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1 On the logical foundations of relativity the-

ories

Classical �rst-order logic is an expressive logic with strong logical prop-
erties. So it is an excellent framework to support axiomatizations and
logical analysis of relativity theories. Our project lead by Hajnal An-
dréka and István Németi has numerous results, some examples are:

• Székely [2013] showed that the existence of superluminal particles is
consistent with relativistic kinematics (even in 4D) as long as those
particles are not able to coordinatize their environment. This result
has been extended to relativistic dynamics as well by Madarász and
Székely [2014].

• It is provable from four simple axioms that no observer can move
faster than light [Andréka et al. 2006, Cor. 2.1]. This proof was
checked by theorem provers as well, which shows another advantage
of using formal logic in the foundations of physics. [Govindarajulu,
Bringsjord, and Taylor 2014; Stannett and Németi 2014]

• This framework makes it possible to axiomatize special relativ-
ity without assuming the structure of real numbers or their �rst-
order theory [Andréka et al. 2002]. Using model-theoretical tools
Madarász and Székely [2013] showed that special relativity can be
modeled even over the �eld of rational numbers.

• With a �rst-order logic analysis it is possible to investigate Why-
type questions in physics by studying which axioms are needed
and which are super�uous in order to prove certain predictions of
relativity theory [Székely 2011]. For instance, Andréka, Madarász,
Németi, and Székely [2008] showed that the conservation of mass
is not needed to prove the mass-increase theorem.

More on the foundational signi�cance of that project can be found in a
recent paper of Friend [2014].



2 Standard systems

The standard formal language of our research group has the advantage
that it involves very natural primitives1: its basic predicates and relations
are

• +, ·, ≤, = that refer to the standard mathematical terms,

• Ph(b): �b is a light signal�,

• Ob(b): �b is an observer/coordinate system�,

• W(o, b, x, y, z, t): �According to the observer/coordinate system o,
the body is b located in the spacetime position (x, y, z, t). �

This language �ts very well to the spacetime diagram-based language of
relativity theories, and makes it possible to build up special and general
relativities from very few but still logically (and conceptually) transpar-
ent axioms. The standard axiom systems that our group uses and in this
report we will frequently will refer to are

• SpecRel, which can derive the basic predictions of special relativity.

• CatRel is a complete extension of SpecRel: all of its models are
elementarily equivalent with Minkowski spacetimes where there are
no accelerating observers.

• AccRel is an extension of SpecRel where intended models allow ac-
celerating coordinate systems.

• GenRel is reduct of AccRel which is complete w.r.t. Lorentzian man-
ifolds and as such can be considered to be an axiomatization of
general relativity.

Andréka, Madarász, Németi, and Székely [2012] gives a nice, short and
precise introduction to SpecRel, AccRel and GenRel. The system CatRel
is discussed in [Andréka et al. 2007].

3 Operational de�nitions

The above language of spacetime diagrams, however, is not satisfactory
for those who are interested in an operational foundation of physics, i.e.,
in a foundation according to which every basic notion and axiom refers to
(simple) experiments. We do not know that what does �to be a coordinate

1for details see [Andréka et al. 2012].
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system� (Ob) or �coordinatizing� (W ) mean in terms of experiments.
Szabó [2010] and Ax [1978] answered this challenge in special relativity,
the former focused on the empirical meanings of coordinate systems and
coordinatization process while the latter concentrated on a �rst-order
axiomatic system that re�ects operational ideas.

Ax's primitive predicates are

• aTp: �a transmits signal p�,

• aRp: �a receives signal p�,

These primitives refer to experiments, so any axiom system on that lan-
guage can be considered to be operational. The only problem was that
even if this axiom system is complete w.r.t. Minkowski spacetimes, it was
not clear how and exactly how much can be expressed from the paradig-
matic e�ects of special relativity. In other words, the expressive power
or de�nitional properties of Ax's system was unexplored. Andréka and
Németi [2014] showed that Ax's system is surprisingly expressive: with
the addition of some minor axioms (about selecting a meter rod) makes
it de�nitionally equivalent with CatRel. De�nitional equivalence means
that the two theory are about the same concepts, i.e., they are `equi-
expressive'. The main idea of the proof of this de�nitional equivalence is
that though the language of Ax [1978] seems to be very primitive, num-
bers, mathematical operations and coordinate systems (the primitives of
the language of CatRel) are de�nable.

But it is still an open question whether similar results can be obtained
with accelerating observers or w.r.t general relativity. As far as we see,
the ideas of [Andréka and Németi 2014] are not transferable directly to
general relativity. Such a result, if there is at all, must be achieved in a
radically di�erent way. The main problem is that inertiality of observers
does not seem to be de�nable in that language.

That is where we are now and that is the point where our report
steps into the picture. A corollary of our main result is a framework
that can reproduce the same results (decidability, and completeness w.r.t.
Minkowski spacetimes, de�nitional equivalence with CatRel) such that it
can be still considered to be operational. Its primitives are

• +, ·, ≤, that refer to the standard mathematical terms

• P(e, a, x): �in event e, a observes that its clock shows time x�.

Contrary to results of Ax and Andréka�Németi this operational attempt
does not go into the de�nition of mathematics in terms of experiments,
only the de�nition of those terms that refer to non-mathematical/physical
phenomena. This price was not paid in vane: the de�nition of inertial
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(geodetic) observers is possible (and simple) in that language, and by
that, the road to acceleration is paved, and the research for an opera-
tional axiomatization of general relativity is started.

But, as we mentioned, that system is only a corollary of a bigger
result. The main result of [Molnár 2015] is that we did this in a way
that we linked the remarkable modal research of the literature into our
research.

4 Modal perspective

Modal logic, especially temporal logic in the foundation of relativity the-
ories are to provide a local perspective of relativistic time and to make
the information about spacetime available in the spacetime itself.

Modal and temporal logics are, however, usually stay in the propo-
sitional level, i.e., no variable bounding quanti�ers are used. Instead of
these, the common primitive connectives in modal logic are � and its
dual, �, that stands for `change': in the semantics, it changes the `state'
or `model', i.e., the truth of some formulas. According to the relativistic
interpretation, `states' are events and `change' is the change along the
causal evolution of spacetime.

Temporal logics are modal logics where � and � are replaced with
a G and a F, and there is an other pair of modal connectives, H and
P, that makes room for `memory' in the form of `backward change'. The
relativistic interpretation of these connectives are then

• Gϕ: �ϕ is always going to be true in the causal future�,

• Fϕ: �ϕ will be true in the causal future�,

• Hϕ: �ϕ has always been the case in the causal past�,

• Pϕ: �ϕ was the case in the causal past�,

If the temporal logic in question is propositional, or in other words,
a zero-order logic, then this means that its primitive sentences do not
bound variables, i.e., has no inner structure; they are just p-s and q-
s, that can be true or false but they do not express a relation in the
state. They are, however, freely interpretable � that is why we use the
expression `temporal logic' instead of `temporal theories '.

To enrich the expressive power of that language, we will use �rst-order
temporal logics instead with the following (familiar) special primitives:

• +, · and ≤: the standard mathematical terms

• a:τ : �clock a shows time τ �
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Note that the resemblance with the �rst-order classical language of the
previous section; there is no explicit reference to the events, while the
primitive predicate is still operational. Here, a refers to clocks, that x
refers to numbers. For a start, a clock is something that � contrary to
a number � can change its denotation while the spacetime evolve / the
state changes / the time elapse / we shift from one event to another along
causality. In that language, a quanti�cation will be local; we can quantify
over only those clocks that are actually available:

• ∃aϕ: �there is a clock a here such that ϕ is true�

We will assume that numbers will always going to be available in every
event.

Note that in this language, the clock-relativized temporal operators,
and as such the experienced past is immediately de�nable:

• Paϕ
def⇔ P(∃x a:x ∧ ϕ): �somewhere in the causal past where a

occurred, ϕ is true�

Therefore, this system can be considered as a multi-agent system, i.e., a
system in which every agent (clock) has its own modal operator. Since we
have that local quanti�cation over clocks as well, these agents can talk
about each other, they can share information about their past � that is
how the exploration of spacetime is look like in this temporal language.

5 Main Results

Some main results of our research so far:

1. Strong Expressive Power: Our language can express the basic
paradigmatic relativistic e�ects of kinematics such as time dilation,
length contraction, twin paradox, etc.

2. Strong Axiomatic Base: The temporal formulas that represent
the basic paradigmatic e�ects of relativity theories can be derived
from a �nite scheme axiom system SpecClockSys.

3. Operationality: The coordinatization itself is de�nable using (met-
ric) tense operators with signalling procedures. These operators re-
fer to inertial agents drifting in space and conducting signalling ex-
periments to discover the spacetime they live in. The well-de�nedness
of that coordinatization process is also derivable from SpecClockSys.

4. Completeness and Decidability: The true formulas of the ac-
celeration-free 4D Minkowski spacetime can be derived from a �nite
scheme based axiom system SpecClockSysNoAcc.
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5. Hybrid sort de�nition: Nominals, i.e., a hybrid sort i0, i2, . . . can
be de�ned in (connected models of) SpecClockSys, and hybrid op-
erators @i, ↓i and the somewhere operator E is also de�nable.

6. Formal comparison to other �rst-order axiom systems: Those
extensions of SpecRel where there are no FTL bodies and obser-
vationally indiscernible bodies are de�nitionally equivalent with
the standard translation of some extension of SpecClockSys. This
means that all classical systems with that property is equiv-

alent to a natural temporal logic. Specially, the complete CatRel
of Andréka, Madarász, and Németi [2007] is de�nitionally equiva-
lent with the standard translation of SpecClockSysNoAcc.

7. Incompleteness of unrestricted acceleration in �at space-

times: In �at Minkowski spacetimes, the existence of certain curves
will result in drastic increase of expressive power which results in
the interpretability of Robinson-arithmetic Q and representability
of recursive functions, hence the true formulas of the 4D Minkowski
spacetime with all (not necessarily inertial) timelike curves are not
�nite-scheme axiomatizable.

Most details can be found in [Molnár 2015]. In this talk we will overview
these results focusing on

• how can we �nd temporal logical correspondents for classical axiom
systems of �at spacetimes, and

• how can we construct branching spacetimes, indeterminist space-
times using these ideas.
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