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1 Introduction

There is an intuitive idea that some spacetime models are “similar” to others in some
relevant respect or other. A natural way to make this notion precise is to put a topology
over spacetimes—that is, over the smooth Lorentz metrics L(M) of a fixed1 manifold M—
that respects the aspects that one wishes to capture. Besides specifying which sequences
of spacetimes converge and which parameterized families of spacetimes vary continuously,
a topology determines which properties of spacetimes are stable and generic.2 It may also
play a role in determining when a perturbation of a spacetime metric is to be considered
small.

Of course, there are many topologies from which to choose. The following sections will
clarify the status of a few of the more common topologies—the point-open, compact-open,
and open topologies—elucidating some of their properties and relationships, and showing
that some alternative definitions are in fact equivalent.

Through this investigation, it will become clear that different topologies are natural
choices for different questions. Thus, through some generalizations of propositions of
Fletcher (2015), I argue that there is good reason to believe that there can be no canonical
topology over spacetimes—no topology that can capture at once all of the roles listed
above. Thus, in a sense, the many demands of this intuition of “similarity” pull in
different, sometimes incompatible directions. It thus seems best to accept a kind of
methodological contextualism, where the best choice of topology is the one that captures
the properties relevant to the research question at hand that “similar” spacetimes should
share.

2 Topologies on the Space of Spacetimes

There are two ideas on how to express the topologies on L(M) considered in this paper.
The first uses the fiber bundle formulation of L(M), and in particular jet bundles thereof.

∗Thanks to Jim Weatherall for comments on a (much) earlier draft. Part of the research leading to this
work was completed with the support of a National Science Foundation Graduate Research Fellowship.

1One might of course wish to compare spacetimes whose underlying manifolds are not identical or
even homeomorphic, but for now I will set this possibility aside.

2A property P of a spacetime g is stable when there is an open neighborhood of g, each element of
which has P . P is generic within a subset S ⊆ L(M) when it holds on each element of an open dense
subset of S.
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Let π0
2 : T 0

2M →M be the canonical projection associated with the bundle T 0
2M and note

that there is a natural equivalence between the set of (0, 2)-tensor fields on M , Γ0
2(M),

which include the Lorentz metrics L(M), and a certain set of cross-sections Γ̂ : M →
T 0
2 (M), which, by definition, satisfy π0

2 ◦ Γ̂ = I, the identity. Denote these sections by
Γ̂0
2(M), and the corresponding sections for Lorentz metrics as L̂(M). The k-jet of a cross-

section Γ̂ at p ∈ M , denoted jkΓ̂(p), is the equivalence class of sections whose partial
derivatives in an arbitrary coordinate system at p are equal to those of Γ up to order k.
The k-jets of sections themselves form a bundle over M , whose total space will be denoted
Jk(M, Γ̂0

2). The open sets of this bundle can be written in the form of ordered pairs—i.e.,
they constitute a product topology—where the first component is homeomorphic to an
open set from the manifold topology on M and the second is homeomorphic to an open
set of tuples whose values take on the possible values in the typical fiber (π0

2)−1[p] and
their partial derivatives to order k. The latter is a finite-dimensional real vector space,
for which there is a unique reasonable (i.e., Hausdorff) topology corresponding to the
topology induced by the Euclidean norm. (See, for example, (Schafer, 1999, Theorem 3.2,
p. 20).) Now consider some collection of sets S that cover M (i.e.,

⋃
S = M). For any

open set U ∈ Jk(M, Γ̂0
2) and S ∈ S, define Ok(U, S) = {g ∈ L(M) : jkĝ[S] ⊆ U} as the

set of metrics g whose corresponding k-jet cross-sections jkĝ[S] are in U . These Ok(U, S)
form a basis for a topology.

The second idea for topologies on L(M) considered in this paper, is that one can
divide the task of measuring the similarity of a pair spacetimes into two parts: first,
that of encoding their relevant differences at each point of M into a real number in
some systematic way, and second, evaluating the variability of the resulting scalar field
in some way over regions of M . The differences between the topologies considered arise
ultimately from different choices of how to implement these two tasks. In fact, most of
these differences arise in the second part of this task.

To show how this works in more detail, some definitions are needed. A seminorm on
a vector space X is a subadditive and homogeneous function | · | : X → R, i.e., one such
that, for all x, y ∈ X and scalars c, |x + y| ≤ |x| + |y| and |cx| = |c| · |x|. A family
of seminorms N on X is called separating when for each nonzero x ∈ X, there is some
| · | ∈ N such that |x| 6= 0.

Since a space of (r, s)-tensors, such that those in each fiber of the tensor bundle T rsM →
M , is a vector space, one may in particular define seminorms that vary continuously
(smoothly) across M , in the sense that for any continuous (smooth) (r, r)-tensor field K,3

|K| is a continuous (smooth) real scalar field on M . Such a varying norm will be called
a fiber norm for the (r, r)-tensor fields.

A family of fiber norms for (r, s)-tensor fields for each r, s ≥ 0 can be induced from a
Riemannian metric h. (Such a metric always exists since M is assumed to be Hausdorff
and paracompact.) This is the first part of the task mentioned above. Define the h-fiber
norm | · |h of any (r, r)-tensor field K as the fiber norm

|K|h =

{
|K|, if r = s = 0,

|Ka1···ar
b1···bs K

c1···cr
d1···dsha1c1 · · ·harcrh

b1d1 · · ·hbsds |1/2, otherwise.
(1)

Note that the h-fiber norm of a scalar is just the absolute value of that scalar, hence
independent of the choice of h.

3For explicit tensor calculations I use the abstract index notation, but otherwise I drop tensor indices
to reduce notational clutter.
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The second part of the task then involves defining bases for the topology using sets of
the form

Bk(g, ε̃;h, S) = {g′ ∈ L(M) : (|g − g′|h)|S < (ε̃)|S, . . . , (|∇(k)(g − g′)|h)|S < (ε̃)|S}, (2)

varying over all g ∈ L(M), positive scalar fields ε̃, Riemannian h, and sets S ∈ S such
that

⋃
S = M . I will also use the notation dh(g, g

′) = |g − g′|h in what follows.

2.1 The Open Topologies

The Ck open topologies control similarity of spacetimes across the whole of the underlying
manifold. For simplicity I consider here only the C0 case; similar analysis and results apply
to the arbitrary Ck case. The C0 open topology is perhaps best known in the context of
Hawking’s theorem (Hawking and Ellis, 1973, Prop. 6.4.9, p. 198), that a spacetime is
stably causal iff it admits of a global time function. But different definitions have been
advanced in the literature. For example, (Geroch, 1971, p. 71) (who calls it the “fine”
topology) writes that, in this topology, “a neighborhood of a metric gab consists of metrics
which lie within a certain range of gab at each point, where this ‘range’ varies continuously
but otherwise arbitrarily over the space-time.” What does it mean for a metric to lie in
a certain range of another? Hawking (1971) makes it explicit that these ranges are to be
measured by some positive-definite metric hab on the manifold M . So this would suggest
that we could define the open neighborhoods B of gab by

B(g, ε̃;h) = {g′ ∈ L(M) : |g − g′|h < ε̃}, (3)

where ε̃ is some positive continuous scalar field on M .4 (Indeed, Lerner (1973) uses this
definition in an appendix.) However, in a footnote to the above passage Geroch instead
defines

Bmax(g, ε;h) = {g′ ∈ L(M) : max
M
|g − g′|2h < ε}, (4)

where (allowing for the slight abuse of notation) ε is some positive constant. Earlier,
(Geroch, 1970, p. 279) effectively defines

Bsup(g, ε;h) = {g′ ∈ L(M) : sup
M
|g − g′|2h < ε}. (5)

The sets of each of these, ranging over all possible choices of g, ε̃ or ε, and h, serve as bases
for three topologies. (They each generate a topology over arbitrary union.) Although it
may not be obvious, they in fact generate the same topology. To show why, we will use
the following lemma:

Lemma 1. Suppose B1 and B2 are bases for topologies T1 and T2, respectively, on a set
X. Then T1 ⊆ T2 if and only if for every B1 ∈ B1 and every x ∈ B1, there is some
B2 ∈ B2 such that x ∈ B2 ⊆ B1.

For a proof, see, e.g., (Munkres, 2000, Lemma 13.3, p. 81). Let T , Tmax, and Tsup be
the topologies defined by equations 3, 4, and 5, respectively, for a fixed manifold M .

Proposition 1. T = Tmax = Tsup.
4The choice of two copies of h ensures that the “distance” thereby defined between g and g′ is zero iff

g = g′, i.e., that the resulting topology is Hausdorff.
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Proof. We use the above lemma three times. First, pick an arbitrary g ∈ Bsup(g, ε;h),
and consider B(g, ε̃;h), where supM ε̃ < ε. For any g′ ∈ B(g, ε̃;h), we have hamhbn(gab −
g′ab)(gmn − g′mn) < ε̃, hence supM hamhbn(gab − g′ab)(gmn − g′mn) ≤ supM ε̃ < ε. Therefore
g′ ∈ Bsup(g, ε;h) by definition, and Tsup ⊆ T by the lemma.

In a similar fashion, pick an arbitrary g ∈ B(g, ε̃;h), and consider any g′ ∈ Bmax(g, 1;h/
√
ε̃).

We have maxM
ham√
ε̃

hbn√
ε̃
(gab−g′ab)(gmn−g′mn) < 1, hence in particular hamhbn(gab−g′ab)(gmn−

g′mn) < ε̃. Therefore g′ ∈ B(g, ε̃;h) by definition, and T ⊆ Tmax by the lemma.
Lastly, pick an arbitrary g ∈ Bmax(g, ε;h), and consider any g′ ∈ Bsup(g, 1;h/

√
ερ),

where ρ is a continuous scalar field on M satisfying the following two conditions: 0 < ρ ≤ 1
everywhere, and the upper level sets L+(c) = {p ∈ M : ρ|p ≥ c} are compact for each
c > 0. (The latter condition, along with the positivity of ρ, capture a sense in which ρ
may be said to “vanish at infinity ” if M is non-compact.) To simplify the notation, put
γ = ham√

ερ
hbn√
ερ

(gab − g′ab)(gmn − g′mn). We then have supMρ < 1, hence in particular

ργ =
ham√
ε

hbn√
ε

(gab − g′ab)(gmn − g′mn) < ρ ≤ 1̃,

where 1̃ is a constant unit scalar field. To show that g′ ∈ Bmax(g, ε;h), hence Tmax ⊆ Tsup,
it suffices to show that maxM ργ exists. This is trivial if M is compact, so consider
the non-compact case. Since ργ is bounded, supM ργ must exist and be strictly positive
(since otherwise γ = 0 everywhere and the maximum exists trivially). Thus, for any
δ > 0, consider Oδ = {p ∈ M : (supM ργ)− (ργ)|p < δ}, the set of points of M on which
ργ is within δ of its supremum. Choosing δ < supM ργ, we have that p ∈ Oδ only if
supM −δ < (ργ)|p < ρ|p, hence Oδ ⊂ L+(supM ργ− δ). But this means that the closure of
Oδ is compact, hence by continuity ργ must attain a maximum thereupon. Since points
p on the boundary of Oδ satisfy (supM ργ) − (ργ)|p = δ, this maximum must lie on the
interior. Continuity again implies at last that supM ργ attains at this maximum.

The fiber bundle approach to defining the open topology is taken by Hawking (1969),
Lerner (1973), and (Hawking and Ellis, 1973, p. 198). Here, one takes as a subbasis for
the topology TO the sets of the form O(U) = {g ∈ L(M) : ĝ[M ] ⊆ U} for open sets U of
T 0
2M . In fact, as suggested, this topology is also identical to the ones discussed above.

To see why, define T (h) as the topology generated from equation 3 but with a single
choice of positive definite metric h. That is, the open sets of T (h) are formed by taking
arbitrary unions of sets of the form given in equation 3, ranging over just Lorentz metrics
g and positive continuous fields ε̃.

Proposition 2. For any positive definite h, T (h) = TO.

Proof. Let L̂(M) denote the Lorentz metrics on M taken as cross-sections ĝ of the bundle
T 0
2 (M) with associated projection π, and define the scalar field dh(ĝ, ĝ

′) = hamhbn(gab −
g′ab)(gmn − g′mn). Now let B(g, ε̃;h) = {g′ ∈ L(m) : dh(ĝ, ĝ

′) < ε̃} be given, and consider
the mapping ∆ : L̂(M)→ R defined by ĝ′ 7→ (ε̃− dh(ĝ, ĝ′))|π(ĝ′), which gives the (signed)
difference between the field ε̃ and the “distance” between g and g′ at any point of M . Since
∆ is continuous, the set U = ∆−1(0,∞) is open, hence by construction O(U) = B(g, ε̃;h).
Because B(g, ε̃;h) was arbitrary, we have that T (h) ⊆ TO.

For the converse, let W be an arbitrary open neighborhood of g in TO and let V be any
open set of T 0

2 (M) such that g ∈ O(V ) ⊆ W . Now define the scalar fieldm : M → R∪{∞}
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so that for any p ∈M ,

m|p =

{
inf{dh(ĝ, ĝ′)|p : ĝ′ ∈ T 0

(2)(M)− V }, π−1(p) * V,

∞, π−1(p) ⊆ V.

The field m gives at each point the greatest lower bound of the “distance” between g
and the set of g′ whose corresponding cross-sections ĝ′ are outside of V . Now, since M is
paracompact and Hausdorff, it has a locally finite covering by compact sets.5 (See, e.g.,
(Munkres, 2000, Lemma 41.6, p. 258).) The field m is bounded from below by a positive
constant on each such compact set, so there exists a continuous field ε̃ such that 0 < ε̃ ≤ m
everywhere. (Apply the partition of unity argument of (Munkres, 2000, Theorem 41.8, p.
259).) So for any g′ ∈ B(g, ε̃;h), we must have dh(ĝ, ĝ

′) < m, which means that ĝ′ ∈ V .
But then g′ ∈ O(V ), hence B(g, ε̃;h) ⊆ O(V ) and by the lemma, TO ⊆ T (h).

One might have thought that T , despite being well-defined and having a conveniently
expressible basis, was somewhat ad hoc. Why should a positive definite metric h on M—
an object mathematically foreign to the concerns of relativity—matter in how we decide
if two spacetimes are close, even if we do not relativize to a particular choice of h? The
above proposition shows that this concern is in fact misplaced, because the basis of T is
indeed just a convenient way to express the topology that arises naturally from the fiber
bundle structure.

Now, in the proof of the first proposition, I utilized a certain redundancy in the
definitions of the bases between the choice of h and the choice of ε̃. The above proposition
implies that in fact a single choice suffices:

Corollary 1. For any positive definite h and h′, T (h) = T (h′) = T .

An analogous proposition holds for the alternative definitions of the open topology
only when M is compact. Let Tsup(h) and Tmax(h) be the topologies generated by letting
equations 4 and 5 range over ε and g only.

Proposition 3. If M is compact, then for any two positive definite metrics h and h′,
Tmax(h) = T (h′)max = Tsup(h′) = Tsup(h).

Proof. Clearly Tmax(h) = Tsup(h) when M is compact, so it suffices to prove the first
equality. Let Bmax(g, ε;h) and some positive definite metric h′ be given. For brevity,
define dh(g, g

′) = hamhbn(gab − g′ab)(gmn − g′mn) and

δ(g, g′) = ε
maxM dh′(g, g

′)

maxM dh(g, g′)

for all g 6= g′. Note that δ is well-defined since, by the compactness of M , the nu-
merator is always finite, and the denominator would vanish iff g = g′. I claim that
ε′ = inf{δ(g, g′) : g′ ∈ Bmax(g, ε;h)− {g}} is nonzero. Suppose otherwise. Noting that δ
is a continuous function in the topology Tmax(h),6 it either achieves the infimum in the
interior of Bmax(g, ε;h)−{g} or on its boundary. But on the interior, the denominator of

5A collection of subsets of a topological space is locally finite when every point in the union of the
collection has a neighborhood intersecting only finitely many members of that collection.

6The precise choice of topology does not matter as long as δ is continuous and, as defined below,
n
g → g. In particular, the value of ε′ does not depend on this choice.
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δ is positive and bounded while the numerator would achieve zero iff g = g′. The bound-
ary, on the other hand, is given by points of the form {g′ ∈ L(M) : maxM dh(g, g

′) = ε}
and the point g. In the former case, δ(g, g′) = dh′(g, g

′) 6= 0, so we must have that the

infimum occurs at g. This entails in particular that δ(g,
n
g) → 0 for any sequence

n
g → g

in the topology Tmax(h). So consider the sequence

n
gab =

(
1 +

√
cn

hamhbngabgmn

)
gab,

where the cn are positive constants satisfying cn → 0. Note that
n
g → g in the topology

Tmax(h), while

δ(g,
n
g) = εmax

M

h′amh′bngabgmn
hamhbngabgmn

is a nonzero constant independent of n, which is a contradiction. Therefore ε′ > 0.
Now consider any g′ ∈ Bmax(g, ε

′;h′). By definition we have

max
M

dh′(g, g
′) < ε′ ≤ ε

maxM dh′(g, g
′)

maxM dh(g, g′)
,

which implies that maxM dh(g, g
′) < ε. Hence Bmax(g, ε

′;h) ⊆ Bmax(g, ε;h), and by the
lemma, Tmax(h) ⊆ Tmax(h′). A similar argument proves the converse.

Proposition 4. If M is non-compact then for every positive definite metric h, there is a
positive definite metric h′ such that Tsup(h) is incomparable with Tsup(h′), and Tmax(h) is
incomparable with Tmax(h′).

Proof. Let h be given. Put h′ =
√
ρh, where ρ is any continuous positive scalar field on

M such that infM ρ = 0 but supM ρ does not exist (i.e., is infinite). Now suppose, for the
sake of contradiction, that for any ε > 0 there is some ε′ > 0 for which Bsup(g, ε

′;h′) ⊆
Bsup(g, ε;h). Consider

g′ab =

(
1 +

√
c′

h′amh′bngabgmn

)
gab ∈ Bsup(g, ε

′;h′),

where 0 < c′ < ε′, and note that hamhbn(gab − g′ab)(gmn − g′mn) = c′/ρ, whose supremum
does not exist. Hence Bsup(g, ε

′;h′) * Bsup(g, ε;h), and by the lemma, Tsup(h) * Tsup(h′).
Conversely, suppose that for any ε′ > 0 there is some ε > 0 for which Bsup(g, ε;h) ⊆

Bsup(g, ε
′;h′). Consider

g′′ab =

(
1 +

√
c

hamhbngabgmn

)
gab ∈ Bsup(g, ε;h),

where 0 < c < ε, and note that h′amh′bn(gab − g′′ab)(gmn − g′′mn) = cρ, whose supremum
does not exist. Hence Bsup(g, ε;h) * Bsup(g, ε

′;h′), and by the lemma, Tsup(h′) * Tsup(h).
Therefore we may conclude that Tsup(h) is incomparable with Tsup(h′). A similar proof

shows the same for Tmax(h) and Tmax(h′).

Thus we see that differences between, on the one hand, the neighborhoods B(g, ε̃;h),
and on the other, the neighborhoods Bsup(g, ε;h) and Bmax(g, ε;h), arise only when M is
non-compact. This makes sense. On compact manifolds, the field hamhbn(gab−g′ab)(gmn−
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g′mn) is always bounded, so taking its maximum (or, equivalently, its supremum) does not
impose any further constraint. By contrast, on non-compact manifolds one must consider
the behavior “at infinity.”

This is one way of beginning the elaboration of a comment by (Hawking, 1971, p. 393)
that, in defining topologies over spacetimes, one must concern oneself especially with the
nature of “the regions on which the metrics are required to be near. This is really a
question of how the metrics behave near the edge of the manifold, i.e. near infinity.” In
our further study of topologies over spacetimes, especially the point-open and compact-
open topologies, this question will arise more acutely.

2.2 Compact-Open Topologies

In the previous section we concerned ourselves with a topology that exerts global control
when adjudicating whether two spacetimes are close. A weaker condition is to control
how they differ on compact sets. Consider the following two neighborhood systems:

BC(g, ε̃;h,C) = {g′ : (|g − g′|h)|C < ε̃|C}, (6)

BmaxC (g, ε;h,C) = {g′ : max
C
|g − g′|h < ε}. (7)

(Clearly it makes no difference to define the latter basis with the supremum instead
of the maximum.) As before, ε̃ is a positive continuous scalar field in the first and ε a
positive number in the second, and their respective topologies TC , TmaxC are generated
through arbitrary union over all choices of gab, hab, C and ε̃ or ε.

Proposition 5. For any M , TC = TmaxC .

Proof. Consider an arbitraryBC(g, ε̃;h,C) and let ε = minC ε̃. Then clearlyBmaxC (g, ε;h) ⊆
BC(g, ε̃;h,C) so by the lemma TC ⊆ TmaxC . Conversely, consider an arbitraryBmaxC (g, ε;h)
and define ε̃ = ε1̃. Then clearly BC(g, ε̃;h,C) ⊆ BmaxC (g, ε;h), so by the lemma TmaxC ⊆
TC .

Not only do these bases define the same topology, but they also coincide with the open
topology just when M is compact.

Proposition 6. If M is non-compact, TC ⊂ T .

Proof. For any arbitrary BC(g, ε̃;h,C), clearly B(g, ε̃;h) ⊂ BC(g, ε̃;h,C) so by the lemma
TC ⊆ T . Now, for the sake of deriving a contradiction, assume that for any B(g, ε̃;h)
there is some BC(g, ε̃′;h,C) ⊆ B(g, ε̃;h). Consider

g′ab =

(
1 +

√
ρ

hamhbngabgmn
gab

)
where ρ is any positive scalar field such that ρ|C < ε̃|C but supM ρ does not exist (i.e.,
is infinite). Clearly g′ ∈ BC(g, ε̃′;h,C) but g′ 3 B(g, ε̃′;h), a contradiction. Thus by the
lemma, T * TC .

Let T kCO be the topology generated from the subbasis of sets of the form

Ok(C,U) = g ∈ L(M) : jkĝ[C] ⊆ U, (8)

where C ranges over all compact subsets of M and U ranges over all open sets of the
manifold topology of Jk(M, L̂(M)).
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Proposition 7. T kC (h) = T kCO for any positive definite h.

Proof. Similar to that of proposition 2, using the fact that one can use h to define a metric
on the cross-sections ĝ. See (Munkres, 2000, Theorem 46.8, p. 285).

Another idea for expressing the continuity of a parameterized family of spacetimes
comes from Geroch (1969), who has proposed a way of interpreting certain limiting
relations entirely geometrically through the continuity (smoothness, and so on) of cer-
tain fields. Roughly, in the simplest case of a one-parameter family, one constructs a
five-dimensional manifold from the four-dimensional manifolds of the family stacked by
their identifying parameter. One can generalize this notion to essentially arbitrary finite-
dimensional parameterizations. (Cf. Fletcher (2015).) The notion of continuity this
defines ends up being equivalent with the notion received from the Ck compact-open
topologies, T kC .

More precisely and generally, suppose that one is given a family of metrics {qg ∈
L(M) : q ∈ N}, where N is a smooth, connected manifold.7 Let M be a manifold
such that there is some diffeomorphism φ : M × N → M, and let ψ(q) : M → M be
a family of embeddings defined by ψ(q)(p) = φ(p, q). Thus the field q̃ : M → R that
maps φ−1(p, q) 7→ q is smooth and labels the four-dimensional hypersurfaces foliatingM.
One can then define onM a symmetric field Γab with signature (1, dimM − 1, dimN) by

stipulating that (Γab)|φ−1(p,q) = (φ
(q)
p )∗(

q
gab). In other words, Γab is the field that on each

q̃-constant hypersurface is just the pushforward of the inverse Lorentz metric
q
gab. One

can then find a derivative operator that is compatible with Γab and ∇aq̃, i.e., ∇aΓ
bc = 0

and ∇b∇aq̃ = 0, and that makes these two fields orthogonal: Γab∇aq̃ = 0. With this

construction in place, we can say that the family {qg ∈ L(M) : q ∈ N} is continuous in the
Ck geometric sense when the corresponding field on M, Γab, is everywhere continuous.

To show that the Ck geometric continuity of a family of metrics is equivalent to its
continuity in the Ck compact-open topology, it will be helpful to use the following lemma
(adapted from (Munkres, 2000, p. 287, Theorem 46.11)):

Lemma 2. Let X and Y be topological spaces, and give the set of continuous functions
from X to Y , denoted C(X, Y ), the C0 compact-open topology.8 If f : X × Z → Y is
continuous, then so is the induced function F : Z → C(X, Y ) defined by the equation
(F(z))(x) = f(x, z). The converse holds if X is locally compact9 and Hausdorff.

The idea is to apply the lemma for X = M and Y = Jk(M, L̂(M)), i.e., when the set
of continuous functions under consideration are the k-jets of Lorentz metrics. So, let J k

C

be the C0 compact-open topology on this set. This topology is canonically bijective with
the Ck compact-open topology T kC .

Proposition 8. U ∈ J k
C iff π0

2[U ] ∈ T kC .

This follows as an immediate consequence of the relevant definitions. These two propo-
sitions can then be used to prove the aforementioned equivalence:

7Geroch does not require that the metrics be defined on diffeomorphic manifolds, but I can confine
attention to that case here.

8I.e., that topology with the subbasis given by sets of the form O(C,U) = {f ∈ C(X,Y ) : f [C] ⊂ U}
for all compact C ⊆ X and open U ⊆ Y .

9A topological space is locally compact when each point has a compact neighborhood.
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Proposition 9. A family of Lorentz metrics {xg}x∈X on M parameterized by a smooth,
connected manifold X is Ck continuous in the geometric sense iff it is continuous in the
Ck compact-open topology.

Proof. Let n = dim(M) and m = dim(X). Suppose that the family
x
g is Ck continuous

in the geometric sense. Each (n + m)-dimensional inverse metric Γab corresponds to a
cross-section Γ̂ of a bundle Γ(M) of (n + m)-dimensional metrics over M, whose partial
derivatives to order k are encoded in the k-jet jkΓ̂. Then the smooth bundle map φ :
Jk(M,Γ(M)) → Jk(M, L̂(M)) induced by the projection π : M→ M can be composed
with ˆGamma to yield the function f = φ ◦ Γ̂ : M ∼= M × X → Jk(M,L(M)), which
is Ck because Γ̂ is Ck by hypothesis. Lemma 2.2 then entails that the map F : X! →
C(M,Jk(M, L̂(M))) defined by F : x 7→ jk

x

ĝ is continuous. But the range of F is just
the set of k-jets of cross-sections of L̂(M) with the C0 compact-open topology, which
by proposition 8 is canonically bijective with the Ck compact-open topology on Lorentz
metrics.

Conversely, suppose that the family
x
g is continuous in the Ck compact-open topology,

or equivalently, that the map F defined above is continuous when C(M,Jk(M, L̂(M))) is
given the C0 compact-open topology. Since M is locally compact and Hausdorff, lemma

2.2 entails that the map f : M ×X → Jk(M, L̂(M)) is continuous. Thus
x
gab(p) is jointly

Ck in x and p.
Let ψ(x) : M →M denote the embeddings that yield the (inverse) metric Γab, which

is Ck when, for any smooth field αab on M, αabΓ
ab is Ck. Now for any p ∈ M and

x ∈ X, (αabΓ
ab)|ψ(x)(p) = (ψ

(x)
p )∗(αab)

x
gab; by assumption (ψ

(x)
p )∗(αab) is smooth; and

x
gab is

Ck because its inverse is. Thus Γab is Ck.

2.3 Point-Open Topologies

As we saw in the last section, the compact-open topology controls similarity between
spacetimes by how those spacetimes differ on compact sets. An even weaker condition
is to control similarity by how spacetimes differ at a finite number of points. The Ck

point-open topologies T kP on L(M) take their name from setting S = {{p} : p ∈ M},
yielding the following subbasis (with the obvious but harmless abuse of notation):

Ok(U, p) = {g ∈ L(M) : jkĝ(p) ⊆ U}. (9)

Following the other of the above outlined ideas, an alternative subbasis consists in the
sets

Bk(g, ε̃;h, p) = {g′ ∈ L(M) : (|g − g′|h)|p < (ε̃)|p, . . . , (|∇(k)(g − g′)|h)|p < (ε̃)|p}. (10)

Both subbases essentially just pick out all the open sets within each fiber of the k-jet
bundle Jk(M, L̂), and because this is a finite-dimensional vector space, it carries a unique
(Hausdorff) topology. Thus:

Proposition 10. The sets Ok(U, p) and Bk(g, ε;h, p) are subbases for the same topology
on L(M).

It is clear that, in fact, a single choice of h will do, as different choices of h merely de-
termine different norms in the fiber: again, each (true) norm generates the same topology
in the fiber. Similar considerations reveal that a constant ε̃ will do.
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The point-open topologies control similarity amongst spacetimes by how they differ at
a finite number of points. Although these topologies have not been discussed so explicitly
in the literature, they are implicitly invoked in the convergence criteria of Malament
(1986) and others in discussions of the Newtonian limit of general relativity. Malament

declares that limn→∞
n
gab = gab just when for every tensor field αab, limn→∞ α

abngab = αabgab
at every p ∈M . Note that each such α determines a fiber norm | · |α, the total collection
of which is separating. Thus these also must generate the same topology as those above,
again due to the uniqueness of the Hausdorff topology for topological vector spaces.

3 Comparing Topologies and Methodological Con-

textualism

The differences between the open, compact-open, and point-open topologies turn on the
degree of control the notion of similarity they encodes enforces. Thus one might think that
the seeming “global” control of the open topologies is stronger than the others, analogous
to the notion of uniform convergence from standard analysis and thus, perhaps, preferred
over the others. But the conditions of convergence/continuity it entails turn out to be
somewhat stronger than what one might expect from uniform convergence/continuity.

Proposition 11. Let g, {ng}n∈N be Lorentz metrics on a non-compact manifold M . Then

limn→inf
n
g = g in the open Ck topology on L(M) iff there is a compact C ⊂M such that:

1. for sufficiently large n,
n
g|M−C = g|M−C; and

2. limn→∞
n
g|C → g|C in the compact-open Ck topology on L(C).

Proof. See Golubitsky and Guillemin (1973, pp. 43–4).

Proposition 12. Let X be any path-connected topological space, and suppose that the
smooth manifold M is non-compact. Then f : X → L(M) is continuous when L(M) is
given the Ck open topology iff F (x1, x2) = f(x1) − f(x2) has compact support (for each
fixed x1, x2) and is continuous when T 0

2 (M) is given the Ck compact-open topology.

(One direction of the proof follows from (Fletcher, 2015, Proposition 2), and the other
is a straightforward calculation.)

Not only do these propositions exhibit a connection between the open and compact-
open topologies, they also show that the open topologies are much finer than it may
initially appear, making it rather difficult for sequences of spacetimes to converge and pa-
rameterized families of spacetimes to vary continuously. Indeed, this difficulty exhibits a
connection with another topology, more rarely used, called the (C0) fine topology (Hawk-
ing, 1971), TF . It can be given a subbasis of the form

BF (g, ε̃;h,C) = {g′ ∈ L(M) : g′|C = g|C , |g − g′|2h < ε̃} (11)

Each neighborhood of g consists of metrics that differ from g only on a compact set. We
thus have an immediate corollary to the above propositions:

Corollary 2. 1. Let g, {ng} be metrics on a non-compact manifold. Then limn→∞
n
g = g

in the (C0) open topology iff it does does in the (C0) fine topology.
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2. Let {xg}x∈X be a family of metrics on a non-compact manifold parameterized by a
path-connected manifold X. Then this family varies continuously in the (C0) open
topology iff it does so in the (C0) fine topology.

However, the fine topology is in fact strictly finer than the open topology:

Proposition 13. If M is non-compact, T (h) ⊂ TF .

Proof. First note that the sets B′F (g, ε̃;h) =
⋃
C BF (g, ε̃;h,C) form a neighborhood basis

of g for the fine topology. So consider an arbitrary B(g, ε̃;h) and note that if g′ ∈
BF (g, ε̃;h,C), then g′ ∈ B′F (g, ε̃;h). Hence B′F (g, ε;h) ⊆ BF (g, ε;h) and by lemma 2.2,
T (h) ⊆ TF .

Conversely, suppose for the sake of contradiction that for every B′F (g, ε̃;h), there is
some B(g, ε̃;h) ⊆ B′F (g, ε̃;h). Consider

g′ab =

(
1 +

√
ε̃′/2

hamhbngabgmn

)
gab,

noting that g′ ∈ B(g, ε̃′;h) but g′ 6= g everywhere. Thus g′ /∈ BF (g, ε̃;h,C) for each C,
hence g′ /∈ B′F (g, ε̃;h). Therefore by lemma 2.2, TF * T (h).

This may at first be counterintuitive. How can it be that distinct topologies agree
on which sequences converge? It turns out the difference turns on a certain subtlety of
topological spaces and their relations to convergence classes. To show how this is the case,
we need some more terminology.

A topological space X is said to have a countable basis at x ∈ X if there is a countable
collection {Ui} of neighborhoods of x such that any neighborhood U of x contains at least
one of the Ui. If X has a countable basis at each point, it is said to be first countable. X
is said to be metrizable if there is a continuous function d : X ×X → R such that, for all
x, y, z ∈ X:

1. d(x, y) = 0 iff x = y;

2. d(x, y) = d(y, x); and

3. d(x, z) ≤ d(x, y) + d(y, z).

When a topological space X is metrizable, it is first countable: just take the countable
basis at each point x ∈ X to be the ε-balls {y ∈ X : d(x, y) < εn} with εn = 1/n.
If a space is first countable, then its topology is entirely determined by its convergent
sequences, but the converse need not be true (Kelley, 1955, Theorems 8–9, pp. 72–4).10

Proposition 14. T (h) is first-countable iff M is compact.

Proof. See (Golubitsky and Guillemin, 1973, pp. 43–44).

Corollary 3. T is metrizable iff M is compact.

10Generally, one can characterize any topology in terms of convergence of nets, i.e., directed sequences
of sets. (A sequence is a special case of a net in which all of the sets are singletons.) But in this paper
we shall have no need to do so.
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Proof. That M being non-compact implies that T is not metrizable is immediate, so
consider the case where M is compact. Then one can check that the standard uniform
metric dh(g, g

′) suffices.

One may interpret the failure to be first-countable as there being more than countably
many ways for two metrics to differ on a non-compact manifold. Accordingly, there are
“too many” ways for a pair of Lorentz metrics to differ than a distance function (i.e., a
function satisfying the triangle inequality) could allow.

On account of these features, one might only require “control” over compact subsets
of spacetimes, but the compact-open topologies have their own peculiarities.

Proposition 15. If dim(M) ≥ 3, then chronology violating spacetimes are generic in
L(M) in any of the Ck compact-open topologies.

Proposition 16. If dim(M) ≥ 3, no Lorentz metric is stably causal in any of the Ck

compact-open topologies on L(M).

Proposition 17. Every space-time (M, g) containing a closed timelike curve does so
stably in any of the Ck compact-open topologies if dim(M) ≥ 3,.

(Proofs of these propositions are exactly analogous to those in Fletcher (2015).) Thus,
when it comes to situations where global control is really needed, such as determining
the stability of a global (= not local) property of spacetime, the compact-open topologies
are not of use. Switching to any of the point-open topologies does not change this, and
further, these topologies in general render strictly more than the geometrically continuous
families of spacetimes continuous.

These antimonies dissolve, however, if one does not require a single topology to be
associated to the models of general relativity. Instead, one can be a methodological
contextualist (Fletcher, 2015): depending on the nature and scope of a particular research
question asked, one can justify a choice of topology relevant for the details of that question.
For example, questions concerning global properties might use (something like) an open
topology, while questions concerning properties confined to bounded regions or points
might use the compact-open or point-open topologies, respectively. If one reminds oneself
that the choice of topology just formalizes a notion of similarity among spacetimes, this
is quite natural: like any other class of sufficiently complicated structures, spacetimes
can be similar in various, sometimes incompatible ways, so one must specify with enough
precision the notion of similarity that might be relevant for a particular research question.
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