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1 Introduction

A number of models of general relativity seem to contain “holes” which are
thought to be “physically unreasonable”. One seeks a condition to rule out
these models. We examine a number of possibilities already on the table.
We then introduce a new condition: epistemic hole-freeness. Epistemic hole-
freeness is not just a new condition — it is new in kind. In particular, its
motivation is primarily epistemic rather than metaphysical.

2 Preminilaries

We begin with a few preliminaries concerning the relevant background for-
malism of general relativity.1 An n-dimensional, relativistic spacetime (for
n ≥ 2) is a pair of mathematical objects (M, gab). M is a connected n-
dimensional manifold (without boundary) that is smooth (infinitely differ-
entiable). Here, gab is a smooth, non-degenerate, pseudo-Riemannian metric
of Lorentz signature (+,−, ...,−) defined on M .

Note that M is assumed to be Hausdorff; for any distinct p, q ∈ M ,
one can find disjoint open sets Op and Oq containing p and q respectively.
We say two spacetimes (M, gab) and (M ′, g′ab) are isometric if there is a
diffeomorphism ϕ : M →M ′ such that ϕ∗(gab) = g′ab.

For each point p ∈M , the metric assigns a cone structure to the tangent
space Mp. Any tangent vector ξa in Mp will be timelike if gabξ

aξb > 0, null
if gabξ

aξb = 0, or spacelike if gabξ
aξb < 0. Null vectors create the “cone

structure; timelike vectors are inside the cone while spacelike vectors are

∗Thanks to Jeff Barrett, Thomas Barrett, David Malament, Jim Weatherall, and Chris
Wüthrich for helpful suggestions on a previous draft.

1The reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and
Malament (2012) for details. An outstanding (and less technical) survey of the global
structure of spacetime is given by Geroch and Horowitz (1979).
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outside. A time orientable spacetime is one that has a continuous timelike
vector field on M . A time orientable spacetime allows one to distinguish
between the future and past lobes of the light cone. In what follows, it is
assumed that spacetimes are time orientable.

For some open (connected) interval I ⊆ R, a smooth curve γ : I →M is
timelike if the tangent vector ξa at each point in γ[I] is timelike. Similarly,
a curve is null (respectively, spacelike) if its tangent vector at each point is
null (respectively, spacelike). A curve is causal if its tangent vector at each
point is either null or timelike. A causal curve is future-directed if its tangent
vector at each point falls in or on the future lobe of the light cone.

We say a curve γ : I → M is not maximal if there is another curve
γ′ : I ′ → M such that I is a proper subset of I ′ and γ(s) = γ′(s) for all
s ∈ I. A curve γ : I → M in a spacetime (M, gab) a geodesic if ξa∇aξ

b = 0
where ξa is the tangent vector and ∇a is the unique derivative operator
compatible with gab.

For any two points p, q ∈ M , we write p << q if there exists a future-
directed timelike curve from p to q. We write p < q if there exists a future-
directed causal curve from p to q. These relations allow us to define the
timelike and causal pasts and futures of a point p: I−(p) = {q : q << p},
I+(p) = {q : p << q}, J−(p) = {q : q < p}, and J+(p) = {q : p < q}.
Naturally, for any set S ⊆ M , define J+[S] to be the set ∪{J+(x) : x ∈ S}
and so on. A set S ⊂M is achronal if S ∩ I−[S] = ∅.

A point p ∈ M is a future endpoint of a future-directed causal curve
γ : I → M if, for every neighborhood O of p, there exists a point t0 ∈ I
such that γ(t) ∈ O for all t > t0. A past endpoint is defined similarly. A
causal curve is future inextendible (respectively, past inextendible) if it has
no future (respectively, past) endpoint.

For any set S ⊆M , we define the past domain of dependence of S, writ-
ten D−(S), to be the set of points p ∈M such that every causal curve with
past endpoint p and no future endpoint intersects S. The future domain of
dependence of S, written D+(S), is defined analogously. The entire domain
of dependence of S, written D(S), is just the set D−(S)∪D+(S). The edge
of an achronal set S ⊂ M is the collection of points p ∈ S such that every
open neighborhood O of p contains a point q ∈ I+(p), a point r ∈ I−(p), and
a timelike curve from r to q which does not intersect S. A set S ⊂ M is a
slice if it is closed, achronal, and without edge. A spacetime (M, gab) which
contains a slice S such that D(S) = M is said to be globally hyperbolic.
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3 A Condition to Disallow Holes?

Consider the following example.

Example 1. Let (M, gab) be Minkowski spacetime and let p be any
point in M . Consider the spacetime (M − {p}, gab).

The spacetime seems to have an artificial “hole” (see Figure 1). One
seeks to find a (simple, physically meaningful) condition to disallow the
example. (The condition need not be a sufficient condition for “physical
reasonableness”; it need only be necessary.) But “although one perhaps has
a good intuitive idea of what it is that one wants to avoid, it seems to be
difficult to formulate a precise condition to rule out such examples” (Geroch
and Horowitz 1979, 275).

Figure 1: Minkowski spacetime with one point removed.

Many of the conditions used to rule out the “hole” in example 1 require
that certain regions of (or curves in) spacetime be “as large as they can
be”. For example, geodesic completeness requires every geodesic to be as
large as it can be in a certain sense. Hole-freeness essentially requires the
domain of dependence of every spacelike surface to be as large as it can be.
Inextendibility requires the entirety of spacetime to be as large as it can be.
Let us examine each of these three conditions in more detail. First, consider
geodesic completeness.
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Definition. A spacetime (M, gab) is geodesically complete if every max-
imal geodesic γ : I → M is such that I = R. A spacetime is geodesically
incomplete if it is not geodesically complete.

If an incomplete geodesic is timelike or null, there is a useful distinction
one can introduce (which we will need later). We say that a future-directed
timelike or null geodesic γ : I → M without future endpoint is future in-
complete if there is an r ∈ R such that s < r for all s ∈ I. A past incomplete
timelike or null geodesic is defined analogously. Next, consider inextendibil-
ity.

Definition A spacetime (M, gab) is extendible if there exists a spacetime
(M ′, g′ab) and an isometric embedding ϕ : M → M ′ such that ϕ(M) ( M ′.
Here, the spacetime (M ′, g′ab) is an extension of (M, gab). A spacetime is
inextendible if has no extension.

Finally, consider hole-freeness. Initially, one defined (Geroch 1977) a
spacetime (M, gab) to be hole-free if, for every spacelike surface S ⊂ M
and every isometric embedding ϕ : D(S) → M ′ into some other spacetime
(M ′, g′ab), we have ϕ(D(S)) = D(ϕ(S)). The definition seemed to be satis-
factory. But surprisingly, it turns out the definition is too strong; Minkowski
spacetime fails to be hole-free under this formulation (Krasnikov 2009). But
one can make modifications to avoid this consequence (Manchak 2009).

Let (K, gab) be a globally hyperbolic spacetime. Let ϕ : K → K ′ be
an isometric embedding into a spacetime (K ′, g′ab). We say (K ′, g′ab) is an
effective extension of (K, gab) if, for some Cauchy surface S in (K, gab),
ϕ[K] ( int(D(ϕ[S])) and ϕ[S] is achronal. Hole-freeness can then be de-
fined as follows.

Definition. A spacetime (M, gab) is hole-free if, for every set K ⊆ M
such that (K, gab|K) is a globally hyperbolic spacetime with Cauchy sur-
face S, if (K ′, gab|K′) is not an effective extension of (K, gab|K) where K ′ =
int(D(S)), then there is no effective extension of (K, gab|K).

What is the relationship between the three conditions? There are only
two implication relations between them (see Manchak 2014 for all proofs
and counterexamples).

Proposition. Any spacetime which is geodesically complete is (i) hole-
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free and (ii) inextendible.

Now, any of the three conditions can be used to rule out the “hole”
in example 1. But due to the singularity theorems (Hawking and Penrose
1970), geodesic completeness is now considered to be much too strong a
condition; it seems to be violated by physically reasonable spacetimes. In
what follows, let us focus on the remaining two conditions which are usually
taken to be satisfied by all physically reasonable spacetimes. Indeed, these
two conditions are still in use (see Earman 1995). Might hole-freeness or
inextendibility (or their conjunction) be the condition we are looking for?
Consider the following example.

Example 2. Let (M, gab) be Minkowski spacetime and let p be any
point in M . Let Ω : M − {p} → R be a smooth positive function which ap-
proaches infinity as the point p is approached. Now consider the spacetime
(M − {p},Ω2gab).

The spacetime in example 2 is geodesically complete. It is therefore inex-
tendible and hole-free. Nonetheless, it seems there is still an artificial “hole”
in the spacetime. One seeks a (simple, physically meaningful) condition to
rule out even these holes.

4 A New Condition

Consider the following definition.

Definition. A spacetime (M, gab) has an epistemic hole if there is a
point p ∈M and two future-inextedible timelike curves γ and γ′ through p
such that I−[γ] is a proper subset of I−[γ′].

The physical significance of the definition is this: Suppose you and I are
both present at some event. Now suppose you go your way and I go mine.
If it is the case that I can eventually know everything you can eventually
know and more, then there is a kind of epistemic “hole” preventing you from
knowing the extra bit. One might require the region of spacetime which an
observer can eventually know to be “as large as it can be”. In other words,
one might require spacetime to be free from epistemic holes.

Is the definition adequate? Examples 1 and 2 have epistemic holes as
we would expect. But, unfortunately, the condition is too strong; it rules
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Figure 2: Observers γ1 and γ2 in Minkowski spacetime. The set I−[γ2] (the
shaded area) is a proper subset of I−[γ1] (the entire manifold).

out spacetimes which are usually thought to be physically reasonable is
some sense. Take Minkowski spacetime, for example. It has epistemic holes.
(Consider any point in the Minkowski spacetime. Now consider any observer
at the point who accelerates to reach “null infinity” and another observer
at the point who does not. See Figure 2.)

But there is no serious problem here; we can restrict attention to timelike
geodesics rather than arbitrary timelike curves. (We will use the definition
below rather than the definition above in what follows.)

Definition. A spacetime (M, gab) has an epistemic hole if there is a
point p ∈M and two future-inextedible timelike geodesics γ and γ′ through
p such that I−[γ] is a proper subset of I−[γ′].

Despite the relaxed formulation, examples 1 and 2 still count as having
epistemic holes (see Figure 3). Moreover, a number of spacetimes thought to
be physically reasonable are epistemically hole-free (e.g. Minkowski space-
time). The condition of epistemic hole-freeness is somewhat permissive in
that it does not automatically rule out acausal spacetimes (e.g. Gödel space-
time).

On the other hand, some spacetimes with “naked singularities” have epis-
temic holes (e.g. Misner spacetime). But spacetimes with naked singularities
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Figure 3: Observers γ1 and γ2 in Minkowski spacetime with one point re-
moved. The set I−[γ2] (the shaded area) is a proper subset of I−[γ1] (the
entire manifold).

are thought to be physically unreasonable in some sense. Consider the fol-
lowing influential definition (Geroch and Horowitz 1979, Earman 1995).

Definition. A spacetime (M, gab) has a naked singularity if there is
a point p ∈ M and a future-incomplete timelike geodesic γ such that
γ ⊆ I−(p).

What is the relationship between naked singularities and epistemic holes?
Example 2 shows that naked singularities are not equivalent to epistemic
holes (the example contains no naked singularities). And the following ex-
ample contains naked singularities but no epistemic holes.

Example 3. Let (M, gab) be two dimensional Minkowski spacetime in
standard t, x coordinates which is “rolled up” along the t direction. Let p
be any point in M . Consider the spacetime (M − {p}, gab).

Now, the condition of global hyperbolicity is sufficient to exclude naked
singularities (Geroch and Horowitz 1979). In addition, global hyperbolicity
together with inextendibility requires spacetime to be hole-free (Manchak
2009). And, despite the fact that the global hyperbolicity is a strong causal
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condition, some hold that it is satisfied by all physically reasonable space-
times (Penrose 1979). Might it be the case that global hyperbolicity rules
out epistemic holes? Consider the following.

Example 4. Let (M, gab) be Minkowski spacetime and let p be any
point in M . Let M ′ be the set I−(p). Let Ω : M ′ → R be a smooth positive
function which approaches infinity as the boundary of I−(p) is approached.
Now consider the spacetime (M ′,Ω2gab). (See Figure 4.)
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Figure 4: Observers γ1 and γ2 in a portion of conformal Minkowski space-
time. The set I−[γ2] (the shaded area) is a proper subset of I−[γ1] (the
entire manifold).

Example 4 shows that a globally hyperbolic spacetime, indeed even a
globally hyperbolic spacetime which is geodesically complete, can nonetheless
have epistemic holes. On the other hand, example 3 shows that a space-
time which is non-globally hyperbolic, indeed even a non-globally hyperbolic
spacetime which fails to be inextendible and hole-free, can nonetheless be
epistemically hole-free. In sum: epistemic holes are very different from
“holes” and “singularities” of various kinds.

5 A New Type of Condition

Stepping back, we note that the definition of epstemic hole-freeness differs
from (and indeed is more attractive than) inextendibility and hole-freeness
in two important ways.

First, inextendibility and hole-freeness require that certain regions of
spacetime be “as large as they can be” in the sense that one compares them,
from a God’s eye point of view, to similar regions in all possible spacetimes.
And without knowing in advance which of all possible spacetimes are phys-
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ically reasonable (and how could one know?) such a comparison is on un-
steady ground. But consider epistemic hole-freeness. The condition requires
that certain regions of spacetime be “as large as they can be” in the sense
that one compares them to similar regions within the very same spacetime.
Thus, we have one way in which the proposed condition is a bit easier to
swallow (and pragmatically easier to work with).

Second, there is a sense in which, if inextendibility or hole-freeness are
satisfied or violated in a spacetime, observers in the spacetime may not have
the epistemic resources to know it. But this is not the case for epistemic
holes. Consider the following definition (Glymour 1977).

Definition. Two space-times (M, gab) and (M ′, g′ab) are observationally
indistinguishable if for every future-inextendible timelike curve γ in (M, gab),
there is a future-inextendible timelike curve γ′ in (M ′, g′ab) such that I−[γ]
and I−[γ′] are isometric; and, correspondingly, with the roles of (M, gab)
and (M ′, g′ab) interchanged.

Let us say that a spacetime property is preserved under observational in-
distinguishability if, for every pair of observationally indistinguishable space-
times, one has the property just in case the other does as well. We have the
following.

Proposition. Epistemic hole-freeness is preserved under observational
indistinguishability. Inextendibility and hole-freeness are not.

Proof. Let (M, gab) and (M ′, g′ab) be observationally indistinguishable
spacetimes. Suppose (M, gab) has an epistemic hole. So, there is a point
p ∈ M and two future-inextedible timelike geodesics γ and γ′ through p
such that I−[γ] is a proper subset of I−[γ′]. Since (M, gab) and (M ′, g′ab) are
observationally indistinguishable, there is a future-directed timelike curve λ
in (M ′, g′ab) and an isometry ϕ : I−[γ′]→ I−[λ]. Clearly, it must be the case
that ϕ[γ] and ϕ[γ′] are future-inextedible timelike geodesics through ϕ(p)
such that I−[ϕ[γ]] is a proper subset of I−[ϕ[γ′]]. In other words, (M ′, g′ab)
has an epistemic hole. The other direction is analogous. So epistemic hole-
freeness is preserved under observational indistinguishability.

Next, consider hole-freeness. Let (M, gab) be two dimensional Minkowski
spacetime in standard t, x coordinates with the set {(t, x) : t ≥ 0} removed
from the manifold. Let p be any point in M and let M ′ be the manifold
I−(p). One can verify that (M, gab) and (M ′, gab) are observationally indis-
tinguishable. But (M, gab) is not hole-free and (M ′, gab) is. So hole-freeness
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is not preserved under observational indistinguishability (see Figure 5).
For the inextendibility case, see Malament (1977, 78). �

Figure 5: Two portions of Minkowski spacetime. Only the one to the right
is hole-free. The spacetimes are observationally indistinguishable since all
pasts of all observers in both spacetimes (shaded regions) are isometric.

The proposition shows another sense in which epistemic hole-freeness
is more appropriate to presuppose than hole-freeness or inextendibility. If
it seems to an observer that her spacetime is hole-free and inextendible,
this gives little reason to be confident that the spacetime actually satisfies
the conditions. In fact, confidence in the satisfaction of these two conditions
comes primarily from metaphysical principles involving plenitude and causal
determinism (Earman 1995, Manchak 2011). This should give us pause. On
the other hand, if it seems to an observer that her spacetime is epistemically
hole-free, this does give some reason to be confident that the spacetime
actually satisfies the condition.
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