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Abstract . We deal with various splitting methods in algebraic logic. The word
‘splitting’ refers to splitting some of the atoms in a given relation or cylindric algebra each
into one or more subatoms obtaining a bigger algebra, where the number of subatoms
obtained after splitting is adjusted for a certain combinatorial purpose. This number (of
subatoms) can be an infinite cardinal. The idea originates with Leon Henkin. Splitting
methods existing in a scattered form in the literature, possibly under different names, proved
useful in obtaining (negative) results on non–atom canonicity, non–finite axiomatizability
and non–first order definability for various classes of relation and cylindric algebras. In a
unified framework, we give several known and new examples of each. Our framework covers
Monk’s splitting, Andréka’s splitting, and, also, so–called blow up and blur constructions
involving splitting (atoms) in finite Monk–like algebras and rainbow algebras.

Henceforth, we follow the notation of [2] which is in conformity with the nota-
tion of [4]. Besides cylindric algebras CA, we deal with the following cylindric–like
algebras Sc (Pinter’s substitution algebras) and QA(QEA) quasi–polyadic (equality)
algebras. For K any of these classes and α any ordinal, we write Kα for the variety
of α–dimensional K algebras, and (C)RKα for the class of (completely) representable
Kαs. For an ordinal α, (R)Dfα denotes the class of (representable) diagonal free
CAαs. For a class K of Boolean algebras with operators we write K ∩ At for the
class of atomic algebras in K.

Fix 2 < n < ω. The idea of splitting one or more atoms to subatoms in an
algebra to get a (bigger) superalgebra tailored to a certain purpose originates with
Henkin [4, p.378, footnote 1]. In the cylindric paradigm, Andŕeka modified such
splitting methods re-inventing (Andréka’s) splitting. In this new setting, Andréka
proved a plethora of relative non–finite axiomatizability results [1] like for e.g RQEAn

is not finitely axiomatizable over RQAn nor RCAn. In the former case Andréka went
further excluding universal axiomatizations containing only finitely many variables,
a result that we lift to the transfinite below.

Though splitting techniques are associated more in the literature with non–finite
axiomatizability results, in this paper we argue and indeed demonstrate that there
are several subtle re–incarnations of this technique proving results on notions like
non–atom canonicity (to be defined below) and non–finite first order definability.
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1 A variation on Andréka’s (most famous) splitting:

We let Rdca denote ‘cylindric reduct’ and Rdqa denote ‘quasi—polyadic reduct.’ We
show that the variety RQEAω cannot be axiomatized by a set of universal formulas
containing finitely many variables over RQAω. The proof is an instance of Andréka’s
splitting [1]. For each positive k we construct A /∈ RQEAω such that its k- subalge-
bras (subalgebras generated by at most k–elements) are in RQEAω, RdcaA /∈ RCAω

and RdqaA ∈ RQAω. But for fixed k not only one splitting is done, but infinitely
many each (to an atom) in a different set algebra; the resulting algebras (obtained
after splitting) form a chain; their directed union will be the A we want. This can
(and will) be done for each positive k. Accordingly, throughout the proof fix a
positive k.

Proof. (1) Splitting a single atom to finitely many subatoms getting non–
representable algebras from representable ones: For fixed 2 < n < ω, take
a finite m ≥ 2k×n!+1. Suppose that the signature consists of ω–many cylindrifier,
ci : i < ω, diagonal constants dij ,i < j < ω, and n2−n substitutions s[i,j] : i < j < n.
One forms, for each such n, an algebra split(An, R,m) in this specified signature,
by splitting the ω–ary relation R =

∏
i∈ω Ui with U0 = m − 1 and |Ui| = m for

0 < i < ω in the algebra An = Sg℘(
ωU){R}, where U =

∪
i∈I Ui into m abstract

copies. Observe that here R depends on n, because m depends on n and R depends
on U0 = m − 1. The resulting algebra split(An, R,m) therefore has the signature
expanding CAω by the finitely many substitution operators s[i,j], i < j < n. Here
the set algebra ℘(ωU) is taken in the specified signature with operations interpreted
the usual way as in set algebras, e.g. S[0,1]{R} = {s ∈ ωU : (s1, s0) ∈ R}. It
can be easily checked that for all i < j < n, S[i,j]R is an atom in An. In partic-
ular, R is partitioned into a family (Ri : i < m) of atoms in the bigger algebra
split(AnR,m)(⊇ An), so that R =

∑
i<mRi, where m = |U0| + 1. Furthermore in

split(An, R,m), we have s[l,j]R =
∑

i<m s[l,j]Ri and cts[l,j]Ri = cts[l,j]R for all l, j < n,
i < m and t < ω; so that, in particular, R is cylindrically equivalent to its abstract
copies. The algebra split(An, R,m) is determined uniquely (up to isomorphism) by
An, R and m, hence the notation, and it will not be representable. Even more, the
algebra Rdcasplit(An, R,m) having CAω signature will not be representable for the
following reasoning: One defines the term τ(x) = (

∧
i<m s0i c1 . . . cmx ·

∧
i<j<n−dij)

as in [1, Top of p.157]. Then An |= τ(R) = 0 hence split(An, R,m) |= τ(R) = 0
because An ⊆ split(An, R,m). Identifying set algebras with their domain, for an al-
gebra A and a non–zero a ∈ A, we say that a representation h : A → ℘(ωU) respects
the non–zero element a if h(a) ̸= ∅. If split(An, R,m) were representable, then it will
have a representation that respects R. But any such representation h will satisfy
that τ(h(R)) ̸= 0 which is impossible.
(2) Representability of k–generated subalgebras: Now we show that the k–
generated subalgebras are representable. Let G ⊆ split(An, R,m), |G| ≤ k. Let
P = (Rl : l < m) be the abstract partition of R in the bigger algebra split(An, R,m)
obtained by splitting R in An into m (abstract) subatoms (Rl : l < m). One de-
fines the following relation on P: For l, t < m, Rl ∼ Rt ⇐⇒ (∀g ∈ G)(∀i, j <
n)(s[i,j]Rl ≤ g ⇐⇒ s[i,j]Rt ≤ g). Then it is straightforward to check that ∼
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is an equivalence relation on P having p < m many equivalence classes, because
|G| ≤ k, n2 − n < n! and (recall that) m ≥ 2k×n!+1. One next takes B = {a ∈
Bk,n : (∀l, t < m)(∀i, j ∈ n)(Rl ∼ Rt, s[i,j]Rl ≤ a =⇒ s[i,j]Rt ≤ a)}, then G ⊆ B,
R ∈ B, and B is closed under the operations, so that An ⊆ B ⊆ split(An, R,m),
where B is the algebra with universe B. Furthermore, B is the smallest such sub-
algebra of split(An, R,m), where for each i, j < n, s[i,j]R is partitioned into p < m
many parts cylindrically equivalent to s[i,j]R. The non–representability of the alge-
bra split(An, R,m) can be pinned down to the existence of ‘one more extra atom’
leading to the incomptability condition |U0| < m (= number of subatoms) witnessed
by the term τ using diagonal elements. Using that |P| = m, we showed that a rep-
resentation h of split(An, R,m) that respects R, has to respect the atoms below it,
and this forces that |U0| ≥ m, which contradicts the construction of An. But this
cannot happen with B, because p < m (by the condition |G| ≤ k)), so that this
‘one more extra atom and possibly more’ vanish in B. In representing B, we use
the following optimal compatibility condition between the cardinality of |U0| and
the number of concrete copies of R represented genuinely in B: (*) If m is any
cardinal, α is an ordinal ≥ ω, (Ui : i ∈ α) is a system of sets each having
cardinality ≥ m, and U ⊇

∪
{Ui : i ∈ α), then there is a partition (Rj : j < m)

of R =
∏

i∈I Ui such that cUi Rj = cUi R for all i < α and j < m [1, Lemma
3]. Representing B is done by embedding it into a representable algebra C having
the same top element as An, namely, ωU , where R ∈ C is partitioned concretely into
m− 1 real atoms, that is, there exists Rl ⊆ ωU , l < m− 1 real atoms in C such that
for all i < j < n, S[i,j]R = S[i,j]

∪
l<m−1Rl =

∪
l<m−1 S[i,j]Rl and CiRl = CiR for all

l < m− 1 and i < ω. This concrete partition exists by (*) because |U0| = m− 1 and
by the condition |G| ≤ k, the value of p, which is the new number of subatoms of R
in B (depending on G) cannot exceed m− 1.
(3) Forming the directed union getting the required algebra: For fixed k,
obtaining the algebras Bk,n = split(An, R,m) for each each 2 < n < ω we proceed as
follows. The constructed non–representable algebras form a chain in the following
sense: For 2 < n1 < n2, Bk,n1 embeds into Bk,n2 , where the last algebra is the
reduct obtained by discarding substitution operations not in the signature of the
former, that is the substitution operations s[i,j] : i, j ≥ n1, i ̸= j. Take the directed
union Bk =

∪
n∈ω∼3Bk,n having the signature of QEAω. The cylindric reduct of Bk

is not representable because the cylindric reduct of every Bk,n is not representable.
Using that the k generated subalgebras of Bk,n for each 2 < n < ω are repesentable,
it follows without difficulty that the k–generated subalgebras of Bk remain repre-
sentable.
One constructs such algebra Bk having the signature of QEAω for each positive
k. But one can even go further, by showing that the diagonal free reduct of Bk

so constructed is in RQAω for each k, by showing that this is the case for every
Bk,n(n > 2). Recall that for fixed positive k and 2 < n < ω, the algebra Bk,n is
not representable because of the incompatibity of |U0| < number of subatoms. One
now adds ‘one extra element or more’ to |U0| forming W0 to compensate for such
an incompatibility. The diagonal free reduct of Bk,n can now be represented by
a set algebra C obtained by splitting an ω–ary relation R = W0 ×

∏
i∈ω Ui where

|W0| ≥ m+ 1 and (as before) |Ui| = m, i ∈ ω, in a set algebra generated by R, into
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m real atoms, as described in (*). Here, in the absence of diagonal elements, we
cannot count the elements in |W0| (like we did with |U0| using the term τ defined
above), so adding this element to U0 does not clash with the concrete interpretation
of the other operations. In short, RdqaBk,n can be represented via C. This gives
the required relative non–finite axiomatizability result.

Corollary 1.1. The variety RQEAω cannot be axiomatized by a set of universal
formulas containing finitely many variables over RScω nor over RDfω. Furthermore,
the variety RCAω cannot be axiomatized by a set of universal formulas containing
finitely many variables over RScω nor over RDfω.

Proof. For each positive k, using the notation in the previous proof, RdscBk ∈ RScω
and RddfBk ∈ RDfω, while Bk /∈ RQEAω. This gives the required in the first item
By observing that in fact, for each positive k, RdcaBk /∈ RCAω, we get the required
in the second item reproving a result of Andreka’s [1].

2 Blow up and blur constructions

2.1 Blowing up and blurring a finite Maddux algebra

We elaborate on the construction on [3]. The atom structure of an atomic algebra A
will be denoted by At(A) or simply AtA. A class L of Boolean algebra with operators
is atom canonical if whenever A ∈ L is completey additive, then its Dedekind-
MacNeille completion, namely, the complex algebra of its atom structure (in symbols
CmAtA) is also in L. For a relation atom structure α and n > 2, Matn(α) denotes
the set of all n by n basic matrices on α.
Let R be a relation algebra, with non–identity atoms I and 2 < n < ω. Assume
that J ⊆ ℘(I) and E ⊆ 3ω. (J,E) is an n–blur for R, if J is a complex n–blur and
the tenary relation E is an index blur defined as in item (ii) of [3, Definition 3.1].
We say that (J,E) is a strong n–blur, if it (J,E) is an n–blur, such that the complex
n–blur satisfies: (∀V1, . . . Vn,W2, . . .Wn ∈ J)(∀T ∈ J)(∀2 ≤ i ≤ n)safe(Vi,Wi, T )
(with notation as in [3]). The following theorem concisely summarizes the blow up
and blur construction in [3] and says some more easy facts. We denote the relation
algebra Bb(R, J, E) with atom structure At obtained by blowing up and blurring
R (with underlying set is denoted by At on [3, p.73]) by split(R, J, E). By the
same token, we denote the algebra Bbl(R, J, E) as defined in [3, Top of p. 78]
by splitl(R, J, E). This switch of notation is motivated by the fact that we wish
to emphasize the role of splitting some (possibly all) atoms into infinitely subatoms
during blowing up and blurring a finite algebra.

Theorem 2.1. Let 2 < n ≤ l < m ≤ ω. Let R be a finite relation algebra with an
l–blur (J,E) where J is the l–complex blur and E is the index blur.
(1) The set of l by l–dimensional matrices Atca = Matl(At) is an l–dimensional
cylindric basis, that is a weakly representable atom structure [3, Theorem 3.2]. The
algebra splitl(R, J, E) with atom structure Atra is in RCAl. Furthermore, R em-
beds into CmAt which embeds into RaCm(Atca). If (J,E) is a strong m–blur for
R, then (J,E) is a strong l–blur for R, splitl(R, J, E) ∼= Nrlsplitm(R, J, E) and
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split(R, J, E) ∼= Ra(splitl(R, J, E)) ∼= Ra(splitm(R, J, E)).
(2) For every n < l, there is an R having a strong l–blur (J,E) but no infinite repre-
sentations (representations on an infinite base). Hence the atom structures defined
in the first item for this specific R are not strongly representable.
(3) Let m < ω. If R is a finite relation algebra having a strong l–blur, and no
m–dimensional hyperbasis, then l < m. If n = l < m < ω and R as above has an
n blur (J,E) and no infinite m–dimensional hyperbasis, then CmAt(split(R, J, E))
and CmAt(splitl(R, J, E)) are outside SRaCAm and SNrnCAm, respectively, and the
latter two varieties are not atom–canonical.

Proof. [3, Lemmata 3.2, 4.2, 4.3]. We start by an outline of (1). Let R be as in the
hypothesis. Let 3 < n ≤ l. We blow up and blur R. R is blown up by splitting
all of the atoms each to infinitely many. R is blurred by using a finite set of blurs
(or colours) J . This can be expressed by the product At = ω × AtR × J , which
will define an infinite atom structure of a new relation algebra. Then two parti-
tions are defined on At, call them P1 and P2. Composition is re-defined on this
new infinite atom structure; it is induced by the composition in R, and a ternary
relation E on ω, that ‘synchronizes’ which three rectangles sitting on the i, j, k E–
related rows compose like the original algebra R. The first partition P1 is used to
show that R embeds in the complex algebra of this new atom structure, namely
CmAt, The second partition P2 divides At into finitely many (infinite) rectangles,
each with base W ∈ J , and the term algebra (denoted in [3] by Bb(R, J, E)) over
At, denoted here by split(R, J, E), consists of the sets that intersect co–finitely
with every member of this partition. The algebra split(R, J, E) is representable
using the finite number of blurs. Because (J,E) is a complex set of l–blurs, this
atom structure has an l–dimensional cylindric basis, namely, Atca = Matl(At).
The resulting l–dimensional cylindric term algebra TmMatl(At), and an algebra C
having atom structure Atca (denoted in [3] by Bbl(R, J, E)) and denoted now by
splitl(R, J, E) such that TmMatl(At) ⊆ C ⊆ CmMatl(At) is shown to be repre-
sentable. Assume that the m–blur (J,E) is strong. Then by [3, item (3) pp. 80],
splitl(R, J, E) ∼= Nrlsplitm(R, J, E).
For (2): Like in [3, Lemma 5.1], one takes l ≥ 2n − 1, k ≥ (2n − 1)l, k ∈ ω. The
Maddux integral relation algebra Ek(2, 3) where k is the number of non-identity
atoms is the required R. In this algebra a triple (a, b, c) of non–identity atoms is
consistent ⇐⇒ |{a, b, c}| ̸= 1, i.e only monochromatic triangles are forbidden.
We prove (3). Let (J,E) be the strong l–blur of R. Assume for contradiction
that m ≤ l. Then we get by [3, item (3), p.80], that A = splitn(R, J, E) ∼=
Nrnsplitl(R, J, E). But the cylindric l–dimensional algebra splitl(R, J, E) is atomic,
having atom structure MatlAt(split(R, J, E)), so A has an atomic l–dilation. So
A = NrnD where D ∈ CAl is atomic. But R ⊆c RaNrnD ⊆c RaD. By [8, The-
orem 13.45 (6) ⇐⇒ (9)], R has a complete l–flat representation, thus it has a
complete m–flat representation, because m < l and l ∈ ω. This is a contradiction.
For the second part. Let B = splitn(R, J, E). Then, since (J,E) is an n blur,
B ∈ RCAn. But C = CmAtB /∈ SNrnCAm, because R /∈ SRaCAm, R embeds into
Bb(R, J, E) which, in turn, embeds into RaCmAtB. Similarly, split(R, J, E) ∈ RRA
and Cm(Atsplit(R, J, E)) /∈ SRaCAm. Non atom –canonicity follows.
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2.2 Blowing up and blurring finite rainbow algebras

In theorem 2.1, we used a single blow up and blur construction to prove non-atom–
canonicity of RRA and RCAn for 2 < n < ω. This constructon is based on relation
algebras that have an n–dimensional cylindric basis denoted above by Ek(2, 3). To
obtain finer results, we use two blow up and blur constructions. For the RA case
we blow up and blur the finite rainbow relation algebra (denoted below by) R4,3

and for the CA case we blow up and blur the finite rainbow CAn (denoted below by)
An+1,n. While the Maddux algebra used in [3] and in the second item of theorem 2.1,
Ek(2, 3) has an n—dimensional cylindric basis (by suitably choosing k), the relation
rainbow algebra R4,3 does not have a 4–dimensional cylindric basis. So for CAs we
start anew.
Relation algebras: We briefly review the blow up and blur construction in [8,
17.32, 17.34, 17.36] for relation algebras. Let 2 ≤ n ≤ ω and r ≤ ω. Let R be an
atomic relation algebra. Then the r–rounded game Gn

r (AtR) [8, Definition 12.24] is
the (usual) atomic game played on networks of an atomic relation algebra R using
n nodes.
Let L be a relational signature. Let G (the greens) and R (the reds) be L structures
and p, r ≤ ω. The game EFpr(G,R), defined in [8, Definition 16.1.2], is an Ehren-
feucht–Fräıssé forth ‘pebble game’ with r rounds and p pairs of pebbles. In [8, 16.2],
a relation algebra rainbow atom structure is associated for relational structures G
and R. We denote by RA,B the (full) complex algebra over this atom structure. The
Rainbow Theorem [8, Theorem 16.5] states that: If G,R are relational structures
and p, r ≤ ω, then ∃ has a winning strategy in G2+p

1+r(RG,R) ⇐⇒ she has a winning
strategy in EFpr(G,R).
For 5 ≤ l < ω, RAl is the class of relation algebras whose canonical extensions have
an l–dimensional relational basis [8, Definition 12.30]. RAl is a variety containing
properly the variety SRaCAl. Furthermore, R ∈ RAl ⇐⇒ ∃ has a winning strategy
in Gn

ω(AtR). Cf. [8, Proposition 12.31] and [8, Remark 15.13]. We now show:

Theorem 2.2. For any k ≥ 6, the varieties RAk and SRaCAk are not atom–
canonical.

Proof. We follow the notation in [9, lemmas 17.32, 17.34, 17.35, 17.36] with the sole
exception that we denote by m (instead of Km) the complete irreflexive graph on
m defined the obvious way; that is we identify this graph with its set of vertices.
Fix 2 < n < m < ω. Let R = Rm,n. Then by the rainbow theorem ∃ has a
winning strategy in Gm+2

m+1(AtR), since it clealy has a winning strategy in the Ehren-
feucht–Fräıssé game EFmm(m,n) because m is ‘longer’ than n. Then R /∈ RAm+2 by
[8, Propsition 12.25, Theorem 13.46 (4) ⇐⇒ (5)], so R /∈ SRaCAm+2. Next one
‘splits’ every red atom to ω–many copies obtaining the infinite atomic countable
(term) relation algebra denoted in op.cit by T , which we denote by split(R, r, ω)
(blowing up the reds by splitting each into ω–many subatoms) with atom structure
α, cf. [8, item (4) top of p. 532]. Then Cmα /∈ SRaCAm+2 because R embeds into
Cmα by mapping every red to the join of its copies, and SRaCAm+2 is closed under
S. Finally, one (completely) represents (the canonical extension of) split(R, r, ω) like
in [8]. By taking m = 4 and n = 3 the required follows.
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Cylindric algebras: From now on, unless otherwise indicated, n is fixed to
be a finite ordinal > 2. For an atomic A ∈ CAn, the ω–rounded game Gm(AtA)
or simply Gm is like the usual atomic ω–rounded game Gm

ω (AtA) using m nodes,
except that ∀ has the option to re–use the m nodes in play. We need the following
lemma:

Lemma 2.3. Let 2 < n < m. Let K be any any class having signature between Sc
and QEA, A ∈ Kn and A ∈ ScNrnKm, then ∃ has a winning strategy in Gm(AtA).

For rainbow constructions for CAs, we follow [7, 9]. Fix 2 < n < ω. Given
relational structures G (the greens) and R (the reds) the rainbow atom structure of
a QEAn consists of equivalence classes of surjective maps a : n → ∆, where ∆ is
a coloured graph. A coloured graph is a complete graph labelled by the rainbow
colours, the greens g ∈ G, reds r ∈ R, and whites; and some n− 1 tuples are labelled
by ‘shades of yellow’. In coloured graphs certain triangles are not allowed for example
all green triangles are forbidden. A red triple (rij , rj′k′ , ri∗k∗) i, j, j′, k′, i∗, k∗ ∈ R is
not allowed, unless i = i∗, j = j′ and k′ = k∗, in which case we say that the red
indices match, cf.[7, 4.3.3]. The equivalence relation relates two such maps ⇐⇒
they essentially define the same graph [7, 4.3.4]. We let [a] denote the equivalence
class containing a. The accessibilty (binary relations) corresponding to cylindric
operations are like in [7]. For transpositions ([i, j], i < j < n) they are defined as
follows: [a]S[i,j][b] ⇐⇒ a = b ◦ [i, j]. For 2 < n < ω, we use the graph version
of the games Gm

ω (β) and Gm(β) where β is a QEAn rainbow atom structure, cf. [7,
4.3.3]. The (complex) rainbow algebra based on G and R is denoted by AG,R. The
dimension n will always be clear from context. We let Rddf denotes ‘diagonal free
reduct’ and Rdsc denote ‘Sc reduct’.

Theorem 2.4. Let n be a finite ordinal > 2 and K is a class between Sc and QEA.
Assume that m ≥ n + 3. Then the varieties SNrnKm and RDfn, are not atom–
canonical.

Proof. The idea for CAs is like that for RAs by blowing up and blurring (the CA
reduct of) An+1,n in place of R4,3. We work with m = n+ 3 and any K between Sc
and QEA. This gives the result for any larger m. Fix 2 < n < ω.
Blowing up and blurring An+1,n forming a weakly representable atom
structure At: Take the finite quasi–polyadic equality algebra rainbow algebra
An+1,n where the reds R is the complete irreflexive graph n, and the greens are
G = {gi : 1 ≤ i < n − 1} ∪ {gi0 : 1 ≤ i ≤ n + 1}, endowed with the polyadic opera-
tions. Denote its finite atom structure by Atf ; so that Atf = At(An+1,n). One then
replaces the red colours of the finite rainbow algebra of An+1,n each by infinitely
many reds (getting their superscripts from ω), obtaining this way a weakly repre-
sentable atom structure At. The resulting atom structure after ‘splitting the reds’,
namely, At, is like the weakly (but not strongly) representable atom structure of the
atomic, countable and simple algebra A as defined in [10, Definition 4.1]; the sole dif-
ference is that we have n+1 greens and not ω–many as is the case in [10]. We denote
the algebra TmAt by split(An+1,n, r, ω) short hand for blowing up An+1,n by splitting
each red graphs (atoms) into ω many. By a red graph is meant (an equivalence class
of) a surjection a : n → ∆, where ∆ is a coloured graph in the rainbow signature
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of An+1,n with at least one edge labelled by a red label (some rij , i < j < n). It
can be shown exactly like in [10] that ∃ can win the rainbow ω–rounded game and
build an n–homogeneous model M by using a shade of red ρ outside the rainbow
signature, when she is forced a red; [10, Proposition 2.6, Lemma 2.7]. Using this, one
proves like in op.cit that split(An+1,n, r, ω) is representable as a set algebra having
top element nM. (The term algebra in [10]; which is the subalgebra generated by
the atoms of A as defined in [10, Definition 4.1] is just split(Aω,n, r, ω).)
Embedding An+1,n into Cm(At(split(An+1,n, r, ω))): Let CRGf be the class of
coloured graphs on Atf and CRG be the class of coloured graph on At. We can
assume that CRGf ⊆ CRG. Write Ma for the atom that is the (equivalence class of
the) surjection a : n → M , M ∈ CGR. Here we identify a with [a]; no harm will
ensue. We define the (equivalence) relation ∼ on At by Ma ∼ Nb, (M,N ∈ CGR)
⇐⇒ they are identical everywhere except at possibly at red edges:
Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk, for some l, k ∈ ω.
We say that Ma is a copy of Nb if Ma ∼ Nb (by symmetry Nb is a copy of Ma.)
Indeed, the relation ‘copy of’ is an equivalence relation on At. An atom Ma is
called a red atom, if M has at least one red edge. Any red atom has ω many copies
that are cylindrically equivalent, in the sense that, if Na ∼ Mb with one (equiv-
alently both) red, with a : n → N and b : n → M , then we can assume that
nodes(N) = nodes(M) and that for all i < n, a � n ∼ {i} = b � n ∼ {i}. In CmAt,
we write Ma for {Ma} and we denote suprema taken in CmAt, possibly finite, by∑

. Define the map Θ from An+1,n = CmAtf to CmAt, by specifing first its values

on Atf , via Ma 7→
∑

j M
(j)
a where M

(j)
a is a copy of Ma. So each atom maps to the

suprema of its copies. This map is well-defined because CmAt is complete. It can be
checked that Θ is an injective a homomorphism, hence Θ is the required embedding.
∀ has a winning strategy in Gn+3At(An+1,n): It is straightforward to show that ∀
has winning strategy first in the Ehrenfeucht–Fräıssé forth private game played be-
tween ∃ and ∀ on the complete irreflexive graphs n+1 and n in n+1 rounds, namely,
the game EFn+1

n+1(n+ 1, n) [9, Definition 16.2]. ∀ lifts his winning strategy from the
private Ehrenfeucht–Fräıssé forth game, to the graph game on Atf = At(An+1,n) [7,
pp. 841] forcing a win using n+ 3 nodes. He bombards ∃ with cones 1 having com-
mon base and distinct green tints until ∃ is forced to play an inconsistent red triangle
(where indicies of reds do not match). By lemma 2.3, RdscAn+1,n /∈ ScNrnScn+3.
Since An+1,n is finite, then RdscAn+1,n is not in SNrnScn+3. But An+1,n embeds into
CmAtA, hence RdscCmAtA = CmRdscAtA is outside SNrnScn+3, too. Since CmAtA
is generated using infinite (countable) unions by {x ∈ C : ∆x ̸= n}, then easily
adapting the proof of [4, Lemma 5.1.50, Theorem 5.1.51] and [4, Theorem 5.4.26],
we get that RddfCmAtA /∈ RDfn. This proves the non–atom canonicity of RDfn,
too.

Hodkinson uses an ‘overkill’ of infinitely many greens showing non–representability
of CmAtA = CmAt(Aω,n, r, ω) with A as defined in [10, Definition 4.1]. From [10], we

1Let i ∈ G, and let M be a coloured graph consisting of n nodes x0, . . . , xn−2, z. We call M an
i - cone if M(x0, z) = gi0 and for every 1 ≤ j ≤ m − 2, M(xj , z) = gj , and no other edge of M is
coloured green. (x0, . . . , xn−2) is called the base of the cone, z the apex of the cone and i the
tint of the cone.
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know that CmAtA /∈ SNrnCAm for some m > n, but the (semantical) argument used
in op.cit does not give any information on the value of such m. By truncating the
greens to be n + 1, and using instead a syntactical blow up and blur construction,
we could pin down such a value of m, namely, m = n + 3 (=number of greens +2)
by showing that CmAt(split(An+1,n, r, ω)) /∈ SNrnCAn+3.

3 Non–elementary classes

Cylindric algebras: For a class L, we write ElL for the elementary closure of L.
We write AtL for the class {AtA : A ∈ K ∩At} (of first order structures). We now
prove:

Theorem 3.1. Let 2 < n < ω and let k ≥ 3. For any class K, such that CRCAn ∩
NrnCAω ⊆ K ⊆ ScNrnCAn+3, K is not elementary. In particular, any class between
At(NrnCAω ∩ CRCAn) and AtScNrnCAn+3 is not elementary.

Proof. We start with proving: (*) Any class K between CRCAn ∩ SdNrnCAω and
ScNrnCAn+3, K is not elementary: Take the rainbow–like CAn, call it C, based on
the ordered structure Z and N. The reds R is the set {rij : i < j < ω(= N)}
and the green colours used constitute the set {gi : 1 ≤ i < n − 1} ∪ {gi0 : i ∈
Z}. In complete coloured graphs the forbidden triples are like the usual rainbow
constructions based on Z and N specified above, but now the triple (gi0, g

j
0, rkl) is

also forbidden if {(i, k), (j, l)} is not an order preserving partial function from Z → N.
(1) C /∈ ScNrnCAn+3: This can be proved using lemma 2.3 by showing that ∀ has
a winning strategy in Gn+3(AtC). His winning strategy is to bombard ∃ with cones
having common base and distinct green tints. ∃ has to label edges between appexes
of cones created during the game by reds. The newly added consistency condition
of ‘order preserving’ restricts ∃’s ‘red choices’. To conform to the rules of the play,
∃ is forced to play reds rij with the first index forming a decreasing sequence in N.
Having the option to re–use the nodes in play, ∀ needs to use and reuse exactly n+3
nodes to force a win in ω rounds (but not before).
(2) C ≡ B′ for some countable B′ ∈ SdNrnCAω ∩ CRCAn: One can define a
k–rounded game Hk for k ≤ ω, played on so–called λ–neat hypernetworks on an
atom structure. This game besides the standard cylindrifier move (modified to λ–
neat hypernetworks), offers ∀ two new amalgamation moves. (We omit the highly
technical definitions). One shows that ∃ has a winning strategy in Hk(AtC) for
all k < ω, hence using ultrapowers followed by an elementary chain argument,
∃ has a winning strategy in Hω(α) for a countable atom structure α, such that
AtC ≡ α. The game H is designed so that the winning strategy of ∃ in Hω(α)
implies that α ∈ AtNrnCAω and that Cmα ∈ NrnCAω. Let B′ = Tmα. Then
B′ ⊆d Cmα ∈ NrnCAω∩CRCAn ⊆ K, C /∈ ScNrnCAn+3 ⊇ K, and C ≡ B′ proving (*).
Observe that this already proves the second part, because the atom structure of an
algebra is first order definable in the algebra, so that α ≡ AtC. Also α ∈ AtNrnCAω.
Finally, AtC /∈ ScNrnCAn+3 because for any m > n, and any atomic D ∈ CAn,
D ∈ ScNrnCAm ⇐⇒ AtD ∈ AtScNrnCAm.
To complete the proof, we first need to slighty modify the construction in [12, Lemma
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5.1.3, Theorem 5.1.4] reformulating it as a ‘splitting argument’. The algebras A and
B constructed in op.cit satisfy that A ∈ NrnCAω, B /∈ NrnCAn+1 and A ≡ B. As
they stand, A and B are not atomic, but they it can be fixed that they are to be
so giving the same result, by interpreting the uncountably many tenary relations
in the signature of M defined in [12, Lemma 5.1.3], which is the base of A and B
to be disjoint in M, not just distinct. We work with 2 < n < ω instead of only
n = 3. The proof presented in op.cit lift verbatim to any such n. Let u ∈ nn. Write
1u for χM

u (denoted by 1u (for n = 3) in [12, Theorem 5.1.4].) We denote by Au

the Boolean algebra Rl1uA = {x ∈ A : x ≤ 1u} and similarly for B, writing Bu

short hand for the Boolean algebra Rl1uB = {x ∈ B : x ≤ 1u}. It can be shown
that A ≡∞ B. Using that M has quantifier elimination we get, using the same
argument in op.cit that A ∈ NrnCAω. The property that B /∈ NrnCAn+1 is also still
maintained. To see why consider the substitution operator ns(0, 1) (using one spare
dimension) as defined in the proof of [12, Theorem 5.1.4]. Assume for contradiction
that B = NrnC, with C ∈ CAn+1. Let u = (1, 0, 2, . . . n − 1). Then Au = Bu and
so |Bu| > ω. The term ns(0, 1) acts like a substitution operator corresponding to
the transposition [0, 1]; it ‘swaps’ the first two co–ordinates. Now one can show that

ns(0, 1)
CBu ⊆ B[0,1]◦u = BId, so |ns(0, 1)CBu| is countable because BId was forced

by construction to be countable. But ns(0, 1) is a Boolean automorpism with inverse

ns(1, 0), so that |Bu| = |ns(0, 1)CBu| > ω, contradiction.
We show that B is in fact outside SdNrnCAω∩At getting the required: Take
κ the signature ofM to be 22

ω
and assume for contradiction thatB ∈ SdNrnCAω∩At.

ThenB ⊆d NrnD, for someD ∈ CAω and NrnD is atomic. For brevity, let C = NrnD.
Then RlIdB ⊆d RlIdC. Since C is atomic, then RlIdC is also atomic. Using the same
reasoning as above, we get that |RlIdC| > 2ω (since C = NrnCAω.) By the choice
of κ, we get that |AtRlIdC| > ω. By density, AtRlIdC ⊆ AtRlIdB, so |AtRlIdB| ≥
|AtRlIdC| > ω. But by the construction of B, we have |RlIdB| = |AtRlIdB| = ω,
which is a contradiction and we are done.

Relation algebras: For an ordinal α, let Rα be the relation algebra defined in
[11]. Rα is obtained from R defined in op.cit by splitting the red atom r(0) into α
many parts. Let n ≥ 2ℵ0 . Then Rn ≡∞,ω Rω, Rω ∈ RaCAω and Rn /∈ RaCA5 and
Rn has no complete representation. We readily conclude:

Theorem 3.2. Any class between RaCAω and RaCA5, as well as the class of com-
pletely representable RAs, are not closed under ≡∞,ω [11].

The last part of theorem 2.3 is an improvement of the result in [7] on RAs. The
following is also an improvement of the result in [6] (by [5, Theorem 36]):

Theorem 3.3. Any class between SdRaCAω ∩ CRRA and ScRaCA5 and any class
between AtRaCAω and AtScRaCA5 are not elementary.

Proof. One uses the arguments in [5, Theorem 39, 45], but resorting to the game
Hk (k < ω), as defined for relation algebras [5, Definition 28]. Now we have the
countable relation algebra atom structure β based on N and Z as defined in [5], for
which ∃ has a winning strategy in Hk(Cmβ), for all k < ω, and ∀ has a winning
strategy in F 5(β) with F 5 as in [5, Definition 28]. By the RA analogue of lemma
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2.3 proved in [5], we get that Cmβ /∈ ScRaCA5. The usual argument of taking an
ultrapower of Cmβ, followed by a downward elementary chain argument, one gets a
countable atom structure α, such that Tmα ≡ Cmβ and ∃ has a winning strategy in
H(α), so using exactly the same argument in [5] allowing infinite conjunction in [5,
Theorem 39], we get Tmα ∈ SdRaCAω.

Application: Clique guarded semantics for CAns can be defined similarly to
relation algebras. We consider (the locally well–behaved) m–square [8, Definition
13.4] and m–flat representations of A ∈ CAn with 2 < n < m ≤ ω [8, Chapter 13].
Ln denotes n variable first order logic. Fix 2 < n ≤ l < m ≤ ω. Consider the state-
ment Ψ(l,m): There is an atomic, countable and complete Ln theory T , such that
the type Γ consisting of co–atoms is realizable in every m– square model, but any
formula isolating this type has to contain more than l variables. By an m–square
model M of T we understand an m–square representation of the algebra FmT with
base M.
Let VT(l,m)) = ¬Ψ(l,m), short for Vaught’s theorem holds ‘at the param-
eters l and m’ where by definition, we stipulate that VT(ω, ω) is just Vaught’s
theorem for Lω,ω: Countable atomic theories have countable atomic models. For
2 < n ≤ l < m ≤ ω and l = m = ω, it is likely and plausible that (**)
VT(l,m) ⇐⇒ l = m = ω. In other words: Vaught’s theorem holds only
in the limiting case when l → ∞ and m = ω and not ‘before’. This was
proved on the ‘paths’ (l, ω), n ≤ l < ω (x axis) and (n, n + k), k ≥ n + 3 (y
axis) using two different blow up and blur constructions, given in theo-
rems 2.1, 2.4, respectively. In the next theorem, we put some pieces together.
Ψ(l,m)f is the formula obtained from Ψ(l,m) be replacing square by flat.

Theorem 3.4. Let 2 < n ≤ l < m ≤ ω. Then we have the following list of
implications: There exists a finite relation algebra R algebra with a strong l–blur
and no infinite m–dimensional hyperbasis =⇒ there is a countable atomic A ∈
NrnCAl ∩ CAn such that CmAtA does not have an m–flat representation =⇒ there
is a countable atomic A ∈ NrnCAl ∩ RCAn such that CmAtA /∈ SNrnCAm =⇒
there is a countable atomic A ∈ NrnCAl ∩ RCAn such that A has no complete m–
flat representation =⇒ there is a countable atomic A ∈ NrnCAl ∩ RCAn such that
A /∈ ScNrn(CAm ∩At) =⇒ Ψ(l,m)f is true =⇒ Ψ(l′,m′)f is true for any l′ ≤ l
and m′ ≥ m.
The same implications hold upon replacing infinite m–dimensional hyperbasis by
m–dimensional basis and m–flat by m–square.

Proof. First =⇒ : From theorem 2.1. Second =⇒ : Due to the equivalence
of existence of m–dilations and m– flat representations for an atomic A ∈ CAn.
Third =⇒ : A complete m–flat representation of (any) B ∈ CAn induces an m- flat
representation of CmAtB. Fourth =⇒ : Like second implication dealing now with
Sc and complete m–flat represenations. Fifth =⇒ : By [4, §4.3], we can (and will)
assume that A = FmT for a countable, atomic theory Ln theory T . Let Γ be the
n–type consisting of co–atoms of T . Then Γ is realizable in every m–flat model, for
if M is an m–flat model omitting Γ, then M would be the base of a complete m–flat
representation of A. But A ∈ NrnCAl, so using exactly the same (terminology and)
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argument in [3, Theorem 3.1] we get that any witness isolating Γ needs more than
l–variables. Last =⇒ follows from the definitions.

If for m > n > 2, there is a finite relation algebra Rm having a strong m − 1–
blur (J,E) and no m–square representation, then Ψ(m− 1,m) is true. Indeed, the
algebra C = splitn(Rm, J, E) will be in NrnCAm−1∩RCAn but it will have no complete
m–square representation. If this Rm exists for every 2 < n < m < ω, then (**)
would be true by the the ‘square version’ of the last implication in theorem 3.4.
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