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Zsolt Tuza (MTA Rényi, U. of Pannonia)
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Game Total Domination

by Doug Rall

We assume throughout that all graphs under consideration have no isolated vertices. A vertex
w in a graph totally dominates every vertex adjacent to w. That is, w totally dominates its open
neighborhood, N(w). The total domination game on a graph G is played by two players, Dominator
and Staller, who alternate moves. A player’s turn or move consists of choosing (or playing) a vertex
u such that at least one vertex in N(u) was not totally dominated by the set of vertices chosen
previously in the game. Such a vertex is said to be playable or a legal move. Eventually the set of
chosen vertices is a total dominating set of G, and the game ends. Dominator follows a strategy
that will end the game in as few moves as possible while Staller employs a strategy to maximize
the number of moves. The game total domination number γtg(G) is the number of vertices chosen
when Dominator starts the game (the D-game) and both players play optimally. The Staller-start
game total domination number, γ′tg(G), is the number of vertices chosen when both players play
optimally and Staller has the first move (the S-game).

The total domination game was introduced in [4] following much activity on the (ordinary)
domination game. In the domination game a chosen vertex w dominates itself as well as N(w),
but the two players have the same goals in both games. The resulting graphical invariants are
denoted by γg and γ′g. As expected, there are similarities between the two games, but also some
(perhaps) unusual differences. For example, for some graphs γg is much larger than γtg even though
γ(G) ≤ γt(G) for every G. On the other hand, if G does not have a universal vertex, then γtg(G) ≤
3γg(G)− 2. (See [4].)

Problem 1. Characterize the graphs G such that γg(G) ≤ γtg(G).

In [4] it was shown that γtg(G) and γ′tg(G) differ by at most 1. Henning and Rall [7] proved
that γtg(F ) ≤ γ′tg(F ) for any forest F with no components of order 1, but in general little is known
about which pairs (k, `) satisfying |k − `| ≤ 1 can be (γtg(G), γ′tg(G)) for some graph G. Since
γt(G) ≤ γtg(G) ≤ 2γt(G) − 1 always holds, the following problems seem natural, if difficult in
general.

Problem 2. Characterize the graphs G such that γt(G) = γtg(G).

Problem 3. Characterize those G such that γtg(G) = 2γt(G)− 1.

A solution to Problem 2 when restricted to common graph classes would in itself be interesting.
Recently in [7], Henning and Rall proved a characterization of those trees T for which γt(T ) = γtg(T ).
No characterization of the trees T for which γtg(T ) = 2γt(T )− 1 is known.

Not surprisingly, the exact values of γtg and γ′tg are not yet known for many classes of graphs. In
fact, except for trivial classes such as complete multipartite graphs, the exact numbers are known
only for cycles and paths. (See Dorbec and Henning [3].) Much of the research on the game
total domination number is related to establishing upper bounds for γtg(G) and γ′tg(G) in terms
of the order of G. Since both vertices will be played in any component of order 2, we assume
that all components of G have order at least 3. The first general upper bounds for the D-game
and S-game total domination numbers were established by Henning, Klavžar and Rall [5]. They
proved that if G is a graph of order n in which every component has more than two vertices, then
γtg(G) ≤ 4n

5
and γ′tg(G) ≤ 4n+2

5
. The attack they used to prove these upper bounds was to modify

a clever technique of Csilla Bujtás that she employed in her progress on the 3/5-Conjecture in
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the (ordinary) domination game. At each stage of playing the total domination game on G let D
denote the set of vertices played so far. Relative to D each vertex v in G possesses one of several
properties based on whether it belongs to D, whether it is totally dominated by D and whether
its open neighborhood is totally dominated by D. If v and all its neighbors belong to N(D), then
v has no influence on the remainder of the game. In this case v can be deleted from the graph
without affecting the future strategy of either player. Furthermore, if two playable vertices x and
z are adjacent and are both totally dominated by D, then the edge xz also has no influence on the
game going forward. Removing each such vertex v and each such edge xz after a legal move results
in what is called the residual graph. Some subset A of vertices in the residual graph are totally
dominated; to indicate this we denote the residual graph by GA and say that the residual graph is
a partially totally dominated graph. The general strategy to prove the 4n/5 upper bound was to
assign a weight of 4 to each vertex at the beginning of the game. When a vertex is played (i.e.,
added to D) the status of some vertices changes relative to the enlarged set of chosen vertices and
the new, partially totally dominated residual graph. The weights of vertices are reduced based on
their new status. It is then proved that Dominator has a strategy that guarantees the sum of all
the vertex weights decreases by an average of at least 5 per move.

The authors of [5] posed the following conjecture, which has come to be known as the 3/4-
Conjecture.

Conjecture 4. [3/4-Conjecture] If G is a graph of order n in which every component has at least
three vertices, then

γtg(G) ≤ 3n

4
and γ′tg(G) ≤ 3n+ 1

4
.

For positive integers r and s, let G = rP4 ∪ sP8 and H = G ∪ P5. It can be shown that
γtg(G) = 3r + 6s = 3|V (G)|/4 and that γ′tg(H) = 4 + 3r + 6s = (3|V (H)| + 1)/4. This shows that
the bounds in Conjecture 4 are tight infinitely often if in fact the conjecture is true.

Some progress has been made toward proving Conjecture 4. In [2] Bujtás, Henning and Tuza
introduced a transversal game on hypergraphs. When specialized to a hypergraph whose edges are
the open neighborhoods of a graph G with no isolated vertices, this game yields γtg(G) and γ′tg(G).
As a result they were able to verify the 3/4-Conjecture for the class of graphs with minimum degree
at least 2. Using yet another variation of the “weighting argument,” Henning and Rall [6] proved
that if G is a graph such that the sum of the degrees of every pair of adjacent vertices is at least 4
and no pair of leaves in G are at a distance exactly 4 apart, then the inequalities in Conjecture 4
hold for G. In fact, they showed that if G has minimum degree at least 2, then Dominator can
follow a greedy strategy (i.e., always choose a vertex that gives a maximum reduction of weight
with respect to their vertex weight assignments) and end the game in at most 3n/4 moves. An
obvious problem generalizing this to larger minimum degrees is the following.

Problem 5. If a graph G of order n has minimum degree at least δ ≥ 2, prove sharp upper bounds
on γtg(G) and γ′tg(G) in terms of n and δ.

The following is a list of topics that, to my knowledge, have not been studied for the total
domination game but the corresponding topic has been investigated for the ordinary domination
game. Consequently, many open questions and problems arise as a result of this list.

1. The behavior of γtg and γ′tg on disjoint unions of graphs.

2. The effect of edge removal or vertex removal on γtg and γ′tg.
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3. Game total domination on spanning subgraphs and spanning trees.

4. The complexity of computing γtg and γ′tg.

5. A characterization of graphs with small game total domination number.

If the vertices in the total domination game are chosen without regard to a strategy but only
to insure that each vertex played enlarges the open neighborhood of the set of chosen vertices,
then the resulting sequence is called a total dominating sequence. The length of the longest such
sequence in a graph G is called the Grundy total domination number of G; it is denoted by γtgr(G).
Brešar, Henning and Rall introduced total dominating sequences in [1]. They characterized the
graphs G for which γtgr(G) = |V (G)| and those for which γtgr(G) = 2. In the case of trees T of
order n, γtgr(T ) = n if and only if T has a perfect matching. In addition they showed that if T
is a nontrivial tree of order n with no strong support vertex, then γtgr(T ) ≥ 2

3
(n + 1), and they

characterized the trees that achieve equality. If k ≥ 3 and G is a connected, k-regular graph of
order n other than Kk,k, then they proved γtgr(G) ≥ (n+ dk

2
e − 2)/(k − 1) if G is not bipartite and

γtgr(G) ≥ (n + 2dk
2
e − 4)/(k − 1) if G is bipartite. For k = 3 (resp. k = 4) and G not Kk,k, the

above bounds are 1
2
n and 1

3
n respectively, in both the bipartite and non-bipartite cases. Examples

are given in [1] to show the bounds are tight in these cases.

Problem 6. Characterize the connected 3-regular graphs G of order n such that γtgr(G) = 1
2
n.

Problem 7. Characterize the connected 4-regular graphs G of order n such that γtgr(G) = 1
3
n.

It is straightforward to show that γtgr(G) ≤ n−δ(G)+1 for any graph G of order n and minimum
degree δ(G) ≥ 1.

Problem 8. Characterize the graphs G of order n such that γtgr(G) = n− δ(G) + 1 for δ(G) ≥ 1.

In [1] it is shown that complete multipartite graphs G are the only graphs with γtgr(G) =
2 = γt(G) and that no graph with total domination number 3 also has Grundy total domination
number 3. However, it is also shown that there are infinitely many connected graphs G with
γtgr(G) = 4 = γt(G).

Problem 9. For each k ≥ 4, characterize the connected graphs G such that γtgr(G) = γt(G) = k.
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On the Fractional Total Domatic Number of a Graph

by Michael A. Henning

1 The Fractional Total Domatic Number

We consider here the fractional analogue of the total domatic number of a graph. A total dominating
set of a graph G with no isolates is a set S of vertices such that every vertex in G is adjacent to
a vertex in S. The total domination number, γt(G), of G is the smallest cardinality of a total
dominating set. The total domatic number, tdom(G), of G is the maximum number of disjoint total
dominating sets [6]. This can also be considered as a coloring of the vertices such that every vertex
has a neighbor of every color (and has been called the coupon coloring problem [5]). Zelinka [15]
showed that there are graphs with arbitrarily large minimum degree without two disjoint total
dominating sets. Heggernes and Telle [8] showed that the decision problem to decide for a given
graph G if tdom(G) ≥ 2 is NP-complete, even for bipartite graphs. In contrast, several researchers,
such as Aram et al. [1], studied the total domatic number of a k-regular graph; in particular, Chen
et al. [5] showed that such graphs have total domatic number at least (1− o(1))k/ ln k.

Goddard and Henning [9] define a total dominating family F of a graph G as a family of (not
necessarily distinct) total dominating sets of G. We denote by rF the maximum times any vertex
of G appears in F , and define the effective ratio of the family F as the ratio of the number of sets
in F to rF . The fractional total domatic number FTD(G) is then defined as the supremum of the
effective ratio taken over all total dominating families. That is,

FTD(G) = sup
F

|F|
rF

.

Like other fractional parameters, one can show that the supremum can be achieved. The fol-
lowing result was first observed in [9].

Theorem 1 (([9])). If a graph G of order n has minimum degree δ ≥ 1, then the following hold.

(a) tdom(G) ≤ FTD(G) ≤ n

γt(G)
.

(b)
n

n− δ + 1
≤ FTD(G) ≤ δ.

As an immediate consequence of Theorem 1(b), if a graph G has minimum degree δ ≥ 2, then
FTD(G) > 1. However, as shown in [9], there are graphs G with arbitrarily large minimum degree
with FTD(G) < 1 + ε. We consider next some specific families of graphs.

1.1 Claw-Free Graphs

It is shown in [9] that if G is a claw-free graph with δ ≥ 2, then FTD(G) ≥ 3
2
. This lower bound is

somewhat best possible: the graphs K3 and C6 have fractional total domatic number exactly 3/2.
However, we believe that the lower bound should be improvable asymptotically.

Question 1. ([9]) Is it true that if G is a connected, claw-free graph with δ ≥ 2, then FTD(G) ≥
2− o(1) and/or there is a partition (T1, T2) of the vertex set such that every vertex except possibly
two has a neighbor in both T1 and T2?

Question 2. ([9]) Is it true that if G is a claw-free graph with δ ≥ 3, then tdom(G) ≥ 2?
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1.2 Triangulated discs

Recall that a triangulated disc is a (simple) planar graph all of whose faces are triangles, except
possibly for the outer face. As a consequence of results in [9, 12], we have that if G is a triangulated
disc, then FTD(G) ≥ 3

2
. This lower bound is tight, in that there exist triangulated discs G of

arbitrarily large order satisfying FTD(G) = 3
2
.

We next consider (simple) planar triangulations or equivalently maximal planar graphs (that
is, triangulated discs where the outer face is a triangle). Since every planar triangulation is a
triangulated disc, our earlier result implies that every planar triangulation G satisfies FTD(G) ≥ 3

2
.

We believe this lower bound can be improved significantly.

Conjecture 3. ([9]) If G is a planar triangulation of order at least 4, then tdom(G) ≥ 2.

Conjecture 3 has been established for a few cases.

Theorem 2. ([9]) If G is a planar triangulation, then the following hold.
(a) If every vertex of G has odd degree, then tdom(G) ≥ 2.

(b) If the dual of G is hamiltonian, then tdom(G) ≥ 2.

A computer search suggests the following conjecture.

Conjecture 4. Every planar triangulation with at least four vertices has a proper 4-coloring
(C1, C2, C3, C4) such that C1 ∪ C2 and C3 ∪ C4 are total dominating sets.

If one imposes larger minimum degree, it appears even more can be said.

Conjecture 5. ([9]) If G is a planar triangulation with δ(G) ≥ 4, then tdom(G) ≥ 3.

Perhaps it is true that every triangular disc with minimum degree at least 3 has two disjoint
total dominating sets. It is not true that every triangular disc with minimum degree at least 4 has
three disjoint total dominating sets: the icosahedron minus a vertex is an example, and there is an
example of order 10. But maybe there are only finitely many exceptions.

2 The Fractional Disjoint Transversal Number

A subset T of vertices in a hypergraph H is a transversal (also called vertex cover, hitting set or
blocking set) if T has a nonempty intersection with every edge of H. The transversal number τ(H)
of H is the minimum size of a transversal in H. See for example [2, 3, 4]. A hypergraph H is
2-colorable if there is a 2-coloring of the vertices such that each hyperedge contains two vertices of
distinct colors; that is, there is no monochromatic hyperedge. So, the question of when a hypergraph
has two disjoint transversals is the same as whether the hypergraph has a 2-coloring. More generally,
Kostochka and Woodall [11] defined a panchromatic k-coloring of a hypergraph as a coloring with
k colors such that every hyperedge contains each color. This is equivalent to a partition into k
disjoint transversals. We denote by disj τ (H) the disjoint transversal number of a hypergraph H,
which is the maximum number of disjoint transversals in H.

Analogous to the fractional total domatic number, one can define the fractional disjoint transver-
sal number. A transversal family F of a hypergraph H is a family of transversals of H. Given a
hypergraph H and a transversal family F , we define the effective transversal-ratio of the family F
as the ratio of the number of sets in F over the maximum times rF any element appears in F . The
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fractional disjoint transversal number FDT (H) is the supremum of the effective transversal-ratio
taken over all transversal families. That is,

FDT (H) = sup
F

|F|
rF
.

The following results were first observed in [9].

Observation 1. ([9]) For every isolate-free hypergraph H of order n,

disj τ (H) ≤ FDT (H) ≤ n

τ(H)
.

Associated with a graph G, one can define the open neighborhood hypergraph of G as the hyper-
graph whose vertex set is V (G) and whose hyperedges are the open neighborhoods of vertices in
G. The fractional total domatic number of an isolate-free graph is precisely the fractional disjoint
transversal number of its open neighborhood hypergraph, as observed in [9].

Observation 2. ([9]) If G is an isolate-free graph, then FTD(G) = FDT (H), where H is the open
neighborhood hypergraph of G.

Using a connection with not-all-equal 3-SAT, the following result is proven in [10].

Theorem 3. ([10]) If H is a 3-regular 3-uniform hypergraph of order n, then there exists 2k
transversals in H such that any vertex in H belongs to at most k of them for some k ≥ 1.

As an immediate consequence of Theorem 3, if H is a 3-regular 3-uniform hypergraph, then
FDT (H) ≥ 2. We remark that this bound is tight. By the connection with the ONH of a graph G
(see Observation 2), we have the following result.

Theorem 4. ([10]) If G is a connected cubic graph, then FTD(G) ≥ 2.

Theorem 4 is in contrast to the fact that not every cubic graph has two disjoint total dominating
sets. For example, it is known that the Heawood graph is the smallest such example. (For more
information see for example McCuaig [13], or Gropp [7].) In contrast, Thomassen [14] showed that,
for r ≥ 4, every r-regular graph has two disjoint total dominating sets. The following general lower
bound on the fractional disjoint transversal number of a k-regular k-uniform hypergraph for all
k ≥ 3 is given in [10].

Theorem 5. ([10]) For all k ≥ 3, if H is a k-regular k-uniform hypergraph, then

FDT (H) ≥ 1

1− (k−1
k

)
(
1
k

) 1
k−1

.

In the special case when k = 5, this implies that FDT (H) > 2.1505. When k = 4, the
hypergraph H is 2-colorable, and so, by Observation 1, FDT (H) ≥ disj τ (H) ≥ 2. It would be
interesting to establish whether strict inequality holds in this case when k = 4.

Question 6. ([9]) Is it true that if H is a 4-regular 4-uniform hypergraph, then FDT (H) > 2?

We suspect that the following stronger conjecture holds.

Conjecture 7. ([10]) If H is a 4-regular 4-uniform hypergraph, then FDT (H) ≥ 7
3
, with equality

if and only if H is the complement of the Fano plane.
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Selected Problems on Domination Game

by Sandi Klavžar

3 The game and the game domination number

A vertex u in a graph G dominates a vertex v if u = v or u is adjacent to v. A dominating set of
G is a set S of vertices of G such that every vertex in G is dominated by a vertex in S. The size of
a smallest dominating set of G is the domination number γ(G) of G.

The domination game was introduced in 2010 as follows [6]. The game is played on a graph G
by two players named Dominator and Staller. They take turns choosing a vertex from G such that
at least one previously undominated vertex becomes dominated until no move is possible. The score
of the game is the total number of vertices chosen by them in this game. The players have opposite
goals: Dominator wants to minimize the score and Staller wants to maximize it. A game is called
a D-game (resp. S-game) if Dominator (resp. Staller) has the first move. The game domination
number γg(G) of G is the score of a D-game played on G assuming that both players play optimally,
the Staller-start game domination number γ′g(G) is the score of an optimal S-game.

4 The 3/5-conjecture

If G = (V (G), E(G)) is a graph, we will use n(G) to denote the order of G, that is, n(G) = |V (G)|.
Kinnersley, West, and Zamani [15, Conjecture 6.2] posed the conjecture that γg(G) ≤ 3n(G)/5
holds for any isolate-free graph G. (Related conjectures were stated also for the S-game, as well as
for both games played on forests.) This conjecture is now known as the 3/5-conjecture. Bujtás [8, 9]
developed an innovative discharging-like method to attack this conjecture. Using the method, the
conjecture was confirmed by Henning and Kinnersley on the class of graphs with minimum degree
at least two [12]. Along these lines Schmidt [22] determined a largest known class of trees for which
the conjecture holds. Moreover, Marcus and Peleg reported in arXiv [21] that the conjecture holds
on all isolate-free forests. The following case is thus still open.

Problem 1. Prove (or disprove) the 3/5-conjecture for the class of graphs containing pendant
vertices.

The proof of Marcus and Peleg [21] is quite technical, hence assuming that the reviewers will
confirm its correctness, a simpler proof of the 3/5-conjecture for trees would still be of interest!

An interesting related problem is which graphs attain the 3/5-bound. A significant progress on
this problem has been made on the class of trees. Using a computer all such trees up to 20 vertices
were found [4]. For instance, on 20 vertices there are (only) ten trees that attain the 3/5-bound.
A construction that yields an infinite family of trees that attain the 3/5-bound was also given.
Henning and Löwenstein [13] followed with the following wider construction. Call a tree T to be a
2-wing if T

(i) has maximum degree at most 4,

(ii) has no vertex of degree 3, and

(iii) the vertices of degree 2 in T are precisely the support vertices of T , except for one vertex of
degree 2 in T .
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This exceptional vertex of degree 2 in T (that is, the vertex that is not a support vertex) is called
the gluing vertex of T. (Note that the smallest 2-wing is P5, its central vertex being the gluing
vertex.) Now, a tree T belongs to the family T if T is obtained from k ≥ 1 vertex-disjoint 2-wings
by adding k− 1 edges between the gluing vertices. Henning and Löwenstein proved that every tree
T ∈ T attains the 3/5-bound and posed:

Conjecture 2. [13, Conjecture 1] If F is an isolate-free forest on n vertices satisfying γg(F ) = 3n/5,
then every component of F belongs to the family T .

In this respect the following question due to Cs. Bujtás (personal communication) is also relevant:

Question 3. Do there exist 2-connected graphs G different from C5 for which γg(G) = 3n(G)/5
holds?

5 Edge- and vertex-removal

In [1] it was proved that if e ∈ E(G), then |γg(G)−γg(G− e)| ≤ 2 and |γ′g(G)−γ′g(G− e)| ≤ 2, and
that each of the possibilities is realizable by connected graphs G for all values of γg(G) and γ′g(G)
larger than 5. For the remaining small values it was either proved that realizations are not possible
or realizing examples provided. It was also proved that if v ∈ V (G), then γg(G) − γg(G − v) ≤ 2
and γ′g(G)− γ′g(G− v) ≤ 2. Possibilities are again realizable by connected graphs in almost all the
cases.

The following problem was posed in [1, Problem 4.1]: given a positive integer k, can one find
a general upper and lower bound for γg(G) − γg(Gk), where Gk is obtained from a graph G by
deletion of k edges from G? The problem was solved by Henning and Kinnersley [12, Theorem 3.4]
as follows: If G and H are graphs on a common vertex set V , then

|γg(G)− γg(H)| ≤ k + ε , (5.1)

where k is the size of the symmetric difference of E(G) and E(H), and ε = 0 if k is even and 1 if k
is odd. Another problem posed in [1] is:

Problem 4. [1, Problem 4.2] Which of the subsets of {−2,−1, 0, 1, 2} can be realized as

{γg(G)− γg(G− e) : e ∈ E(G)}

within the family of all (respectively connected) graphs G?

A partial answer to the latter problem follows from (5.1): since for all edges e, e′ ∈ E(G) we
have |γg(G − e) − γg(G − e′)| ≤ 2, each such set must be contained in {−2,−1, 0}, {−2, 0, 1}, or
{0, 1, 2}.

6 Domination game critical graphs

A partially-dominated graph is a graph together with a declaration that some vertices are already
dominated, that is, they need not be dominated in the rest of the game. For S ⊆ V (G) of a graph
G the partially dominated graph in which vertices from S are already dominated is denoted G|S.
If S = {v}, then the notation can be simplified to G|v.
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A graph G is domination game critical, shortly γg-critical, if γg(G) > γg(G|v) holds for every
v ∈ V (G). This concept was introduced in [10] where among other results γg-critical graphs with
γg = 2 and with γg = 3 are characterized, and for each n the (infinite) class of all γg-critical ones
among the nth powers Cn

N of cycles are determined.

A concept complementary to the domination game criticality is the one from the following
problem.

Problem 5. [10, Problem 13] Study the graphs G for which γg(G) = γg(G|v) holds for every
v ∈ V (G). In particular, establish their connections with the γg-critical graphs.

7 Computational aspects

Computational aspects of the domination game were studied in [3, 17]. In [17] it was shown
that for a given integer m and a given graph G, deciding whether γg(G) ≤ m can be done in
O(∆(G) · n(G)m) time. This result was complemented in [3] by proving that the complexity of
verifying whether the game domination number of a graph is bounded by a given integer is in the
class of PSPACE-complete problems, implying that every problem solvable in polynomial space
(possibly with exponential time) can be reduced to this problem. In particular, this shows that
the game domination number of a graph is harder to compute than any other classical domination
parameter (which are generally NP-hard), unless NP=PSPACE.

On the (possible) positive side, the following problem was posed:

Question 6. [3, Question 1] Can the game domination number of (proper) interval graphs be
computed in polynomial time?

This question can be made more general as follows.

Question 7. [3, Question 1] For which non-trivial families of graphs can the game domination
number be computed in polynomial time?

Here a “non-trivial family” must be taken with a grain of salt. For instance, the family of graphs
which contain universal vertices would certainly not be such, because for each such graph G we have
γg(G) = 1. So “non-trivial family” would be a family on which the computation/determination of
the game domination number is “non-trivial”. For instance, paths and cycles, caterpillars, and
powers of cycles, classify as “non-trivial”. That this is indeed the case see [14, 19] for paths and
cycles, [18] for caterpillars, and [10] for powers of cycles.

8 Graph with trivial game domination numbers

If G is a graph, then clearly γg(G) ≥ γ(G) holds. Nadjafi-Arani, Siggers, and Soltani [20] called a
graph G to be D-trivial if γg(G) = γ(G), and S-trivial if γ′g(G) = γ(G). In [20] D-trivial forests (as
well as S-trivial forests) are characterized and the following conjecture posed:

Conjecture 8. [20, Conjecture 6.1] Any connected D-trivial graph is either a tree or has girth at
most 7.
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9 Bluffing in the domination game

Call a graph to be a bluff graph if every vertex is an optimal start vertex in D-Game as well as
in S-Game. If γ′g(G) = γ(G) − 1, then G is called a minus graph. (C6 is a sporadic example of a
minus graph.) In [2] it is proved that every minus graph is a bluff graph and a non-trivial infinite
family of minus graphs is established. In addition, several generalized Petersen graphs that are
bluff graphs but not vertex-transitive are determined.

Call a graph to be a double bluff graph, if it is a bluff graph, where after the first move any legal
answer is an optimal second move for any player. In other words, the first two moves are arbitrary,
provided they are legal. In [2] it is proved that Kneser graphs K(n, 2), n ≥ 6, are double bluff and
that Hamming graphs are not double bluff. So here is a natural related problem.

Problem 9. Characterize double bluff graphs. If this is too difficult, then find additional families
of double bluff graphs.

10 No-minus graphs

In [11] the following concept was introduced: a graph G is a no-minus graph if for any S ⊆ V (G)
we have γg(G|S) ≤ γ′g(G|S). The intuition behind this definition is that no player should get any
advantage by passing in a no-minus graph. In [15] it was proved that forests are no-minus graphs,
while in [11] this was proved for two additional families of graphs including dually chordal graphs.

Problem 10. Characterize no-minus graphs. If this is too difficult, then find additional families
of no-minus graphs.

11 Further reading

For additional aspects of the domination game we refer to:

• [7], for the behaviour of the game played on trees and spanning subgraphs;

• [5], for the domination game played on the so-called guarded subgraphs;

• [11], where the game is investigated on unions of graphs;

• [16], where graphs with small game domination numbers are described; and

• [18], where different realizations of the game domination number are provided.
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Power Domination

by Paul Dorbec

Power domination was described as a graph theoretical problem by Haynes et al. in [12]. The
problem is motivated by the requirement for constant monitoring of power systems by placing a
minimum number of phasor measurement units (PMU) in the network. A PMU placed at a bus
measures the voltage of the bus plus the current phasors at that bus. Using Ohm and Kirchhoff
current laws, it is then possible to infer from initial knowledge of the status of some part of the
network the status of new branches or buses. This can be simply described as a graph optimisation
problem similar to domination with addition of a propagation behaviour.

We here describe directly the generalized graph parameter named k-power domination, as defined
in [6], following the detailed definition of propagation from [1]. We use notations N(u) and N [u]
to denote respectively the open neighbourhood and closed neighbourhood of a vertex u, defined
by N(u) = {v | uv ∈ E} and N [u] = N(u) ∪ {u}. By extension, for a subset S of vertices,
N [S] =

⋃
u∈S N [u].

Definition 1. Let G be a graph, S ⊆ V (G) and k a non-negative integer. We define the sets(
P ik(S)

)
i≥0 of vertices monitored by S at step i by the following rules.

• P0
k(S) = N [S].

• P i+1
k (S) =

⋃
N [v], v ∈ P ik(S) such that

∣∣N [v] \ P ik(S)
∣∣ ≤ k.

Necessarily from this definition, for any i ≥ 0, P ik(S) ⊆ P i+1
k (S). Indeed, there exists some set S ′

(equal to S when i is 0) such that P ik(S) = N [S ′]. Any vertex v in S ′ satisfies that
∣∣N [v]\P ik(S)

∣∣ =
0 ≤ k, and thus N [S ′] ⊆ P i+1

k (S). Since P ik ⊆ V (G), the sequence (P ik)i∈N eventually reaches a
maximum, that we denote with P∞k (S).

Definition 2. A subset S of vertices is a k-power dominating set of G if P∞k (S) = V (G). The
minimum order of a power dominating set of G is the k-power domination number of G, denoted
γP,k(G).

When k = 0, the definition corresponds to the normal domination parameter, while when k = 1,
it coincides with the original power domination in graphs. Note that the problem is related to the
problem of Zero forcing sets, as introduced in 2006 in [2].

Problems on general graphs

One first remark on generalized power domination is that for all k ≥ 0, γP,k(G) ≥ γP,k+1(G). This
generalizes the statement by Haynes et al. [12] that the power domination number of a graph is at
most its domination number. As observed in [6], there is no hope to improve that bound, nor to
find a upper bound on γP,k(G) in terms of γP,k+1(G). However, the following question remains of
interest:

Question 1. Can we find a characterization of the graphs such that γP,k(G) = γP,`(G) for some
k < `?
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Of course, the case when ` = k+1 is very interesting, but more general characterization are also
interesting. Observe that one possible construction for a graph satisfying this equality is to take
any graph and one of its k-power dominating sets, S, and attach to every vertex v of S a subgraph
on at least ` + 1 vertices all of which are adjacent to v. Doing so, every `-power dominating set
would have to contain one vertex to dominate each of these subgraphs, thus S would also be an
optimal `-power dominating set. This motivates the following question, that captures somehow the
interesting part of the previous question:

Question 2. Can we find a characterization of the 2-connected graphs such that γP,k(G) = γP,`(G)
for some k < `?

Regular graphs

Regular graphs and especially cubic graphs are of special interest for domination. In a general study
of regular graphs, the following conjecture was proposed in [8]:

Conjecture 3. Let G be a connected r-regular graph on n vertices. If G is different from Kr,r, then

γP,k(G) ≤ n

r + 1

The bound proposed in that conjecture is straightforward for r ≤ k+1 (since γP,k(G) = 1, see [6])
and proved in [8] for r = k + 2. The remaining cases are open. A simpler way of attacking the
conjecture might be to consider random regular graphs, which have a rather predictable behaviour.

Question 4. What can we say on the above conjecture on random regular graphs? Can we prove a
similar bound?

Planar graphs

Considering planar graphs in general, it is not possible to prove relevant bounds on the power
domination number, as most constructions for tightening bounds are planar. However, it is possible
to prove results on maximal planar graphs (triangulations of the plane). We managed to get the
following:

Theorem 3 ([7]). Every maximal planar graph on n ≥ 6 vertices have (1-)power domination
number at most n−2

4
.

The largest graph tightening the bound that we currently know is the triakis-tetrahedron, which
has 10 vertices. There is no evidence that this bound is best possible, and it could probably be
improved. The following question remains:

Question 5. What is the best possible upper bound on the size of a minimum k-power dominating
set of a maximal planar graph? To begin, what is the best α such that for all maximal planar graph
G, γP,1(G) ≤ α|V |+O(1)?

General constructions can be produced on 6k vertices that need at least k vertices to power
dominate: for example, completing a family of disjoint (facial) octahedra into a maximal planar
graph produces such a graph. Thus we know already 1

6
≤ α ≤ 1

4
. The same question can be asked

for γP,k(G) for larger k. Constructions can be made of maximal planar graphs that need n
7

vertices
at least to 2-power dominate, n

9
vertices at least to 3-power dominate. . . .
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On an algorithmic point of view, we know that power domination is NP-complete even restricted
to chordal graphs [12] and to planar bipartite graphs [5]. On the other hand, a polynomial time
approximation scheme has long been known for planar graphs [3].

Question 6. Is power domination NP-hard on maximal planar graphs? How can power domination
be approximated on planar graphs?

Special families

Finally, a natural question is to consider power domination on special families of graphs, in particular
on lattices and on recursively defined families. In that context, an upper bound may easily be proved,
simply by exhibiting a power dominating set. However, proving a lower bound is often much more
tricky, and need clever techniques. Moreover, all power dominating set are not equivalent: some
require longer time for propagation than others. In [9], the propagation radius of a graph was
introduced, that can be defined as follows:

Definition 4. The radius of a k-power dominating set S of a graph G is defined by

radP,k(G,S) = 1 + min{i : P iG,k(S) = V (G)} .

The k-propagation radius of a graph G can be expressed as

radP,k(G) = min{radP,k(G,S), S is a k-PDS of G, |S| = γP,k(G)} .

Computing the propagation radius of a graph necessitates not only to find out what is the
minimum power dominating set, but also to find such a set that propagates as fast as possible to
the graph. This involves a much better understanding of what an efficient power dominating set is
in the graph, and thus seems a relevant parameter to consider on graph families

Graph products were considered for the power domination, in particular the products of paths
in [11, 10] and of paths and cycle in [4]. Those early studies did not take into account neither
generalized power domination, nor the propagation radius, and they did not even settle all the
products of paths. So it could be extended, and products of more than two paths should be
considered:

Question 7. Can we establish the k-power domination number and propagation radius for some
products of simple graph families?

In particular, we still wander whether something nice can be said on the hypercube. A wild
guess would be that maybe γP,k+1(Qi+1) = γP,k(Qi), but that is not true for k = 1. Pai and Chiu [13]
showed that γ(Q5) = 7 while γP,1(Q6) = 6, disproving the previous inequality. Though, there are
no examples disproving the inequality for larger k. So the following question remains open:

Question 8. Is it true that for k ≥ 1, γP,k+1(Qi+1) = γP,k(Qi)? And if not, what is the first
counterexample for a given k?

A more general question, that sounds promising, would be to see whether the product and the
propagation parameter k are related in some sense. The most general setting of the question would
be the following:

Question 9. For some product ⊗, can we find some non trivial way to relate γP,k(G), γP,`(H) and
some γP,f(k,`)(G⊗H)?
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Contributed Problems

Determining the maximal number of k-dominating independent subsets
in n-vertex graphs

by Zoltán Lóránt Nagy

Let G = G(V,E) be a simple graph. For any vertex v ∈ V (G), d(v) denotes the degree of v, N(v)
denotes the set of neighbors of v, and N [v] denotes the closed neighborhood, i.e., N [v] := N(v)∪{v}.
A set D of vertices in a graph G is k-dominating if each vertex in V (G) \D is adjacent to at least
k vertices of D. We would like to study the maximum number of k-dominating independent sets
(for brevity, k-DISes) in n-vertex graphs.
While the case k = 1, namely the case of maximal independent sets - which is originated from Erdős
and Moser - is widely investigated, much less is known in general.

Our principal function is formulated in the following

Notation 1. Let mik(n) denote the maximum number of k-DISes in graphs of order n, and let
mik(G) denote the number of k-DISes in a graph G.

Notation 2. Let ζk(G) := n
√

mik(G) for a fixed graph G on n vertices and let

ζk(n) := n
√

mik(n).

Some basic observations:

Observation 3. (i) ζk(n) ∈ [1, 2] ∀k, n ∈ Z+, k ≤ n.

(ii) ζk(G) ≤ lim inf ζk(n) ∀k ∈ Z+ and for every fixed graph G.

(iii) ∀k ∃ lim
n→∞

ζk(n). For brevity, we will use the notation ζk := lim
n→∞

ζk(n).

We only mention here that (ii) is based on the observation that for tG, i.e., t disjoint copies of a
certain graph G, we have ζk(G) = ζk(tG).

It was proved that the maximum number of k-dominating independent sets in n-vertex graphs
is between ck · 2k

√
2
n

and c′k ·
k+1
√

2
n

if k ≥ 2, moreover the maximum number of 2-dominating
independent sets in n-vertex graphs is between c · 1.22n and c′ · 1.246n; more precisely

Theorem 4. The order of magnitude of the maximum number of 2-DISes is bounded as follows.

1.22 <
9
√

6 ≤ ζ2 ≤ 5
√

3 < 1.2457.

Conjecture 1. The lower bound in Theorem 4 is sharp, that is, ζ2(n) = ζ2(K3�K3) for the
Cartesian product of two triangles.

In fact, it might be true that the following graphs are the best possible:

Construction 5. Let n be large enough, and let

Gn = αK3�K3 + βK4�K4, with α, β ∈ N, β ≤ 8.

(Observe that α and β is uniquely determined.)
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Theorem 6. For every k > 3,
2k
√

2 ≤ ζk ≤ k+1
√

2.

Conjecture 2. The lower bound in Theorem 6 is sharp if k > 3.

Concerning k = 3, we conjecture that the Turán graph T3·3,3 provides the order of magnitude,
as ζ3(T9,3)

9
√

3 ≤ ζ3(n). For larger value of k, we have ζk(Kk,k) = 2k
√

2 ≤ ζk.

The aim is to make progress on Conjecture 1 and Conjecture 2.

Z. L. Nagy, On the number of k-dominating independent sets, Journal of Graph Theory, 84(4), (2017) 566–580.

Cranes and acyclic domination number

by Dömötör Pálvölgyi

In construction sites, the height of cranes must be chosen so that each of them can turn around
in a full circle. This means that every crane can have in each range only one crane that is taller.
First, suppose that all cranes have equal radius and consider the discrete model where the locations
of the site are the vertices of a graph such that there is an edge between two locations if they are
in each other’s radius. (Note that not every graph can be derived this way.) It is not hard to
see that the minimum number of cranes that need to be placed to cover each location equals the
acyclic domination number, γ∅, of the graph, which is defined as the size of the smallest acyclic
dominating set. For any graph, we have γ ≤ γ∅ ≤ γi, where γ is the domination number and γi is
the independent domination number. I propose to prove various bounds on γ∅.

If the cranes are not assumed to have equal radius, but at each location we can only place a crane
of given radius, we get the natural directed version of the above graph problem. From a practical
point of view, however, it seems more natural to study the geometric variants of the problem. For
example, given a square and a fixed collection of cranes with various radius and height, can we
cover the whole square with such cranes? What if we can change/decrease the heights?
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Distance-l domination in hypergraphs

by Máté Vizer

Despite that domination is a well-investigated notion in graph theory, domination in hypergraphs
is a relatively new subject. It was introduced in [1]; for more recent results and references see [2, 3].
The main aim of this project would be to investigate hypergraph domination notions analogous
to the graph domination ones. In [3] with Bujtás, Patkós and Tuza we started such a research
concerning distance-l domination in hypergraphs.

Distance-l domination in hypergraphs

In distance-l domination a vertex v dominates all vertices that are at distance at most l from v.
As the definition of distance in graphs involves paths, and paths in hypergraphs can be defined in
several ways, distance-l domination could be addressed with each of those definitions, however only
so-called ‘Berge paths’ offer new problems in our context.

A Berge path of length l is a sequence v0, H1, v1, H2, v2, . . . , Hl, vl with vi ∈ V (H) for i = 0, 1, ..., l
and vi−1, vi ∈ Hi ∈ E(H) for i = 1, 2, ..., l. The distance dH(u, v) of two vertices u, v ∈ V (H) is the
length of a shortest Berge path from u to v. The ball centered at u and of radius l consists of those
vertices of H which are at distance at most l from u; it will be denoted by Bl(u). We call D ⊂ V (H)
a distance-l dominating set of H if

⋃
u∈D Bl(u) = V (H). Equivalently we can say that D ⊂ V (H)

is a distance-l dominating set if and only if D ∩ Bl(v) 6= ∅ for all v ∈ V (H). Note that distance-1
dominating sets are the usual dominating sets. The minimum size of a distance-l dominating set
in a hypergraph H is the distance-l domination number γd(H, l) and let us denote by γdc(H, l) the
analogous notion for connected hypergraphs.

For k ≥ 2 and l, γ ≥ 1 let ndc(k, γ, l) denote the minimum number of vertices that a k-uniform
connected hypergraph H must contain if it has γd(H, l) ≥ γ. (Note that the problem is almost
trivial if we do not suppose that the hypergraph is connected.)

To state our main result concerning ndc(k, γ, l) we need to define the following function:

f(k, γ, l) :=

{
l
2
kγ + max{k, γ} if l is even,
l+1
2
kγ if l is odd.

Theorem 1. For any k ≥ 2, l ≥ 4 and γ ≥ 3 we have

k

⌈(
l − 1

2
− 1

)
γ

⌉
< ndc(k, γ, l) ≤ f(k, γ, l).

Or we can state it in “Meier, Moon [4] style”:

Theorem 2. If H is a connected k-uniform hypegraph with |V (H)| = n and l > 4, then

γdc(H, l) ≤
n

k
· 2

l − 3
.
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Problem 1. Close the gap of roughly 2kγ between the upper and lower bounds in Theorem 1.
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