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Random regular graphs

Fix d ≥ 3.

G = G (n, d): a uniformly chosen, simple d-regular graph on n labeled vertices
(this is not the only possible model).

Spectral properties:

A: the adjacency matrix of G (an n × n zero-one matrix)

eigenvalues: d = λ1 ≥ λ2 ≥ . . . ≥ λn

eigenvectors: v1, . . . , vn

Alon�Boppana bound (1991): λ2 ≥ 2
√
d − 1− ε with high probability

Friedman (2008), Bordenave (2015): λ2 ≤ 2
√
d − 1 + ε with high probability

How do the eigenvectors look like? ⇒ geometric or clustering properties.
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Distribution of the eigenvectors

A vector v ∈ Rn is an eigenvector with eigenvalue λ if

Av = λv ,

that is, ∑
(x,y)∈E

v(y) = λv(x) holds for all x ∈ V .

We will always assume that ‖v‖2 = 1.

Distribution of an eigenvector v :

let D(v) be the distribution of a uniformly randomly chosen entry of v .

Does this probability distribution �converge� weakly as n→∞?
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Example: second eigenvector

The following is the second eigenvector with λ = 1.88 (n = 10, d = 3):

0.36
−0.44

0

0.24

0.24

0.08
0.08

0.36

−0.44

−0.47



Example: histogram of the second eigenvector
Second eigenvector:

−0.47 − 0.44 − 0.44 0.00 0.08 0.08 0.24 0.24 0.36 0.36

The mean is 0, the standard deviation is 0.33.



Example: ninth eigenvector

The following is the ninth eigenvector with λ = −2 (n = 10, d = 3):

0.11
0.11

0.63

−0.42

−0.42

0.11
0.11

0.11

0.11

−0.42



Example: histogram of the ninth eigenvector
Second eigenvector:

−0.42 − 0.42 − 0.42 0.11 0.11 0.11 0.11 0.11 0.11 0.63

The mean is 0, the standard deviation is 0.33.



Eigenvectors of random matrices

The distribution of a �xed coordinate of a �xed eigenvector (of length 1) multiplied
by
√
n tends to the Gaussian distribution for the following random matrices:

Gaussian orthonormal ensemble (GOE): a symmetric matrix with iid Gaussian
entries

Wigner matrix: symmetric matrix with iid entries

Tao�Vu (2012), Knowles�Yin (2013): Wigner matrix such that the �rst four
moments of the entries are the same as the �rst four moments of the Gaussian
distribution

Bourgade�Yau (2016): the moment condition can be omitted (�nite variance
is needed)

Bourgade�Huang�Yau (2016+): Erd®s�Rényi random graph with the average
degree tending to in�nity
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Eigenvectors of random regular graphs

Fix a metrization of the weak topology (e.g. the Lévy�Prokhorov distance).

D(v): the distribution of a uniformly chosen entry of a vector v .

Theorem (B�Szegedy, 2016+)

For all ε > 0 there exists N such that for every n ≥ N the following holds for a
random d-regular graph G (n, d) with probability at least 1− ε.

For every non-constant eigenvector v of G (with ‖v‖2 = 1) there exists 0 ≤ σ ≤ 1
such that D(

√
n · v) is at most ε-far from the Gaussian distribution N(0, σ).

the variance σ may be di�erent for di�erent eigenvectors

σ = 0: localized eigenvectors if there exists any (this is open); the size of the
support is o(n), but the nonzero values are very large

delocalization in other forms: Bauerschmidt�Huang�Yau (2016+),
Anantharaman�Le Masson (2015), Brooks�Lindenstrauss (2013).
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Approximate eigenvectors of random regular graphs

A vector v with ‖v‖2 = 1 is a δ-approximate eigenvector of A if for some λ ∈ R
we have

‖Av − λv‖2 ≤ δ.

Theorem (B�Szegedy, 2016+)

For all ε > 0 there exists N and δ > 0 such that for every n ≥ N the following
holds for a random d-regular graph G (n, d) with probability at least 1− ε.

For every δ-approximate eigenvector v of G (with ‖v‖2 = 1 and entry sum 0)
there exists 0 ≤ σ ≤ 1 such that D(

√
n · v) is at most ε-far from the Gaussian

distribution N(0, σ).

σ = 0 is possible (by using eigenvectors of the in�nite d-regular tree)

another strengthening: the joint distribution at several vertices is also close
to a Gaussian distribution.
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Random regular graphs
Fix d ≥ 3.

G = G (n, d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: G (n, d) does not contain many small cycles with high probability
� it looks like a tree.

G (n, d) tends to the in�nite d-regular tree Td in the Benjamini�Schramm (local)
sense:

given n and r , the probability that the r -neighborhood of a uniformly chosen random
vertex is a tree, tends to 1 as n→∞.



Con�guration model

Bollobás (1984): assign d half-edges to each vertex, and choose a random perfect
matching of the half-edges by connecting a uniform random pair at each step

The probability of getting loops, multiple edges, cycles of length 3, 4, 5, . . . is small.
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Benjamini�Schramm convergence

(Hn): a sequence of �nite graphs with all degrees at most ∆

F(∆, r): the set of connected rooted graphs with diameter at most 2r

De�nition (Benjamini�Schramm (local) convergence, 2001)

We say that (Hn) is convergent if for every r and F ∈ F(∆, r) the probability that
the rooted r -neighborhood of a uniformly chosen vertex v of Hn is isomorphic to
F is convergent as n tends to in�nity.

Here the isomorphism has to be root-preserving.

Examples (but: the limit is not necessarily a graph)

a sequence of cycles or paths of length n tends to the in�nite path;

n × n grids tend to Z2;

the sequence of random regular graphs G (n, d) tend to the in�nite d-regular
tree.
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Limits of colored regular graphs

S : �nite set of colors

(Hn): a sequence of �nite d-regular graphs with colored vertices (with the
number of vertices tending to in�nity but all degrees bounded by ∆)

F(∆, r ,S): the set of connected rooted vertex-colored graphs with diameter at
most 2r

Td : in�nite d-regular tree with root o

Invariant random process on Td : to each vertex v ∈ V (Td), we assign a random
variable Xv with values in S such that the joint distribution (Xv ) is invariant under
all automorphisms of the tree.

We say that (Hn) converges locally to (Xv )v∈Td
if for every r and F ∈ F(∆, r ,S)

the following holds. The probability that the colored rooted r -neighborhood of a
uniformly chosen vertex v of Hn is isomorphic to F converges to the probability
that the colored r -neighborhood of the root o of Td is isomorphic to F .
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Limits of colored regular graphs

r = 2, F as below with the black vertex as the root:

o

The probability that the 2-neighborhood of a randomly chosen vertex is isomorphic
to F should be convergent.



Limits of colored regular graphs

2-neighborhood of the root in an invariant random process:

Xo X1

X11

X12

X2

X3

Xo ,X1,X2, . . . are random colors from S .



Typical processes

Td : in�nite d-regular tree, S : �nite set

De�nition (Typical process)

We say that an S-valued invariant random process (Xv )v∈V (Td ) is typical if there
exists a subsequence of the positive integers (nk) with the following property.

If, for each k independently, Gk is a random d-regular graph on nk vertices, then,
with probability 1, there exists a sequence of colorings fk : V (Gk) → S such that
(Gk , fk) converges to (Xv )v∈V (Td ) locally as k →∞.

An R-valued invariant random process is typical if it can be approximated by �nite-
valued typical processes in distribution.

Open question: do we need subsequence in this de�nition?

Example for not typical process: alternating black and white with the color of the
root chosen uniformly at random (Bollobás, 1984: a random d-regular graph is far
from being bipartite with high probability, its independence ratio is smaller than
1/2).
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Entropy inequalities

Let U ⊂ V (Td) be a �nite connected subgraph of the in�nite tree. Then the
entropy of the joint distribution X = (Xv )v∈U will be denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Xo X1

X11

X12

X2

X3

X31

X32

X22

X21

Example: h(B2(o)) = h(Xo ,X1,X2,X11,X12, . . . ,X32), where B2(o) is the 2-
neighborhood of the root.



Entropy inequalities
Let U ⊂ V (Td) be a �nite connected subgraph of the in�nite tree. Then the
entropy of the joint distribution X = (Xv )v∈U in an invariant process will be
denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Proposition

For every typical process the following hold:
(i)

d

2
h( qq) ≥ (d − 1)h( q).

(ii)

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f -invariant is nonnegative; see
also Rahman�Virág (2014).



Entropy inequalities
Let U ⊂ V (Td) be a �nite connected subgraph of the in�nite tree. Then the
entropy of the joint distribution X = (Xv )v∈U in an invariant process will be
denoted by h(U):

h(U) = −
∑
F

P(X = F ) · logP(X = F ).

Proposition

For every typical process the following hold:
(i)

d

2
h( qq) ≥ (d − 1)h( q).

(ii)

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f -invariant is nonnegative; see
also Rahman�Virág (2014).



Entropy inequalities

Proposition

For every typical process the following holds:

h(B1( q)) ≥ d

2
h( qq),

where B1( q) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

Idea of the proof (similar to Bollobás's argument for the independence ratio):

take the con�guration model of the random regular graph;

count the number of colorings that are close to the distribution of Xv on B1(·);

this is more than the total number of graphs.



Eigenvector processes

De�nition

The family of random variables (Xv )v∈Td
is an eigenvector process with eigenvalue

λ if its distribution is invariant under Aut(Td), and with probability 1,

λXv =
∑
w∼v

Xw

holds for every v ∈ V (Td).

Harangi�Virág (2015): this exists for every λ ∈ [−d , d ].

Theorem (B � Szegedy, 2016+)

If (Xv )v∈V (Td ) is a typical eigenvector process with eigenvalue λ, it is nontrivial:
E(Xo) = 0 and it has �nite second moments (Var(Xo) <∞), then it is a Gaussian

process.

Gaussian process: for every �nite subset of V (Td), the joint distribution of the
corresponding random variables is a multivariate Gaussian distribution.
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Idea of the proof

Starting point: for a �nite-valued typical process, we have

h(B1( q))− d

2
h( qq) ≥ 0

Step 1: �nd entropy inequalities for larger balls (Br (F ) denotes the set of vertices
whose distance from a subset F is at most r), in particular, we have

h(Br+1( q))− d

2
h(Br ( qq)) ≥ 0 (r ≥ 1)

for each vertex, write the state of all vertices in the r -neighborhood with some
small extra randomization

apply the r = 1 inequality to this new process, which is also typical



Idea of the proof
For a �nite-valued typical process, we have

h(Br+1( q))− d

2
h(Br ( qq)) ≥ 0 (r ≥ 1)

Step 2: switch to smooth real-valued processes and di�erential entropy:

D(X ) = −
∫

f log f ,

where f is the density function of X

we add an independent Gaussian eigenvector process to the original one of
small variance � we get a typical eigenvector process with absolutely continu-
ous marginals

by a random discretization (using the grid [−a,−a + 1/a,−a + 2/a, . . . , a]
for some large a), we obtain a �nite-valued typical process that satis�es the
entropy inequality

by letting a→∞, we can prove that the inequality above holds for di�erential
entropy



Idea of the proof
For a smooth typical process, we have

D(Br+1( q))− d

2
D(Br ( qq)) ≥ 0 (r ≥ 1)

Step 3: show that for a Gaussian typical eigenvector process, we have

lim
r→∞

Dsp(Br+1( q))− d

2
Dsp(Br ( qq)) = 0,

where Dsp denotes the di�erential entropy calculated in the subspace on which the
joint distribution is supported on.

Step 4: show that for a smooth typical eigenvector process

Dsp(B1( q))− d

2
Dsp( qq)

maximizes this di�erence among all smooth distributions having �nite variance and
the appropriate covariance structure

Step 5: use heat equations to show that only the Gaussian distribution maximizes
this di�erence (convolution by Gaussian noise increases entropy, but the original
was itself maximal). It follows that the proces is Gaussian, and that a random lift
of an eigenvector is close to some Gaussian eigenvector process.
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