Square Paths and Cycles

H. A. Kierstead

(Joint work with Phong Châu and Louis DeBiasio)

Arizona State University

June 2011
Thanks

Thank you Professor Hajnal, and Professors Erdős and Szemerédi, for extremal graph theory!
Thank you Professor Hajnal,
Thanks

Thank you Professor Hajnal, and Professors Erdős and Szemerédi,
Thank you Professor Hajnal, and Professors Erdős and Szemerédi, for extremal graph theory!
Thanks

Trotter, Szemerédi, Genghua Fan, Häggkvist, Sárközy, Czygrinow, Katona^2, Kostochka, Rućinski
Theorem (Dirac (1952))

A graph G has a Hamiltonian cycle if

$$\delta(G) \geq \frac{1}{2} |G| > 1.$$

Example 1.

1. K_2
2. $G' = K_t + 1 \lor K_t$:
 $$\delta(G') = t < t + 1 \frac{1}{2} = \frac{1}{2} |G'|$$
3. G'': $G'' = (K_t + K_t) \lor K_1$:
 $$\delta(G'') = t < t + 1 \frac{1}{2} = \frac{1}{2} |G''|$$

1952—Hamiltonian cycles

Theorem (Dirac (1952))

G has a hamiltonian cycle if $\delta(G) \geq \frac{1}{2} |G| > 1$.

Theorem (Dirac (1952)\(^1\))

G has a *hamiltonian cycle* if \(\delta(G) \geq \frac{1}{2}|G| > 1.\)

Example

1. \(K_2\)

1952—Hamiltonian cycles

Theorem (Dirac (1952))

G has a hamiltonian cycle if $\delta(G) \geq \frac{1}{2}|G| > 1$.

Example

1. K_2
2. $G := K_{t+1} \lor K_t$: $\delta(G) = t < t + \frac{1}{2} = \frac{1}{2}|G|$

1952—Hamiltonian cycles

Theorem (Dirac (1952)\(^1\))

G has a hamiltonian cycle if \(\delta(G) \geq \frac{1}{2}|G| > 1\).

Example

1. \(K_2\)
2. \(G := \overline{K_{t+1}} \vee K_{t}:: \delta(G) = t < t + \frac{1}{2} = \frac{1}{2}|G|\)
3. \(G := (K_t + K_t) \vee K_1:: \delta(G) = t < t + \frac{1}{2} = \frac{1}{2}|G|\)

Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2} |G|$. Consider a maximum path.
Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2}|G|$. Consider a maximum path.

The green cycle must be hamiltonian!
Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2} |G|$. Consider a maximum path.
Proof of Dirac’s Theorem

Let \(\delta(G) \geq \frac{1}{2} |G| \). Consider a maximum path.
Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2}|G|$. Consider a maximum path.

The green cycle must be hamiltonian!
Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2}|G|$. Consider a maximum path.
Proof of Dirac’s Theorem

Let $\delta(G) \geq \frac{1}{2} |G|$. Consider a maximum path.

The green cycle must be hamiltonian!
Theorem (Ore [1960]2)

G is hamiltonian if for all distinct $x, y \in V$ with $xy \notin E$

$$d(x) + d(y) \geq |G|.$$
Theorem (Corrádi & Hajnal3)

Let G be a graph on n vertices with $\delta(G) \geq 2k$. Then G contains k disjoint cycles.

Corollary

If G is a graph $n = 3k$ vertices with $\delta(G) \geq 2k = \frac{2}{3}n$ then $V(G)$ can be partitioned into 3-cliques.

Theorem (Hong Wang (2010))

If G is a graph $n = 4k$ vertices with $\delta(G) \geq 2k = \frac{1}{2}n$ then $V(G)$ can be partitioned into 4-cycles.

Definition

A square cycle is a cycle together with every 2-chord.
1964—Pósa’s Conjecture

Conjecture (Pósa (1964)5)

Every graph G with minimum degree $\delta(G) \geq \frac{2}{3}|G|$ has a hamiltonian square cycle.

Conjecture (Pósa (1964)5)

Every graph G with minimum degree $\delta(G) \geq \frac{2}{3}|G|$ has a Hamiltonian square cycle.

Example

$G := K_{2t-1} \lor \overline{K}_t$: $\delta(G) = 2t - 1 < 2t - \frac{2}{3} = \frac{2}{3}(3t - 1) = \frac{2}{3}|G|$ and it has no Hamiltonian square cycle.

1964—Equitable coloring

Definition
An equitable \(r \)-coloring of a graph \(G \) is a proper \(r \)-coloring, for which any two color classes differ in size by at most one.

\[|G| = rs \]
Conjecture (Erdős [1964]6)

Every graph G with $\Delta(G) \leq r$ has an equitable $(r + 1)$-coloring.
Conjecture (Erdős [1964]⁶)

Every graph G with $\Delta(G) \leq r$ has an equitable $(r + 1)$-coloring.

Example

If $|G| = 3(r + 1)$ and $\Delta(G) \leq r$ then $\delta(\overline{G}) \geq 2(r + 1)$. By Corrádi-Hajnal \overline{G} is spanned by $r + 1$ triangles, i.e., G has an equitable $(r + 1)$-coloring.

1970—Erdős’ Conjecture is true

Theorem (Hajnal & Szemerédi [1970]⁷)

Every graph G with $\Delta(G) \leq r$ has an equitable $(r + 1)$-coloring.

Theorem (Hajnal & Szemerédi [1970])

Every graph G with $\Delta(G) \leq r$ has an equitable $(r + 1)$-coloring.

- The proof does not yield a polynomial time algorithm.

Definition

The k-power of a cycle is a cycle together with all i-chords, $2 \leq i \leq k$
1973—Powers of Cycles

Definition
The \(k \)-power of a cycle is a cycle together with all \(i \)-chords, \(2 \leq i \leq k \)

Conjecture (Seymour [1973])
Every graph \(H \) with minimum degree \(\delta(H) \geq \frac{s}{s+1} |H| \) contains the \(s \)-power of a hamiltonian cycle.
Definition
The k-power of a cycle is a cycle together with all i-chords, $2 \leq i \leq k$

Conjecture (Seymour [1973])
Every graph H with minimum degree $\delta(H) \geq \frac{s}{s+1} |H|$ contains the s-power of a hamiltonian cycle.

▶ The case $s = 1$ is Dirac’s Theorem.
1973—Powers of Cycles

Definition
The \(k \)-power of a cycle is a cycle together with all \(i \)-chords, \(2 \leq i \leq k \).

Conjecture (Seymour [1973])

Every graph \(H \) with minimum degree \(\delta(H) \geq \frac{s}{s+1} |H| \) contains the \(s \)-power of a hamiltonian cycle.

- The case \(s = 1 \) is Dirac’s Theorem.
- The case \(s = 2 \) is Pósa’s Conjecture.
Motivation for Seymour’s Conjecture

Let $|G| = (r + 1)(s + 1)$. Then

\[\Delta(G) \leq r \text{ iff } \delta(G) \geq |G| - (r + 1) = \frac{s}{s+1} |G|; \quad \text{and} \]

if C is the s-power of a hamiltonian cycle in G, then all sets of $s + 1$ consecutive vertices of C are cliques in G and independent sets in G. Thus G has an equitable $(r + 1)$-coloring.
Motivation for Seymour’s Conjecture

Let $|G| = (r + 1)(s + 1)$. Then

- $\Delta(G) \leq r$ iff $\delta(\overline{G}) \geq |G| - (r + 1) = \frac{s}{s+1} |\overline{G}|$; and
- if C is the s-power of a Hamiltonian cycle in \overline{G} then all sets of $s + 1$ consecutive vertices of C are cliques in \overline{G} and independent sets in G. Thus G has an equitable $(r + 1)$-coloring.
Motivation for Seymour’s Conjecture

Let $|G| = (r + 1)(s + 1)$. Then

- $\Delta(G) \leq r$ iff $\delta(G) \geq |G| - (r + 1) = \frac{s}{s+1} |\overline{G}|$; and

- if C is the s-power of a hamiltonian cycle in \overline{G} then all sets of $s + 1$ consecutive vertices of C are cliques in \overline{G} and independent sets in G. Thus G has an equitable $(r + 1)$-coloring.
Motivation for Seymour’s Conjecture

Let $|G| = (r + 1)(s + 1)$. Then

- $\Delta(G) \leq r$ iff $\delta(G) \geq |G| - (r + 1) = \frac{s}{s+1} |\overline{G}|$; and

- if C is the s-power of a hamiltonian cycle in \overline{G} then all sets of $s + 1$ consecutive vertices of C are cliques in \overline{G} and independent sets in G. Thus G has an equitable $(r + 1)$-coloring.

\[\overline{G}\]
Theorem (Fan & Kierstead(1995)8)
\[\forall \varepsilon > 0 \ \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon\right)|G| + m \text{ then all } wx, yz \in E \text{ have a }\textit{hamiltonian} \text{ square } wx, yz\text{-path } wx \ldots yz.\]

Theorem (Fan & Kierstead(1995)8)
\[\forall \varepsilon > 0 \ \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon \right) |G| + m \text{ then all } wx, yz \in E \text{ have a } \textbf{hamiltonian} \text{ square } wx, yz\text{-path } wx \ldots yz. \]

Definition
A square \(wx, yz \)-path is \textbf{optimal} if among maximum such paths, it has as many 3-chords, and then as many 4-chords as possible.

Theorem (Fan & Kierstead(1995)8)
\[\forall \varepsilon > 0 \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon \right)|G| + m \text{ then all } wx, yz \in E \text{ have a } \text{hamiltonian} \text{ square } wx, yz\text{-path } wx \ldots yz. \]

Definition
A square \(wx, yz\)-path is \textit{optimal} if among maximum such paths, it has as many 3-chords, and then as many 4-chords as possible.

Lemma (Optimal Path)
\textit{Let } \(C\) \textit{ be an optimal } \(wx, yz\)-\textit{path and } \(H := G - C\). Then
\[\|y, C\| \leq \frac{2}{3}|C| + 1 \text{ for all } y \in H. \]

Lemma (Connecting)

\[\delta(G) > \frac{2}{3} |G| \implies \text{all } wx, yz \in E \text{ have a square } wx, yz\text{-path.} \]
Reservoirs

Let \(G \) be a graph and \(0 < \rho < 1 \).
Reservoirs

- Let G be a graph and $0 < \rho < 1$.
- We would like to find a subgraph $R \subset G$ with $|R| = \rho |G|$ that “looks like” G.

![Diagram of a graph G with a subgraph R]
Reservoirs

- Let G be a graph and $0 < \rho < 1$.
- We would like to find a subgraph $R \subset G$ with $|R| = \rho|G|$ that “looks like” G.
- “Ideally” $|S \cap R| = \rho|S|$ for every $S \subset V(G)$.
Reservoirs

- Let G be a graph and $0 < \rho < 1$.
- We would like to find a subgraph $R \subset G$ with $|R| = \rho|G|$ that “looks like” G.
- “Ideally” $|S \cap R| = \rho|S|$ for every $S \subset V(G)$.
- We can not achieve this for all S, but using Chernoff’s bound we can achieve $||S \cap R| - \rho|S|| < \gamma|G|$ for $|G|^c$ subsets S.

![Diagram of a graph G with a subgraph R and a subset S]
Let G be a graph and $0 < \rho < 1$.

We would like to find a subgraph $R \subset G$ with $|R| = \rho |G|$ that “looks like” G.

“Ideally” $|S \cap R| = \rho |S|$ for every $S \subset V(G)$.

We cannot achieve this for all S, but using Chernoff’s bound we can achieve $\| |S \cap R| - \rho |S| \| < \gamma |G|$ for $|G|^c$ subsets S.

Which S do we need?
Reservoir Lemma

Lemma (Reservoir)

If $|G|$ is sufficiently large then $\forall \gamma, \rho > 0 \exists R \subseteq G \ \forall x \in V \ s.t.

|R| = \rho |G| \ and \ |N(x) \cap R| - \rho d(x)| < \gamma |G|

.$
Theorem (G. Fan & Kierstead(1995))

\[\forall \varepsilon > 0 \ \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon \right) |G| + m \text{ then all } wx, yz \in E \text{ have a Hamiltonian } wx, yz\text{-square path } wx \ldots yz. \]

Proof.
Induction on $|G|$.

\[\square \]

Sketch of Proof

Theorem (G. Fan & Kierstead(1995)9)
\[\forall \varepsilon > 0 \ \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon\right) |G| + m \text{ then all } wx, yz \in E \text{ have a hamiltonian } wx, yz\text{-square path } wx \ldots yz.\]

Proof.
Induction on $|G|$.

Sketch of Proof

Theorem (G. Fan & Kierstead(1995))

∀ε > 0 ∃m s.t. if δ(G) ≥ (2/3 + ε)|G| + m then all wx, yz ∈ E have a hamiltonian wx, yz-square path wx…yz.

Proof.
Induction on |G|.

Sketch of Proof

Theorem (G. Fan & Kierstead(1995)9)

$\forall \varepsilon > 0 \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon\right)|G| + m \text{ then all } wx, yz \in E \text{ have a \textit{hamiltonian} } wx, yz\text{-square path } wx \ldots yz.$

Proof.
Induction on $|G|$.

Sketch of Proof

Theorem (G. Fan & Kierstead (1995)9)
\[\forall \varepsilon > 0 \exists m \text{ s.t. if } \delta(G) \geq \left(\frac{2}{3} + \varepsilon \right)|G| + m \text{ then all } wx, yz \in E \text{ have a } \text{hamiltonian } wx, yz\text{-square path } wx \ldots yz. \]

Proof.
Induction on $|G|$.

1995–1998—Pósa’s and Seymour’s Conjectures

Theorem (G. Fan & Kierstead (1996)10)

Every graph G with $\delta(G) \geq \frac{2|G|−1}{3}$ has a hamiltonian square path.

12Partitioning a graph into two square-cycles. J. Graph Theory 23 (1996), no. 3, 241–256.
1995–1998—Pósa’s and Seymour’s Conjectures

Theorem (G. Fan & Kierstead (1996)10)

Every graph G with $\delta(G) \geq \frac{2|G|-1}{3}$ has a hamiltonian square path.

Corollary (Aigner-Brandt Theorem11)

If $\delta(G) \geq \frac{2|G|-1}{3}$ then $H \subseteq |G|$ for all H with $|H| \leq |G|$ and $\Delta(H) \leq 2$.

12Partitioning a graph into two square-cycles. J. Graph Theory 23 (1996), no. 3, 241–256.
1995–1998—Pósa’s and Seymour’s Conjectures

Theorem (G. Fan & Kierstead (1996)10)

Every graph G with $\delta(G) \geq \frac{2|G|-1}{3}$ has a hamiltonian square path.

Corollary (Aigner-Brandt Theorem11)

If $\delta(G) \geq \frac{2|G|-1}{3}$ then $H \subseteq |G|$ for all H with $|H| \leq |G|$ and $\Delta(H) \leq 2$.

Theorem (G. Fan & Kierstead (1996)12)

Let G be a graph with $\delta(G) \geq \frac{2}{3}|G|$. If graph G has a square cycle of length greater than $\frac{2}{3}|G|$ then G has a hamiltonian square cycle; otherwise $V(G)$ can be partitioned into two square cycles.

12Partitioning a graph into two square-cycles. J. Graph Theory 23 (1996), no. 3, 241–256.
Theorem (Komlós & Sárközy & Szemerédi (1996)13)

There exists $n \in \mathbb{N}$ such that every graph G with $|G| \geq n$ and $
abla(G) \geq \frac{2}{3} |G|$ contains a hamiltonian square cycle.

1995–1998—Results on Pósa and Seymour’s Conjectures

Theorem (Komlós & Sárközy & Szemerédi (1996)13)

There exists \(n \in \mathbb{N} \) such that every graph \(G \) with \(|G| \geq n \) and \(\delta(G) \geq \frac{2}{3} |G| \) contains a hamiltonian square cycle.

Key idea: Let \(\alpha > 0 \). Consider whether or not:

\[\exists A, B \subset V, \left(\frac{1}{3} - \alpha \right) \leq |A|, |B| \leq \frac{1}{3} |G| \land \|A, B\| \leq \alpha |A||B|. \]

- If yes (extreme case) then prove directly.
- Else (nonextreme case) use the Regularity-Blow-Up method.

1995–1998—Pósa’s and Seymour’s Conjectures

Theorem (Komlós & Sárközy & Szemerédi (1998)14)

For every $s \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that every graph G with $|G| \geq n$ and $\delta(G) \geq \frac{s}{s+1} |G|$ contains the s-power of a hamiltonian cycle.

1995–1998—Pósa’s and Seymour’s Conjectures

Theorem (Komlós & Sárközy & Szemerédi (1998)14)

For every \(s \in \mathbb{N} \) there exists \(n \in \mathbb{N} \) such that every graph \(G \) with \(|G| \geq n \) and \(\delta(G) \geq \frac{s}{s+1} |G| \) contains the \(s \)-power of a Hamiltonian cycle.

- The KSS proof uses the Hajnal-Szemerédi Theorem, Szemerédi’s Regularity Lemma and their Blow-Up Lemma.
- It does not yield an simple proof of the Hajnal-Szemerédi Theorem.

Theorem (Kierstead & Kostochka & Mydlarz & Szemerédi (2010)).

Every graph on n vertices with maximum degree at most r can be equitably $(r+1)$-colored in $O(n^2)$ steps.

\[\text{A fast algorithm for equitable coloring, Combinatorica, 30 (2010) 217–224} \]
Theorem (Kierstead & Kostochka & Mydlarz & Szemerédi (2010).15)

Every graph on n vertices with maximum degree at most r can be equitably $(r + 1)$-colored in $O(rn^2)$ steps.

15A fast algorithm for equitable coloring, *Combinatorica*, 30 (2010) 217–224
An Ore-type version of equitable coloring

Theorem (Kierstead & Kostochka (2008))

Every graph satisfying \(d(x) + d(y) \leq 2r + 1 \) for every edge \(xy \), has an equitable \((r+1)\)-coloring.

The proof does not provide a polynomial time algorithm.

Problem

Find a polynomial time algorithm for the coloring established by the theorem above.

An Ore-type version of equitable coloring

Theorem (Kierstead & Kostochka (2008)16)

Every graph satisfying $d(x) + d(y) \leq 2r + 1$ for every edge xy, has an equitable $(r + 1)$-coloring.

An Ore-type version of equitable coloring

Theorem (Kierstead & Kostochka (2008)16)

Every graph satisfying $d(x) + d(y) \leq 2r + 1$ for every edge xy, has an equitable $(r + 1)$-coloring.

The proof does not provide a polynomial time algorithm.

An Ore-type version of equitable coloring

Theorem (Kierstead & Kostochka (2008)16)

Every graph satisfying $d(x) + d(y) \leq 2r + 1$ for every edge xy, has an equitable $(r + 1)$-coloring.

The proof does not provide a polynomial time algorithm.

Problem

Find a polynomial time algorithm for the coloring established by the theorem above.

Conjecture (Kierstead)

If \(d(x) + d(y) \geq \frac{4}{3} |G| \) for all \(xy \notin E \) then \(G \) has a hamiltonian square cycle.
An Ore-type Pósa Example (Châu)

$|G| = 30$

$d(x) + d(y) \geq 40, \forall xy \notin E$

K_{17}
An Ore-type Pósa theorem

Let graph G satisfy
$$d(x) + d(y) \geq \frac{4}{3}|G| - \frac{1}{3}$$
for all $xy \not\in E$.

If
$$\frac{1}{3}|G| + \frac{5}{3} \leq \delta(G) \leq \frac{1}{3}|G| + \frac{2}{3},$$
then G has a hamiltonian square path.

If
$$\delta(G) > \frac{1}{3}n + \frac{2}{3},$$
and n is sufficiently large, then G contains a hamiltonian square cycle.

\^17Ph.D. thesis, Arizona State University
An Ore-type Pósa theorem

Theorem (Chau (2009)17)

Let graph G satisfy $d(x) + d(y) \geq \frac{4}{3}|G| - \frac{1}{3}$ for all $xy \notin E$.

- If $\frac{1}{3}|G| + \frac{5}{3} \leq \delta(G) \leq \frac{1}{3}|G| + 2$ then G has a hamiltonian square path.

- If $\delta(G) > \frac{1}{3}n + 2$, and n is sufficiently large, then G contains a hamiltonian square cycle.

17Ph.D. thesis, Arizona State University
The Ore-type Aigner-Brandt theorem

Theorem (Kostochka & G. Yu18)

If graph G satisfies $d(x) + d(y) \geq \frac{4}{3}|G| - 1$ for all $xy \notin E(G)$ then $H \subseteq G$ for all graphs H with $|H| \leq |G|$ and $\Delta(H) \leq 2$.

18Ore-type conditions implying 2-factors consisting of short cycles. Discrete Math., in press
Hypergraphs and chains

Definition
Let $H = (V, E)$ be an s-uniform hypergraph (s-graph).

- The co-degree: For an $(s - 1)$-set $\bar{x} \subseteq V$:

 $$d_{s-1}(\bar{x}) = |\{ e \in E : \bar{x} \subset e \}|; \quad \delta_{s-1}(H) = \min_{\bar{x} \subseteq V} d_{s-1}(\bar{x})$$

- A closed chain is a sequence

 $$x_1 x_2 \ldots x_{r+1} \ldots x_{r+s} \ldots x_t x_1 \ldots x_{s-1}$$

 such that $\{x_{r+1} \ldots x_{r+s}\} \in E$ for all $r \leq t - 1$.

19 J Graph Theory 30: 205–212, 1999
Hypergraphs and chains

Definition
Let $H = (V, E)$ be an s-uniform hypergraph (s-graph).
- **The co-degree:** For an $(s - 1)$-set $\overline{x} \subseteq V$:
 $$d_{s-1}(\overline{x}) = |\{ e \in E : \overline{x} \subseteq e \}|; \quad \delta_{s-1}(H) = \min_{\overline{x} \subseteq V} d_{s-1}(\overline{x}).$$
- **A closed chain** is a sequence

 $$x_1 x_2 \ldots x_{r+1} \ldots x_{r+s} \ldots x_t x_1 \ldots x_{s-1}$$

 such that $\{x_{r+1} \ldots x_{r+s}\} \in E$ for all $r \leq t - 1$.

Proposition (Gy. Y. Katona and Kierstead (1999)19)

If $\delta_{s-1}(H) \geq b \coloneqq (1 - \frac{1}{2s})|H|$ then H has a **closed hamiltonian chain**. There are counter-examples if $b \coloneqq \left\lfloor \frac{|H| - s + 1}{2} \right\rfloor$.

19J Graph Theory 30: 205–212, 1999
Dirac-type chain theorem

Theorem (Rödl, Ruciński, and Szemerédi (2008) 20)

For all positive integers s, s-graphs H and $\gamma > 0$, if
\[
\delta_{s-1}(H) \geq (1/2 + \gamma)|H|\quad \text{and}\quad |H| \text{ is sufficiently large then } H \text{ has a hamiltonian closed chain.}
\]

20An approximate Dirac-type theorem for k-uniform hypergraphs,

21Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, manuscript
Dirac-type chain theorem

Theorem (Rödl, Ruciński, and Szemerédi (2008)20)

For all positive integers s, s-graphs H and $\gamma > 0$, if $\delta_{s-1}(H) \geq (1/2 + \gamma)|H|$ and $|H|$ is sufficiently large then H has a hamiltonian closed chain.

Theorem (Rödl, Ruciński, and Szemerédi (2010)21)

Let H be a 3-graph with $\delta_2(H) \geq \lfloor |H|/2 \rfloor$ and $|H|$ sufficiently large. Then H has a hamiltonian closed chain. This is tight.

20An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28 (2) (2008) 229-260.

21Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, manuscript
Dirac-type chain theorem

Theorem (Rödl, Ruciński, and Szemerédi (2008)20)

For all positive integers s, s-graphs H and $\gamma > 0$, if $\delta_{s-1}(H) \geq (1/2 + \gamma)|H|$ and $|H|$ is sufficiently large then H has a hamiltonian closed chain.

Theorem (Rödl, Ruciński, and Szemerédi (2010)21)

Let H be a 3-graph with $\delta_2(H) \geq \left\lfloor |H|/2 \right\rfloor$ and $|H|$ sufficiently large. Then H has a hamiltonian closed chain. This is tight.

Idea: Consider an extremal and nonextremal case. For the latter, construct a short ε-absorbing chain, extend to a $(1 - \varepsilon)|H|$-closed chain, absorb remaining vertices.

20An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica 28 (2) (2008) 229-260.

21Dirac-type conditions for hamiltonian paths and cycles in 3-uniform hypergraphs, manuscript
Theorem (Levitt, Sárközy and Szemerédi (2010)22)

Pósa’s Conjecture is true for graphs with at least 10^C vertices.

22How to avoid using the Regularity Lemma: Pósa’s conjecture revisited, Discrete Mathematics 310 (2010) 630–641.

23Pósa’s Conjecture for graphs of order at least 2×10^8, Random Structures and Algorithms, to appear.
Theorem (Levitt, Sárközy and Szemerédi (2010))

Pósa’s Conjecture is true for graphs with at least 10^C vertices.

The proof does not depend on the Regularity and Blow-Up Lemmas, and uses Reservoirs.

23Pósa’s Conjecture for graphs of order at least 2×10^8, Random Structures and Algorithms, to appear.
2010—Toward a proof of Pósa’s Conjecture

Theorem (Levitt, Sárközy and Szemerédi (2010)22)

Pósa’s Conjecture is true for graphs with at least 10^C vertices.

The proof does not depend on the Regularity and Blow-Up Lemmas, and uses Reservoirs.

Theorem (Châu, DeBiasio and Kierstead23)

Pósa’s Conjecture is true for graphs with at most 2×10^8 vertices.

22 How to avoid using the Regularity Lemma: Pósa’s conjecture revisited, Discrete Mathematics 310 (2010) 630–641.

23 Pósa’s Conjecture for graphs of order at least 2×10^8, Random Structures and Algorithms, to appear.
Definition
$S \subseteq V$ is α-extreme if $\forall v \in S$, $|S| \geq (1 - \alpha) \frac{n}{3}$ and $\|v, S\| < \alpha \frac{n}{3}$.

Lemma (Extreme Case)
If G has an $\frac{1}{36}$-extreme set then G has a hamiltonian square cycle.
Nonextreme Case

Lemma (Long Path Lemma)

If $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)|H|$ then H has disjoint square paths P_1 and P_2 s.t. $|P_1| + |P_2| > \left(\frac{5}{6} - 2\varepsilon\right)|H|$.
Nonextreme Case

Lemma (Long Path Lemma)
If $\delta(H) \geq (\frac{2}{3} - \varepsilon) |H|$ then H has disjoint square paths P_1 and P_2 s.t. $|P_1| + |P_2| > (\frac{5}{6} - 2\varepsilon)|H|$.

Definition (Special Sets)
If $S = (N(u, v, w) \cup N(u, v, x)) \cap N(y)$ then S is special.
Nonextreme Case

Lemma (Long Path Lemma)
If $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)|H|$ then H has disjoint square paths P_1 and P_2 s.t. $|P_1| + |P_2| > \left(\frac{5}{6} - 2\varepsilon\right)|H|$.

Definition (Special Sets)
If $S = (N(u, v, w) \cup N(u, v, x)) \cap N(y)$ then S is special.

Lemma (Connecting Lemma)
[Connecting Lemma] Let $0 < \beta < \alpha \leq \frac{1}{64}$, $0 \leq \varepsilon \leq (\alpha - \beta)/16$, $l := 10$ and suppose $n \geq \max\left\{\frac{9l + 96}{\varepsilon}, \frac{3l + 39}{\beta}\right\}$. Suppose H has no $\frac{1}{36}$-extreme special set and $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)n$. $\forall ab, cd \in E$ there exists a square ab, cd-path P with $|P| \leq 14$.

Lemma (Reservoir Lemma)
Let $|H| \geq n^0 := 2 \times 10^8$ and $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)|H|$. If H contains no $\frac{1}{36}$-extreme set, then H has a reservoir of size $\rho|H|$ that has no $\frac{1}{36}$-extreme special sets.
Nonextreme Case

Lemma (Long Path Lemma)
If $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)|H|$ then H has disjoint square paths P_1 and P_2 s.t. $|P_1| + |P_2| > \left(\frac{5}{6} - 2\varepsilon\right)|H|$.

Definition (Special Sets)
If $S = (N(u, v, w) \cup N(u, v, x)) \cap N(y)$ then S is special.

Lemma (Connecting Lemma)
[Connecting Lemma] Let $0 < \beta < \alpha \leq \frac{1}{64}$, $0 \leq \varepsilon \leq (\alpha - \beta)/16$, $l := 10$ and suppose $n \geq \max\{\frac{9l + 96}{\varepsilon}, \frac{3l + 39}{\beta}\}$. Suppose H has no $\frac{1}{36}$-extreme special set and $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)n$. $\forall ab, cd \in E$ there exists a square ab, cd-path P with $|P| \leq 14$.

Lemma (Reservoir Lemma)
Let $|H| \geq n_0 := 2 \times 10^8$ and $\delta(H) \geq \left(\frac{2}{3} - \varepsilon\right)|H|$. If H contains no $\frac{1}{36}$-extreme sets, then H has a reservoir of size $\rho|H|$ that has no $\frac{1}{36}$-extreme special sets.
Completing the proof

1. Construct a special reservoir R.

\[G \]
Completing the proof

1. Construct a special reservoir R.
2. Construct two long paths in $H = G - R$.
Completing the proof

1. Construct a special reservoir R.
2. Construct two long paths in $H = G - R$.
3. Connect the paths through R.

![Diagram showing the proof](image-url)
Completing the proof

1. Construct a special reservoir R.
2. Construct two long paths in $H = G - R$.
3. Connect the paths through R.
4. This gives a cycle of length greater than $\frac{2}{3}|G|$.

Diagram:

![Diagram showing a cycle connected through a reservoir](image)
Completing the proof

1. Construct a special reservoir R.
2. Construct two long paths in $H = G - R$.
3. Connect the paths through R.
4. This gives a cycle of length greater than $\frac{2}{3}|G|$.
5. Finish by Long Cycle Theorem.