meet contraction, and of most maxichoice and partial meet
contractions of the Horn belief set Kn with respect to its
consequence ϕn must be exponentially large. This belief set
is simple and natural in the sense that it can be thought of
as consisting of observable propositions ui,j , intermediate
conclusions vi and a final conclusion w, where each ui,j is
sufficient to cause vi and all vi’s are necessary to cause w.
The fact that contractions of such a simple belief set may
blow up in size may indicate that this phenomenon occurs
more often than just for an artificially constructed patholog-
ical example. It would be interesting to perform experiments
exploring this, and, more generally, to gather computational
experience about various other aspects of Horn belief con-
tractions. Some initial results are given in (Langlois et al.
2008).

In view of the fact that fully AGM-compliant Horn-
contractions do not exist in the sense of (Flouris, Plex-
ousakis, and Antoniou 2004), it was suggested in (Langlois
et al. 2008) that one might study the possibilities of approx-
imating them. The negative results in the current paper give
a different motivation for such an approach: When the result
of a contraction is too large, approximate it with a smaller
one. This may be related to anytime belief revision algo-
rithms (Williams 1997).

The results of this paper also suggest several specific
questions for further study, such as considering the complex-
ity of infra-remainders (Booth et al. 2011) and package con-
traction (Booth, Meyer, and Varzinczak 2009), and proving
complexity-theoretic hardness results for the SHE problem
analogous to the results of (Eiter and Makino 2008).
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