Groups in graph theory I

David Conlon

28 August 2017

・ロト ・回ト ・ヨト

Э

- < ∃ >

Definition

A regular graph G is said to be an ϵ -expander if the expansion ratio

$$h(G) = \min_{\{S:|S| \le n/2\}} \frac{e(S, S^c)}{|S|}$$

satisfies
$$h(G) \geq \epsilon$$
.

● ▶ < ミ ▶

문 🕨 👘 문

Definition

A regular graph G is said to be an ϵ -expander if the expansion ratio

$$h(G) = \min_{\{S:|S| \le n/2\}} \frac{e(S, S^c)}{|S|}$$

satisfies
$$h(G) \geq \epsilon$$
.

Theorem (Pinsker)

Random regular graphs are expanders.

▲ □ ► < □ ►</p>

The adjacency matrix A of a graph G on vertex set $\{1, 2, ..., n\}$ is the $n \times n$ matrix with entries given by

$$A_{uv} = \begin{cases} 0 & \text{if } uv \notin E(G); \\ 1 & \text{if } uv \in E(G). \end{cases}$$

The adjacency matrix A of a graph G on vertex set $\{1, 2, ..., n\}$ is the $n \times n$ matrix with entries given by

$$A_{uv} = \begin{cases} 0 & \text{if } uv \notin E(G); \\ 1 & \text{if } uv \in E(G). \end{cases}$$

The adjacency matrix A of a graph G on vertex set $\{1, 2, ..., n\}$ is the $n \times n$ matrix with entries given by

$$A_{uv} = \begin{cases} 0 & \text{if } uv \notin E(G); \\ 1 & \text{if } uv \in E(G). \end{cases}$$

Denote the eigenvalues of the adjacency matrix of A by $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$.

Expander Mixing

Expander Mixing Lemma

If G is a d-regular graph with n vertices for which all eigenvalues of the adjacency matrix, save the largest, have absolute value at most λ , then

$$|e(X,Y) - rac{d}{n}|X||Y|| \leq rac{\lambda}{n}\sqrt{|X||Y||X^c||Y^c|}$$

for all $X, Y \subseteq V(G)$.

Expander Mixing

Expander Mixing Lemma

If G is a d-regular graph with n vertices for which all eigenvalues of the adjacency matrix, save the largest, have absolute value at most λ , then

$$|e(X,Y) - \frac{d}{n}|X||Y|| \leq \frac{\lambda}{n}\sqrt{|X||Y||X^c||Y^c|}$$

for all $X, Y \subseteq V(G)$.

Corollary

Under the same hypotheses,

$$|e(X, X^c) - \frac{d}{n}|X||X^c|| \leq \frac{\lambda}{n}|X||X^c|$$

for all $X \subseteq V(G)$.

・ロン ・回と ・ヨン ・ヨン

Expander Mixing

Expander Mixing Lemma

If G is a d-regular graph with n vertices for which all eigenvalues of the adjacency matrix, save the largest, have absolute value at most λ , then

$$|e(X,Y) - \frac{d}{n}|X||Y|| \leq \frac{\lambda}{n}\sqrt{|X||Y||X^c||Y^c|}$$

for all $X, Y \subseteq V(G)$.

Corollary

Under the same hypotheses,

$$|e(X, X^c) - \frac{d}{n}|X||X^c|| \leq \frac{\lambda}{n}|X||X^c|$$

for all $X \subseteq V(G)$. Therefore, $\lambda \leq d - \epsilon \implies$ expansion.

イロン 不同と 不同と 不同と

Proof of expander mixing

Let 1_X and 1_Y be the characteristic vectors of X and Y. Expand these in the orthonormal basis of eigenvectors of the adjacency matrix A, say v_1, \ldots, v_n with $Av_i = \lambda_i v_i$, writing

$$1_X = \sum_i \alpha_i v_i$$
 and $1_Y = \sum_i \beta_i v_i$.

Proof of expander mixing

Let 1_X and 1_Y be the characteristic vectors of X and Y. Expand these in the orthonormal basis of eigenvectors of the adjacency matrix A, say v_1, \ldots, v_n with $Av_i = \lambda_i v_i$, writing

$$1_X = \sum_i \alpha_i v_i$$
 and $1_Y = \sum_i \beta_i v_i$.

Then

$$e(X,Y) = \mathbf{1}_X^T A \mathbf{1}_Y = \left(\sum_i \alpha_i \mathbf{v}_i\right)^T A\left(\sum_j \beta_j \mathbf{v}_j\right) = \sum_i \lambda_i \alpha_i \beta_i.$$

Proof of expander mixing

Let 1_X and 1_Y be the characteristic vectors of X and Y. Expand these in the orthonormal basis of eigenvectors of the adjacency matrix A, say v_1, \ldots, v_n with $Av_i = \lambda_i v_i$, writing

$$1_X = \sum_i \alpha_i v_i$$
 and $1_Y = \sum_i \beta_i v_i$.

Then

$$e(X,Y) = \mathbf{1}_X^T A \mathbf{1}_Y = (\sum_i \alpha_i v_i)^T A (\sum_j \beta_j v_j) = \sum_i \lambda_i \alpha_i \beta_i.$$

Noting that $v_1 = 1/\sqrt{n}$, we have $\alpha_1 = 1_X \cdot v_1 = |X|/\sqrt{n}$ and, similarly, $\beta_1 = |Y|/\sqrt{n}$. Therefore,

$$e(X,Y) = \frac{d}{n}|X||Y| + \sum_{i\geq 2}\lambda_i\alpha_i\beta_i.$$

To finish the proof, note, by the Cauchy-Schwarz inequality, that

$$\left|\sum_{i\geq 2}\alpha_{i}\beta_{i}\lambda_{i}\right| \leq \lambda\left|\sum_{i=2}^{n}\alpha_{i}\beta_{i}\right| \leq \lambda\sqrt{\sum_{i=2}^{n}\alpha_{i}^{2}\sum_{i=2}^{n}\beta_{i}^{2}}.$$

To finish the proof, note, by the Cauchy-Schwarz inequality, that

$$\left|\sum_{i\geq 2}\alpha_{i}\beta_{i}\lambda_{i}\right| \leq \lambda\left|\sum_{i=2}^{n}\alpha_{i}\beta_{i}\right| \leq \lambda\sqrt{\sum_{i=2}^{n}\alpha_{i}^{2}\sum_{i=2}^{n}\beta_{i}^{2}}.$$

By Parseval's identity,

$$\sum_{i \ge 2} \alpha_i^2 = \sum_i \alpha_i^2 - \alpha_1^2 = |X| - \frac{|X|^2}{n} = \frac{|X||X^c|}{n}$$

and, similarly, $\sum_{i\geq 2} \beta_i^2 = |Y| |Y^c| / n$. The result follows.

白 ト く ヨ ト く ヨ ト

Cayley graph

Suppose that G is a group and S is a subset of G satisfying $S = S^{-1}$. The Cayley graph Cay(G, S) is the graph with vertex set G and edge set $\{(sg, g) : g \in G, s \in S\}$.

æ

- 4 回 > - 4 回 > - 4 回 >

Cayley graph

Suppose that G is a group and S is a subset of G satisfying $S = S^{-1}$. The Cayley graph Cay(G, S) is the graph with vertex set G and edge set $\{(sg, g) : g \in G, s \in S\}$.

Cay(G, S) is an *n*-vertex *d*-regular graph with n = |G| and d = |S|.

Cayley graph

Suppose that G is a group and S is a subset of G satisfying $S = S^{-1}$. The Cayley graph Cay(G, S) is the graph with vertex set G and edge set $\{(sg, g) : g \in G, s \in S\}$.

Cay(G, S) is an *n*-vertex *d*-regular graph with n = |G| and d = |S|.

Example

Paley graph -
$$G = \mathbb{Z}_p$$
, $S = \{x^2 : x \in \mathbb{Z}_p \setminus \{0\}\}$

イロン イヨン イヨン イヨン

★聞▶ ★臣▶ ★臣▶

æ

Theorem (Alon-Roichman, 1994)

Let G be a finite group and let S be a random subset of size $100 \log |G|$. Then, with high probability, Cay(G, S) is an expander.

| 4 回 2 4 U = 2 4 U =

Theorem (Alon–Roichman, 1994)

Let G be a finite group and let S be a random subset of size $100 \log |G|$. Then, with high probability, Cay(G, S) is an expander.

Tight up to a constant - consider $G = \mathbb{Z}_2^t$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Theorem (Alon–Roichman, 1994)

Let G be a finite group and let S be a random subset of size $100 \log |G|$. Then, with high probability, Cay(G, S) is an expander.

Tight up to a constant - consider $G = \mathbb{Z}_2^t$.

Underlying idea

Let G be a finite group and let S be a random subset of size $d = 100 \log |G|$. Then, with high probability,

 $\lambda(Cay(G,S)) \leq d/2.$

Eigenvalues of an abelian group

If G is abelian, the eigenvalues of the Cayley graph Cay(G, S) with $S = S^{-1}$ are

$$\sum_{s\in S}\chi(s)$$

where χ are the characters.

Eigenvalues of an abelian group

If G is abelian, the eigenvalues of the Cayley graph Cay(G, S) with $S = S^{-1}$ are

 $\sum_{s\in S}\chi(s)$

where χ are the characters.

Theorem (Alon–Roichman, 1994)

If G is a finite abelian group and S is a random subset of size d, then, with high probability, $\lambda(Cay(G, S)) = O(\sqrt{d \log n})$.

Proof of Alon-Roichman in the abelian case

The eigenvalue $\sum_{s \in S} \chi(s)$ is the sum of *d* random elements $\chi(s) + \chi(s^{-1})$ with expected value 0 and absolute value at most 2.

白 ト イヨト イヨト

Proof of Alon-Roichman in the abelian case

The eigenvalue $\sum_{s \in S} \chi(s)$ is the sum of d random elements $\chi(s) + \chi(s^{-1})$ with expected value 0 and absolute value at most 2. Therefore, by the complex version of Hoeffding's inequality,

$$\mathbb{P}[|\sum_{s\in S}\chi(s)|\geq t]\leq 4\exp\{-ct^2/d\}.$$

白 ト イヨト イヨト

Proof of Alon-Roichman in the abelian case

The eigenvalue $\sum_{s \in S} \chi(s)$ is the sum of d random elements $\chi(s) + \chi(s^{-1})$ with expected value 0 and absolute value at most 2. Therefore, by the complex version of Hoeffding's inequality,

$$\mathbb{P}[|\sum_{s\in S}\chi(s)|\geq t]\leq 4\exp\{-ct^2/d\}.$$

Taking $t = C\sqrt{d \log n}$ for C sufficiently large, we see that

$$\mathbb{P}[|\sum_{s\in S}\chi(s)| \ge C\sqrt{d\log n}] \le 1/n^2.$$

The eigenvalue $\sum_{s \in S} \chi(s)$ is the sum of d random elements $\chi(s) + \chi(s^{-1})$ with expected value 0 and absolute value at most 2. Therefore, by the complex version of Hoeffding's inequality,

$$\mathbb{P}[|\sum_{s\in S}\chi(s)|\geq t]\leq 4\exp\{-ct^2/d\}.$$

Taking $t = C\sqrt{d \log n}$ for C sufficiently large, we see that

$$\mathbb{P}[|\sum_{s\in S}\chi(s)| \ge C\sqrt{d\log n}] \le 1/n^2.$$

The result now follows by taking a union bound over all *n* characters χ .

Proof idea similar, but use irreducible representations instead of characters.

For further details, see

Z. Landau and A. Russell, Random Cayley graphs are expanders, *Electron. J. Combin.* **11** (2004), R62.

Expander Mixing Lemma

If G is a d-regular graph with n vertices for which all eigenvalues of the adjacency matrix, save the largest, have absolute value at most λ , then

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \lambda \sqrt{|X||Y|}$$

for all $X, Y \subseteq V(G)$.

A ■

Back to Expander Mixing

Expander Mixing Lemma

If G is a d-regular graph with n vertices for which all eigenvalues of the adjacency matrix, save the largest, have absolute value at most λ , then

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \lambda \sqrt{|X||Y|}$$

for all $X, Y \subseteq V(G)$.

Observation

The converse of the expander mixing lemma is false.

< 🗗 ▶

Theorem (Bilu–Linial, 2006)

Suppose that G is a d-regular graph with n vertices such that

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \eta \sqrt{|X||Y|}$$

for all $X, Y \subseteq V(G)$. Then $\lambda = O(\eta \log d)$.

Theorem (Bilu–Linial, 2006)

Suppose that G is a d-regular graph with n vertices such that

$$|e(X, Y) - \frac{d}{n}|X||Y|| \le \eta \sqrt{|X||Y|}$$

for all $X, Y \subseteq V(G)$. Then $\lambda = O(\eta \log d)$.

Theorem (Alon–Coja-Oghlan–Hàn–Kang–Rödl–Schacht, 2010)

Suppose that $(G_n)_{n\in\mathbb{N}}$ with $|G_n| = n$ is a sequence of graphs such that

$$|e(X, Y) - p|X||Y|| = o(pn^2)$$

for all $X, Y \subseteq V(G_n)$. Then one may remove a o(1)-fraction of the vertices to find a sequence of graphs $(G'_n)_{n \in \mathbb{N}}$ with $\lambda = o(pn)$.

- 4 回 2 - 4 回 2 - 4 回 2

Converse to expander mixing for Cayley graphs

Theorem (Kohayakawa–Rödl–Schacht, 2017)

If G is an abelian group and Cay(G, S) satisfies

$$|e(X,Y)-\frac{d}{n}|X||Y|| \leq \epsilon dn$$

for all $X, Y \subseteq V(G)$, then all eigenvalues of Cay(G, S), save the largest, have absolute value $O(\epsilon d)$.

Converse to expander mixing for Cayley graphs

Theorem (Kohayakawa–Rödl–Schacht, 2017)

If G is an abelian group and Cay(G, S) satisfies

$$|e(X,Y)-\frac{d}{n}|X||Y|| \leq \epsilon dn$$

for all $X, Y \subseteq V(G)$, then all eigenvalues of Cay(G, S), save the largest, have absolute value $O(\epsilon d)$.

Theorem (C.–Zhao, 2017)

If G is any group and Cay(G, S) satisfies

$$|e(X,Y)-\frac{d}{n}|X||Y|| \leq \epsilon dn$$

for all $X, Y \subseteq V(G)$, then all eigenvalues of Cay(G, S), save the largest, have absolute value $O(\epsilon d)$.

Bootstrapping

Theorem (C.–Zhao, 2017)

If G is any group and Cay(G, S) satisfies

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \epsilon dn$$

for all $X, Y \subseteq V(G)$, then all eigenvalues of Cay(G, S), save the largest, have absolute value $O(\epsilon d)$.

| 4 回 2 4 U = 2 4 U =

Bootstrapping

Theorem (C.–Zhao, 2017)

If G is any group and Cay(G, S) satisfies

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \epsilon dn$$

for all $X, Y \subseteq V(G)$, then all eigenvalues of Cay(G, S), save the largest, have absolute value $O(\epsilon d)$.

One perspective on this result is to say that expansion in Cayley graphs bootstraps itself. Indeed, if

$$|e(X,Y)-\frac{d}{n}|X||Y|| \leq \epsilon dn$$

for all $X, Y \subseteq V(G)$, then $\lambda = O(\epsilon d)$, which implies that

$$|e(X,Y) - \frac{d}{n}|X||Y|| \leq \epsilon \frac{d}{n}\sqrt{|X||Y||X^c||Y^c|}.$$

Given an $m \times n$ matrix A, define the spectral norm

$$\|A\|:=\sup_{\substack{x\in\mathbb{R}^n\|x|\leq 1}}|Ax|=\sup_{\substack{x\in\mathbb{R}^m,y\in\mathbb{R}^n\|x|,|y|\leq 1}}|x^*Ay|$$

・ロト ・回ト ・ヨト ・ヨト

æ

Given an $m \times n$ matrix A, define the spectral norm

$$\|A\|:=\sup_{\substack{x\in\mathbb{R}^n\|x|\leq 1}}|Ax|=\sup_{\substack{x\in\mathbb{R}^m,y\in\mathbb{R}^n\|x|,|y|\leq 1}}|x^*Ay|$$

and the cut norm

$$||A||_{\mathsf{cut}} := \sup_{S \subseteq [m], T \subseteq [n]} |\sum_{s \in S, t \in T} a_{st}|.$$

イロン イヨン イヨン イヨン

æ

If G is an *n*-vertex d-regular graph with adjacency matrix A and J is the all-ones matrix, then

$$\|A - \frac{d}{n}J\| = \lambda(Cay(G, S))$$

If G is an *n*-vertex d-regular graph with adjacency matrix A and J is the all-ones matrix, then

$$\|A - \frac{d}{n}J\| = \lambda(Cay(G, S))$$

and

$$||A - \frac{d}{n}J||_{\operatorname{cut}} = \sup_{S \subseteq [m], T \subseteq [n]} |e(S, T) - \frac{d}{n}|S||T||.$$

If G is an *n*-vertex d-regular graph with adjacency matrix A and J is the all-ones matrix, then

$$\|A - \frac{d}{n}J\| = \lambda(Cay(G, S))$$

and

$$||A - \frac{d}{n}J||_{\operatorname{cut}} = \sup_{S \subseteq [m], T \subseteq [n]} |e(S, T) - \frac{d}{n}|S||T||.$$

Lesson

Suffices to understand the relationship between $\|\cdot\|$ and $\|\cdot\|_{cut}$.

The cut norm is the same as its linear relaxation

$$||A||_{\mathsf{cut}} = \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in [0, 1]} |\sum_{s \in [m], t \in [n]} a_{st} x_s y_t|.$$

イロン イヨン イヨン イヨン

æ

The cut norm is the same as its linear relaxation

$$||A||_{\mathsf{cut}} = \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in [0,1]} |\sum_{s \in [m], t \in [n]} a_{st} x_s y_t|.$$

To see this, note that the expression inside the absolute value is linear in each of $x_1, \ldots, x_m, y_1, \ldots, y_n$ and hence its extremum is attained when all these variables are $\{0, 1\}$ -valued.

We further relax the cut norm by allowing each x_s and y_t to be numbers in [-1, 1]:

$$||A||_{\infty \to 1} := \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in [-1, 1]} |\sum_{s \in [m], t \in [n]} a_{st} x_s y_t|.$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

We further relax the cut norm by allowing each x_s and y_t to be numbers in [-1, 1]:

$$||A||_{\infty \to 1} := \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in [-1, 1]} |\sum_{s \in [m], t \in [n]} a_{st} x_s y_t|.$$

This norm is equivalent to the cut norm:

$$\|A\|_{\mathsf{cut}} \leq \|A\|_{\infty \to 1} \leq 4\|A\|_{\mathsf{cut}}.$$

Indeed, write $x = x_+ - x_-$ and $y = y_+ - y_-$, where $x_+, x_- \in [0, 1]^m$ and $y_+, y_- \in [0, 1]^n$, and then apply the triangle inequality.

Relaxing the cut norm

Finally, we consider a semidefinite relaxation, which we shall refer to as the Grothendieck norm:

$$\|A\|_{\mathsf{G}} := \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in B(\mathbb{H})} \left| \sum_{s \in [m], t \in [n]} a_{st} \langle x_s, y_t \rangle \right|,$$

Т

where $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ is any Hilbert space and $B(\mathbb{H})$ is the unit ball in \mathbb{H} , containing all points in \mathbb{H} of norm at most 1.

Relaxing the cut norm

Finally, we consider a semidefinite relaxation, which we shall refer to as the *Grothendieck norm*:

$$\|A\|_{\mathsf{G}} := \sup_{x_1, \dots, x_m, y_1, \dots, y_n \in B(\mathbb{H})} \left| \sum_{s \in [m], t \in [n]} a_{st} \langle x_s, y_t \rangle \right|,$$

ī

where $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ is any Hilbert space and $B(\mathbb{H})$ is the unit ball in \mathbb{H} , containing all points in \mathbb{H} of norm at most 1.

A remarkable fact, proved by Grothendieck, and stated in this form by Lindenstrauss and Pełczyński, says that the Grothendieck norm is equivalent to the $\infty \rightarrow 1$ norm.

Grothendieck's inequality, 1953

There exists a constant $K_{\rm G} < 1.78$ such that for all real-valued matrices A,

$$\|A\|_{\infty \to 1} \le \|A\|_{\mathsf{G}} \le K_{\mathsf{G}} \|A\|_{\infty \to 1}.$$

Back to Cayley graphs

If A is the adjacency matrix of the Cayley graph Cay(G, S), then

$$A_{g,h}=1_{\mathcal{S}}(gh^{-1}).$$

回 と く ヨ と く ヨ と

æ

Back to Cayley graphs

If A is the adjacency matrix of the Cayley graph Cay(G, S), then

$$A_{g,h} = 1_S(gh^{-1}).$$

Lemma (C.–Zhao, 2017)

If G is a group, $f : G \to \mathbb{R}$ is a function and A is a matrix whose rows and columns are indexed by G with $A_{g,h} = f(gh^{-1})$ for all $g, h \in G$, then

$$\|A\|_G = n\|A\|.$$

Back to Cayley graphs

If A is the adjacency matrix of the Cayley graph Cay(G, S), then

$$A_{g,h} = 1_S(gh^{-1}).$$

Lemma (C.–Zhao, 2017)

If G is a group, $f : G \to \mathbb{R}$ is a function and A is a matrix whose rows and columns are indexed by G with $A_{g,h} = f(gh^{-1})$ for all $g, h \in G$, then

$$\|A\|_G = n\|A\|.$$

Corollary

If A is the adjacency matrix of a Cayley graph,

$$||A||_{cut} \le 4||A||_{\infty \to 1} < 8||A||_{G} = 8n||A||.$$

Let $f : G \to \mathbb{R}$. Choose $x, y : G \to \mathbb{R}$ with $||x||_2 \le 1$ and $||y||_2 \le 1$ such that

$$|G|^{-1}||A|| = |\mathbb{E}_{g,h\in G}f(gh^{-1})x(g)y(h)|.$$

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Let $f : G \to \mathbb{R}$. Choose $x, y : G \to \mathbb{R}$ with $||x||_2 \le 1$ and $||y||_2 \le 1$ such that

$$|G|^{-1}||A|| = |\mathbb{E}_{g,h\in G}f(gh^{-1})x(g)y(h)|.$$

Define $x_g(h) = x(gh)$ and $y_g(h) = y(gh)$ for all $g, h \in G$. We view x_g and y_h as vectors in the unit ball in $L^2(G)$ equipped with inner product $\langle x, y \rangle = \mathbb{E}_{g \in G} x(g) y(g)$ for all $x, y \in L^2(G)$.

・回・ ・ヨ・ ・ヨ・

Let $f : G \to \mathbb{R}$. Choose $x, y : G \to \mathbb{R}$ with $||x||_2 \le 1$ and $||y||_2 \le 1$ such that

$$|G|^{-1}||A|| = |\mathbb{E}_{g,h\in G}f(gh^{-1})x(g)y(h)|.$$

Define $x_g(h) = x(gh)$ and $y_g(h) = y(gh)$ for all $g, h \in G$. We view x_g and y_h as vectors in the unit ball in $L^2(G)$ equipped with inner product $\langle x, y \rangle = \mathbb{E}_{g \in G} x(g) y(g)$ for all $x, y \in L^2(G)$. Then

$$\begin{split} |G|^{-2} \|A\|_{G} &\geq |\mathbb{E}_{g,h\in G} f(gh^{-1}) \langle x_{g}, y_{h} \rangle | \\ &= |\mathbb{E}_{g,h,a\in G} f(gh^{-1}) x(ga) y(ha)| \\ &= |\mathbb{E}_{g,h,a\in G} f((ga)(ha)^{-1}) x(ga) y(ha)| \\ &= |\mathbb{E}_{g,h\in G} f(gh^{-1}) x(g) y(h)| = |G|^{-1} \|A\|. \end{split}$$

・回・ ・ヨ・ ・ヨ・

Let $f : G \to \mathbb{R}$. Choose $x, y : G \to \mathbb{R}$ with $||x||_2 \le 1$ and $||y||_2 \le 1$ such that

$$|G|^{-1}||A|| = |\mathbb{E}_{g,h\in G}f(gh^{-1})x(g)y(h)|.$$

Define $x_g(h) = x(gh)$ and $y_g(h) = y(gh)$ for all $g, h \in G$. We view x_g and y_h as vectors in the unit ball in $L^2(G)$ equipped with inner product $\langle x, y \rangle = \mathbb{E}_{g \in G} x(g) y(g)$ for all $x, y \in L^2(G)$. Then

$$\begin{split} |G|^{-2} ||A||_{G} &\geq |\mathbb{E}_{g,h\in G} f(gh^{-1}) \langle x_{g}, y_{h} \rangle | \\ &= |\mathbb{E}_{g,h,a\in G} f(gh^{-1}) x(ga) y(ha)| \\ &= |\mathbb{E}_{g,h,a\in G} f((ga)(ha)^{-1}) x(ga) y(ha)| \\ &= |\mathbb{E}_{g,h\in G} f(gh^{-1}) x(g) y(h)| = |G|^{-1} ||A||. \end{split}$$

The opposite direction, $||A||_G \le |G|||A||$, follows from the Cauchy–Schwarz inequality.

Back to expanders

There are examples of bounded-degree Cayley expanders.

/⊒ > < ≣ >

문 문 문

There are examples of bounded-degree Cayley expanders.

Example (Lubotzky–Phillips–Sarnak, Margulis, 1988)

Let *p* and *q* be unequal primes, both congruent to 1 (mod 4), with *p* a quadratic residue modulo *q*. Let PSL(2, q) be the projective special linear group of 2×2 matrices over the field of order *q*. For each vector $a = (a_0, a_1, a_2, a_3)$ such that a_0 is odd and positive, a_1, a_2 and a_3 are even and $a_0^2 + a_1^2 + a_2^2 + a_3^2 = p$, define $M_a \in PSL(2, q)$ by

$$M_{a} = rac{1}{\sqrt{p}} \left(egin{array}{cc} a_{0} + ia_{1} & a_{2} + ia_{3} \ -a_{2} + ia_{3} & a_{0} - ia_{1} \end{array}
ight),$$

where *i* satisfies $i^2 \equiv -1 \pmod{q}$. Let $G_{p,q}$ be the Cayley graph with vertex set PSL(2, q) defined by joining *u* and *v* if and only if $uv^{-1} = M_a$ for some *a*.

・ロン ・回と ・ヨン・

æ

Theorem (Alon–Boppana, 1991)

For every n vertex d-regular graph

$$\lambda \geq 2\sqrt{d-1} - o(1).$$

Theorem (Alon-Boppana, 1991)

For every n vertex d-regular graph

$$\lambda \geq 2\sqrt{d-1} - o(1).$$

An *n*-vertex *d*-regular graph is Ramanujan if $\lambda \leq 2\sqrt{d-1}$.

/⊒ > < ≣ >

Theorem (Alon-Boppana, 1991)

For every n vertex d-regular graph

$$\lambda \geq 2\sqrt{d-1} - o(1).$$

An *n*-vertex *d*-regular graph is Ramanujan if $\lambda \leq 2\sqrt{d-1}$.

Theorem (Lubotzky–Phillips–Sarnak, Margulis, 1988)

There are Ramanujan graphs of degree p + 1 for every prime $p \equiv 1 \pmod{4}$.

/⊒ > < ≣ >

Theorem (Alon-Boppana, 1991)

For every n vertex d-regular graph

$$\lambda \geq 2\sqrt{d-1} - o(1).$$

An *n*-vertex *d*-regular graph is Ramanujan if $\lambda \leq 2\sqrt{d-1}$.

Theorem (Lubotzky–Phillips–Sarnak, Margulis, 1988)

There are Ramanujan graphs of degree p + 1 for every prime $p \equiv 1 \pmod{4}$.

Major open problem

Construct Ramanujan graphs of any degree.

<->→ □→ < ≥→</>

Theorem (Alon–Boppana, 1991)

For every n vertex d-regular graph

$$\lambda \geq 2\sqrt{d-1} - o(1).$$

An *n*-vertex *d*-regular graph is Ramanujan if $\lambda \leq 2\sqrt{d-1}$.

Theorem (Lubotzky–Phillips–Sarnak, Margulis, 1988)

There are Ramanujan graphs of degree p + 1 for every prime $p \equiv 1 \pmod{4}$.

Major open problem

Construct Ramanujan graphs of any degree.

Solved for bipartite case by Marcus, Spielman and Srivastava.

- (同) - (三) - (三)

Theorem (Friedman, 2003)

For every $\epsilon > 0$, a random regular graph with *n* vertices and degree *d* satisfies

$$\lambda \leq 2\sqrt{d-1} + \epsilon$$

with probability 1 - o(1).

/⊒ > < ≣ >

Theorem (Friedman, 2003)

For every $\epsilon > 0$, a random regular graph with *n* vertices and degree *d* satisfies

$$\lambda \leq 2\sqrt{d-1} + \epsilon$$

with probability 1 - o(1).

Conjectured that the distribution of λ tends to a Tracy–Widom distribution.

Theorem (Friedman, 2003)

For every $\epsilon > 0$, a random regular graph with *n* vertices and degree *d* satisfies

$$\lambda \leq 2\sqrt{d-1} + \epsilon$$

with probability 1 - o(1).

Conjectured that the distribution of λ tends to a Tracy–Widom distribution.

Also conjectured that the probability a random d-regular graph is Ramanujan lies strictly between 0 and 1.

Let G be a finite simple group of Lie type (for example, $G = PSL_n(q)$) and let S be a random subset of size 2. Then Cay(G, S) is an expander.

Let G be a finite simple group of Lie type (for example, $G = PSL_n(q)$) and let S be a random subset of size 2. Then Cay(G, S) is an expander.

Builds on work by Helfgott, Bourgain–Gamburd, Pyber–Szabó, Kassabov, . . .

Let G be a finite simple group of Lie type (for example, $G = PSL_n(q)$) and let S be a random subset of size 2. Then Cay(G, S) is an expander.

Builds on work by Helfgott, Bourgain–Gamburd, Pyber–Szabó, Kassabov, . . .

Theorem (Kassabov–Lubotzky–Nikolov, 2006)

There is an absolute constant k such that if G is a non-abelian finite simple group, there is a set S of size at most k such that Cay(G, S) is an expander.

Let G be a finite simple group of Lie type (for example, $G = PSL_n(q)$) and let S be a random subset of size 2. Then Cay(G, S) is an expander.

Builds on work by Helfgott, Bourgain–Gamburd, Pyber–Szabó, Kassabov, . . .

Theorem (Kassabov–Lubotzky–Nikolov, 2006)

There is an absolute constant k such that if G is a non-abelian finite simple group, there is a set S of size at most k such that Cay(G, S) is an expander.

Open problem

If $G = A_n$ and S is a random subset of fixed size, is Cay(G, S) an expander?

Thank you for listening!

周▶ 《 ≧ ▶

< ≣ >

æ