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Random regular graphs

Fix d > 3.

G = G(n,d): a uniformly chosen, simple d-regular graph on n labeled vertices
(this is not the only possible model).

Spectral properties:

A: the adjacency matrix of G (an n X n zero-one matrix)

eigenvalues: d =X\ > X2 > ... > )\,

eigenvectors: vi,...,V,

Alon-Boppana bound (1991): A\ > 2v/d — 1 — ¢ with high probability
Friedman (2008), Bordenave (2015): \; < 2v/d — 1+ ¢ with high probability

How do the eigenvectors look like? =- geometric or clustering properties.
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Distribution of the eigenvectors

A vector v € R" is an eigenvector with eigenvalue X if
Av = v,

that is,
Z v(y) = Av(x) holds for all x € V.

We will always assume that ||v|[> = 1.
Distribution of an eigenvector v:
let D(v) be the distribution of a uniformly randomly chosen entry of v.

Does this probability distribution "converge” weakly as n — oo?



Example: second eigenvector

The following is the second eigenvector with A = 1.88 (n = 10, d = 3):

—0.44
0.36 0

—0.47 0.24

—0.44 0.24

0.36 0.08
0.08



Example: histogram of the second eigenvector
Second eigenvector:

—0.47 —0.44 —0.44 0.00 0.08 0.08 0.24 0.24 0.36 0.36

The mean is 0, the standard deviation is 0.33.

Histogram of the second eigenvector
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Example: ninth eigenvector

The following is the ninth eigenvector with A = =2 (n =10,d = 3):

0.11
0.11 0.63

—0.42 —0.42

0.11 —0.42

0.11 0.11
0.11



Example: histogram of the ninth eigenvector
Second eigenvector:

—-042 —-042 —-042 0.11 0.11 0.11 0.11 0.11 0.11 0.63

The mean is 0, the standard deviation is 0.33.

Histogram of the ninth eigenvector
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Eigenvectors of random matrices
The distribution of a fixed coordinate of a fixed eigenvector (of length 1) multiplied
by v/n tends to the Gaussian distribution for the following random matrices:

@ Gaussian orthonormal ensemble (GOE): a symmetric matrix with iid Gaussian
entries
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Eigenvectors of random matrices

The distribution of a fixed coordinate of a fixed eigenvector (of length 1) multiplied
by v/n tends to the Gaussian distribution for the following random matrices:

@ Gaussian orthonormal ensemble (GOE): a symmetric matrix with iid Gaussian
entries

@ Wigner matrix: symmetric matrix with iid entries

Tao—Vu (2012), Knowles-Yin (2013): Wigner matrix such that the first four
moments of the entries are the same as the first four moments of the Gaussian
distribution

@ Bourgade-Yau (2016): the moment condition can be omitted (finite variance
is needed)

@ Bourgade-Huang—Yau (2016+): Erdés—Rényi random graph with the average
degree tending to infinity
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Approximate eigenvectors of random regular graphs

A vector v with ||v||; =1 is a é-approximate eigenvector of A if for some A € R
we have

[[Av — Av||2 < 6.

Theorem (B-Szegedy, 2016+)

For all € > 0O there exists N and § > 0 such that for every n > N the following
holds for a random d-regular graph G(n, d) with probability at least 1 — .

For every d-approximate eigenvector v of G (with ||v|2 = 1 and entry sum 0)
there exists 0 < o < 1 such that D(\/n - v) is at most e-far from the Gaussian
distribution N(0, o).

@ o =0 is possible (by using eigenvectors of the infinite d-regular tree)

@ another strengthening: the joint distribution at several vertices is also close
to a Gaussian distribution.



Random regular graphs
Fix d > 3.

G = G(n,d): a uniformly chosen, simple d-regular graph on n vertices.

Local properties: G(n, d) does not contain many small cycles with high probability
— it looks like a tree.

G(n, d) tends to the infinite d-regular tree T, in the Benjamini-Schramm (local)
sense:

given n and r, the probability that the r-neighborhood of a uniformly chosen random
vertex is a tree, tends to 1 as n — oo.



Configuration model

Bollobas (1984): assign d half-edges to each vertex, and choose a random perfect
matching of the half-edges by connecting a uniform random pair at each step
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The probability of getting loops, multiple edges, cycles of length 3,4,5, ... is small.
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Benjamini—Schramm convergence

(Hn): a sequence of finite graphs with all degrees at most A
F(A, r): the set of connected rooted graphs with diameter at most 2r

Definition (Benjamini-Schramm (local) convergence, 2001)

We say that (Hp,) is convergent if for every r and F € F(A, r) the probability that
the rooted r-neighborhood of a uniformly chosen vertex v of H, is isomorphic to
F is convergent as n tends to infinity.

Here the isomorphism has to be root-preserving.



Benjamini—Schramm convergence

(Hn): a sequence of finite graphs with all degrees at most A

F(A, r): the set of connected rooted graphs with diameter at most 2r

Definition (Benjamini-Schramm (local) convergence, 2001)

We say that (Hp,) is convergent if for every r and F € F(A, r) the probability that
the rooted r-neighborhood of a uniformly chosen vertex v of H, is isomorphic to
F is convergent as n tends to infinity.

Here the isomorphism has to be root-preserving.

Examples (but: the limit is not necessarily a graph)

@ a sequence of cycles or paths of length n tends to the infinite path;
@ n X n grids tend to 72

@ the sequence of random regular graphs G(n, d) tend to the infinite d-regular
tree.
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most 2r
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Limits of colored regular graphs

S: finite set of colors

(Hn): a sequence of finite d-regular graphs with colored vertices (with the
number of vertices tending to infinity but all degrees bounded by A)

F(A,r,S): the set of connected rooted vertex-colored graphs with diameter at
most 2r

T4: infinite d-regular tree with root o

Invariant random process on Ty: to each vertex v € V/(Ty), we assign a random
variable X, with values in S such that the joint distribution (X, ) is invariant under
all automorphisms of the tree.

We say that (H,) converges locally to (X,),c7, if for every r and F € F(A,r,S)
the following holds. The probability that the colored rooted r-neighborhood of a
uniformly chosen vertex v of H, is isomorphic to F converges to the probability
that the colored r-neighborhood of the root o of T, is isomorphic to F.



Limits of colored regular graphs

r = 2, F as below with the black vertex as the root:

The probability that the 2-neighborhood of a randomly chosen vertex is isomorphic
to F should be convergent.



Limits of colored regular graphs

2-neighborhood of the root in an invariant random process:

Xo, X1, Xo, ... are random colors from S.



Typical processes

T4: infinite d-regular tree, S: finite set

Definition (Typical process)
We say that an S-valued invariant random process (X,),cv(t,) is typical if there
exists a subsequence of the positive integers (ny) with the following property.

If, for each k independently, Gy is a random d-regular graph on ny vertices, then,
with probability 1, there exists a sequence of colorings fi : V(Gx) — S such that
(Gk, fx) converges to (X,),ev(r,) locally as k — oo.

An R-valued invariant random process is typical if it can be approximated by finite-
valued typical processes in distribution.



Typical processes

T4: infinite d-regular tree, S: finite set

Definition (Typical process)

We say that an S-valued invariant random process (X,),cv(t,) is typical if there
exists a subsequence of the positive integers (ny) with the following property.

If, for each k independently, Gy is a random d-regular graph on ny vertices, then,
with probability 1, there exists a sequence of colorings fi : V(Gx) — S such that
(Gk, fx) converges to (X,),ev(r,) locally as k — oo.

An R-valued invariant random process is typical if it can be approximated by finite-
valued typical processes in distribution.

Open question: do we need subsequence in this definition?

Example for not typical process: alternating black and white with the color of the
root chosen uniformly at random (Bollobas, 1984: a random d-regular graph is far
from being bipartite with high probability, its independence ratio is smaller than

1/2).



Entropy inequalities

Let U C V(T4) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (X, ),cu will be denoted by h(U):

h(U) ==Y P(X =F)-logP(X = F).

Example: h(BQ(O)) = h(Xo, X1, Xo, X11, X12, . .. ,X32), where B2(O) is the 2-
neighborhood of the root.
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Entropy inequalities

Let U C V(T4) be a finite connected subgraph of the infinite tree. Then the
entropy of the joint distribution X = (X,),cy in an invariant process will be
denoted by h(U):

h(U)==> P(X =F)-logP(X = F).
F

Proposition
For every typical process the following hold:
(i) ;
5h(1) = (d = 1)h(-).
(ii)

H(BL()) > Sh(D),

where By (+) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

For factor of i.i.d. processes: Bowen (2008); the f-invariant is nonnegative; see
also Rahman—Virag (2014).



Entropy inequalities

Proposition

For every typical process the following holds:
d
H(B:()) > Sh(Y)
where By (+) is the 1-neighborhood of a vertex (a vertex and its d neighbors).

Idea of the proof (similar to Bollobas's argument for the independence ratio):

@ take the configuration model of the random regular graph;

@ count the number of colorings that are close to the distribution of X, on By(+);

@ this is more than the total number of graphs.



Eigenvector processes

Definition

The family of random variables (X, ),c T, is an eigenvector process with eigenvalue
X if its distribution is invariant under Aut(T,), and with probability 1,

AX, = Z X,

wn~v

holds for every v € V(Ty).

Harangi—Virag (2015): this exists for every A € [—d, d].



Eigenvector processes

Definition
The family of random variables (X, ),c T, is an eigenvector process with eigenvalue
X if its distribution is invariant under Aut(T,), and with probability 1,

AX, = Z X,

wnv

holds for every v € V(Ty).

Harangi—Virag (2015): this exists for every A € [—d, d].

Theorem (B — Szegedy, 2016+)

If (X,)vev(r,) is a typical eigenvector process with eigenvalue )\, it is nontrivial:
E(X,) = 0 and it has finite second moments (Var(X,) < c0), then it is a Gaussian
process.

Gaussian process: for every finite subset of V(Ty), the joint distribution of the
corresponding random variables is a multivariate Gaussian distribution.



ldea of the proof

Starting point: for a finite-valued typical process, we have

W(BI() ~ Sh(1) > 0

Step 1: find entropy inequalities for larger balls (B,(F) denotes the set of vertices
whose distance from a subset F is at most r), in particular, we have

M(Bea() ~ Sh(B(1) 20 (r>1)

@ for each vertex, write the state of all vertices in the r-neighborhood with some
small extra randomization

@ apply the r = 1 inequality to this new process, which is also typical



ldea of the proof

For a finite-valued typical process, we have

MEBa() - JHBED) 20 (r=>1)

Step 2: switch to smooth real-valued processes and differential entropy:

D(X) = —/flogf,

where f is the density function of X

@ we add an independent Gaussian eigenvector process to the original one of
small variance — we get a typical eigenvector process with absolutely continu-
ous marginals

@ by a random discretization (using the grid [—a,—a + 1/a,—a + 2/a,...,a]
for some large a), we obtain a finite-valued typical process that satisfies the
entropy inequality

@ by letting a — oo, we can prove that the inequality above holds for differential
entropy



ldea of the proof
For a smooth typical process, we have

D(Bra() ~ BB 20 (r>1)

Step 3: show that for a Gaussian typical eigenvector process, we have

. d
rll[go Dsp(Br1(+)) —

EDsp(Br(I)) =0,
where D, denotes the differential entropy calculated in the subspace on which the
joint distribution is supported on.



ldea of the proof
For a smooth typical process, we have

D(Bra() ~ BB 20 (r>1)

Step 3: show that for a Gaussian typical eigenvector process, we have

. d
rll[go Dsp(Bri1(*)) —

EDsp(Br(I)) =0,
where D, denotes the differential entropy calculated in the subspace on which the
joint distribution is supported on.

Step 4: show that for a smooth typical eigenvector process

Bap(B(+)) — By

maximizes this difference among all smooth distributions having finite variance and
the appropriate covariance structure

Step 5: use heat equations to show that only the Gaussian distribution maximizes
this difference (convolution by Gaussian noise increases entropy, but the original
was itself maximal). It follows that the proces is Gaussian, and that a random lift
of an eigenvector is close to some Gaussian eigenvector, process.
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