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Concept algebras (CAs) are central tools in connecting, combining and
comparing theories. They are useful in investigating relativity theory as a
network of logic theories as in [3]. The elements of the concept algebra of
a given theory are the concepts definable in the theory, and the operations
are the logical connectives that are used to form new concepts. Homomor-
phisms between concept algebras correspond to interpretations between the-
ories, and equations valid in concept algebras correspond to formula-schemes
like, e.g., ϕ → ∃viϕ. Concept algebras of first-order logic were named cylin-
dric algebras by Alfred Tarski, because of the geometrical meaning of the
quantifiers. When we use α many variables v0, . . . , vi, . . . (i ∈ α) the con-
cepts are subsets of an α-dimensional Cartesian space, and CAα denotes the
class of α-dimensional cylindric algebras. Concept algebras synthesize logic,
algebra and geometry.

Problem 4.2 in Henkin-Monk-Tarski [2] asks for the number of varieties
(equationally defined subclasses) of RCAα, where the latter denotes the class
of so-called representable (also called geometrical in the introduction of [1])
concept algebras. It was known that there are at least continuum many for
infinite α, and the problem asks whether there are more in case α > 2ω.

Theorem 1 (solution of [2, Problem 4.2]) There are 2α many subvarieties
of RCAα, for α ≥ ω.

The key step in proving Theorem 1 is to construct an RCAα and an
equation e such that e fails in the algebra, but all the versions of e where we
rename the indices occurring in e (any way) hold in the algebra. Let us call
an A ∈ CAα symmetric if it is not like our counterexample, i.e., if A |= ρ(e)
whenever A |= e and ρ : α → α is a one-one function for renaming the indices
occurring in e. We found that, surprisingly, almost all CAαs are symmetric
(see the theorem below). Clearly, there are only continuum many varieties
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of symmetric CAαs, for any α, because the equations using indices from ω

only determine such an equational theory.
Let’s call an algebra A ∈ CAα endo-dimension complemented, endo-dc for

short, if for any Γ ⊆ α and nonzero a ∈ A there are an endomorphism of the
Γ-reduct of A and a κ ∈ α such that h(a) is still nonzero and each element
of the range of h is κ-closed. Let Lfα,Dcα,Diα,Edcα denote the classes of all
locally finite-dimensional, dimension-complemented, diagonal, and endo-dc
CAαs respectively. It is proved in [1, 2.6.50] that Lfα ⊂ Dcα ⊂ Diα ⊂ Edcα ⊆
RCAα, and it was asked as [1, Problem 2.13] whether the last inclusion is
strict or not. We proved that all endo-dc algebras are symmetric, so almost
all interesting CAαs are symmetric. Also, the algebra we used in the proof of
Theorem 1 is representable but not symmetric, hence solves this problem in
the negative.

Theorem 2 (solution of [1, Problem 2.13])

(i) All endo-dc algebras are symmetric.

(ii) There is a representable CAα which is not endo-dc, but each RCAα can
be embedded into an endo-dc algebra.

Symmetric algebras are not necessarily representable, so there is a big
gap between endo-dc and symmetric algebras in this sense. We found a class
of algebras which sits just at the right place between endo-dc and symmetric
algebras. Let us call an A ∈ CAα lifting if A |= e whenever A |= e(cix) and i

does not occur in e.

Theorem 3

(i) Each endo-dc algebra is lifting and each lifting algebra is symmetric and
representable.

(ii) The inclusions in (i) above are strict: there is a lifting algebra which is
not endo-dc and there is a symmetric RCAα which is not lifting.

Moreover, we found that lifting algebras are in intimate connection with
Lfα’s (and thus with Dcαs, Diαs, Edcαs) in the following sense. Let us call
a set E of equations lifting iff e ∈ E whenever e(cix) ∈ E for some i not
occurring in e. In this case we also say that E is closed under the lifting rule.
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Theorem 4

(i) An algebra is lifting iff it is equationally indistinguishable from some Lfα.

(ii) A semantically closed set E of equations is lifting iff it is the equational
theory of some class of locally finite-dimensional algebras.

As a corollary of the above theorem, we get a new enumeration/description
of the equational theory of RCAα, radically simpler than those that can be
found in [2, pp.112-119]. This may contribute to the solution of [2, Problem
4.1] which asks for a simple equational basis for the equations valid in RCAα.

Theorem 5 The equational theory of RCAα is the smallest set of equations
containing the cylindric axioms (C0)− (C7), closed under the rules of equa-
tional logic, and closed under the lifting rule.

The above theorem also can contribute to giving solutions to [2, Problem
4.16], different from the ones in [5, 6].
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