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Università di Roma ”Tor Vergata”

4th Workshop on Fourier Analysis

Budapest, August 26-30, 2013



State preserving C∗-dynamical systems

Let us denote for a C∗-algebra A by End (A)

the semigroup of all ∗-endomorphisms of A

and by Aut(A) the group of all ∗-automorphisms

of A .

A state preserving C∗-dynamical system is a

quadruple (A ,S , α , ϕ) consisting of a C∗-algebra

A , a semigroup S , a semigroup-homomorphism

α : S 3 s 7−→ αs ∈ End(A) ,

and a state ϕ of A , such that the invariance

condition

ϕ ◦ αs = ϕ , s ∈ S .

is satisfied. We shall always assume that S

is unital and α maps the unit of S into the

identity automorphism of A .

If A is a W ∗-algebra, the ∗-endomorphisms αs
are normal and ϕ is normal state, then we call



(A ,S , α , ϕ) a state preserving W ∗-dynamical

system.

Let (A ,S , α , ϕ) be a state preserving C∗-dyna-

mical system and let us consider the GNS-

representation

πϕ : A −→ B(Hϕ)

of ϕ with canonical cyclic vector ξϕ . Then

Usπϕ(x)ξϕ = πϕ
(
αs(x)

)
ξϕ , x ∈ A

defines a linear isometry Us : Hϕ −→ Hϕ and

S 3 s 7−→ Us

is a representation of S by linear isometries on

Hϕ satisfying

Usπϕ(a) = πϕ
(
αs(a)

)
Us , s ∈ S

and

Us ξϕ = ξϕ , s ∈ S .



If S is a group then every αs is a ∗-automorphism,

S 3 s 7−→ Us is a unitary representation and,

for every s ∈ S and a ∈ A ,

πϕ
(
αs(a)

)
= Usπϕ(a)U ∗s = Ad(Us)πϕ(a) . (1)

Therefore, denoting by M the von Neumann

algebra πϕ(A)′′ ⊂ B(Hϕ) and by ωξϕ the vector

state

M 3 T 7−→ (Tξϕ|ξϕ) ,

we can define a state preserving W ∗-dynamical

system (M ,S , β , ωξϕ) by putting

βs = Ad(Us) , s ∈ S .

According to (1), the GNS-representation πϕ

yields a natural imbedding of the original C∗-
dynamical system (A ,S , α , ϕ) in the W ∗-dyna-

mical system (M ,S , β , ωξϕ) .

If S is not a group, it can happen that for

some a ∈ A and s ∈ S we have πϕ(a) = 0 but



πϕ
(
αs(a)

)
6= 0 , so cannot exist state preserv-

ing W ∗-dynamical system (M ,S , β , ωξϕ) sat-
isfying

πϕ
(
αs(a)

)
= βs

(
πϕ(a)

)
and therefore we cannot imbed (A ,S , α , ϕ) in
a W ∗-dynamical system (M ,S , β , ωξϕ) with an
appropriate action β .

Nevertheless, if the support projection of ϕ in
the second dual A∗∗ belongs to the centre of
A∗∗ , what means that the cyclic vector ξϕ is
also separating for πϕ(A)′′, then for arbitrary
S we have a (uniquely defined) state preserv-
ing W ∗-dynamical system (M ,S , β , ωξϕ) sat-
isfying

πϕ
(
αs(a)

)
= βs

(
πϕ(a)

)
for all s ∈ S and a ∈ A . This happens, for
example, if ϕ is a trace.

Moreover, if S is a topological semigroup and
the two-point functions

S 3 s 7−→ ϕ
(
yαs(x)

)
, x , y ∈ A



are continuous, then the isometry semigroup

S 3 s 7−→ Us

is continuous with respect to the weak oper-

ator topology, hence also with respect to the

strong operator topology. It follows that the

orbits

S 3 s 7−→ βs(T ) , T ∈M

are continuous with respect to the strong op-

erator topology.



Almost periodicity and weakly mixing

Let M ⊂ B(H) be a von Neumann algebra

having a cyclic and separating vector ξo of unit

lenght, S a locally compact unital semigroup

and

α : S 3 s 7−→ αs

a unital semigroup homomorphism of S in the

semigroup of all normal ∗-endomorphisms of

M , which is continuous with respect to the

pointwise strong operator topology and which

leaves invariant ωξo :

ωξo ◦ αs = ωξo , s ∈ S .

We define the strongly continuous isometry

semigroup

S 3 s 7−→ Us

by

Usxξo = αs(x)ξo , x ∈M .



We say that the dynamical system (M ,S , α , ωξo)

is almost periodic if all orbits

{Us ξ ; s ∈ S} ⊂ H , ξ ∈ H

are relatively norm-compact and we say that

it is weakly mixing (to 0) if {0} ⊂ H is the

only relatively norm-compact orbit of U .

Weakly mixing is usually described by some

equivalent convergence property. For exam-

ple, in the case of the additive semigroup

S = N of all integers n ≥ 0 , by a classical the-

orem of B. O. Koopman and John von Neu-

mann (see (4))(M ,N , α , ωξo) is weakly mixing

to 0 if and only if, for every ao , a1 ∈M ,

ωξo

(
aoαn(a1)

)
−→ 0

for n→∞ avoiding a zero density set of nat-

ural numbers, or equivalently,

lim
n→∞

1

n

n−1∑
k=0

∣∣∣ωξo(aoαk(a1)
)∣∣∣ = 0 . (2)



Similar descriptions are possible in the case

of an amenable group S by replacing in (2)

the sequence {0,1, ... n − 1} , n ≥ 1 , with a

Følner sequence, the sum with the integral

with respect to the Haar measure, and the

denominators n with the Haar measure of the

sets in the used Følner sequence.

In the general case we denote by HAP the set

of all ξ ∈ H for which {Us ξ ; s ∈ S} is relatively

norm-compact. Then HAP is a U-invariant

closed linear subspace of H . Even more, we

have U
(
HAP

)
= HAP , so also H 	HAP is U-

invariant.

We notice that if S 3 s 7−→ Us is just a strongly

continuous bounded semigroup of bounded

linear operators on H (so the operators Us are

not assumed to be isometries) then H 	HAP
is not necessarily U-invariant. One can ask

to find an U-invariant closed linear subspace

of H such that H is the direct sum of HAP



and this subspace. This is the subject of the

splitting theorem of Konrad Jacobs (see (3))

which was extended to more general Banach

spaces by Karel Deleeuw and Irwing Glicks-

berg (see (1)).

However there is no hope to split the von Neu-

mann algebra M in a direct sum of α-invariant

subalgebras and we have to look for an other

kind of ”splitting”. In fact we can show (in

the case of S = N done by C. Niculescu, A.

Ströh and L. Zs., see (5) Theorem 4.2 and

Proposition 5.5) that there exists a greatest

α-invariant von Neumann subalgebra MAP of

M with the following properties:

• MAP ξo is a dense linear subspace of HAP ;

• MAP is the weak∗-closed linear span of the

union of all finite-dimensional α-invariant

linear subspaces of M ;



• the restriction of every endomorphism αs

to MAP is a ∗-automorphism of MAP ;

• any α-invariant von Neumann subalgebra

N of M , such that the state preserving dy-

namical system (N ,S , α , ωξo|N) is almost

periodic, is contained in MAP ;

• MAP is left invariant by the modular au-

tomorphism group of the faithful normal

state ωξϕ of M . Thus there exists a faith-

ful normal conditional expectation E of M

onto MAP which leaves invariant the state

ωξo and commutes with the action α .

Instead of a weakly mixing factor we have a

relative weakly mixing property which can be

described by replacing the state ωξo with the

conditional expectation E : M −→ MAP . For



example, in the case of the additive semigroup

S = N we have for every ao , a1 ∈M

E

(
aoαn(a1)− E(ao)αn

(
E(a1)

))
−→ 0

with respect to the weak operator topology

for n→∞ avoiding a zero density set of nat-

ural numbers. In many cases (but not always)

the above convergence holds with respect to

the strong operator topology. This happens,

for example, if M is commutative, in which

case one can prove (H. Furstenberg, see (2)

Theorem 8.3) that for every integer p ≥ 1 and

every ao , a1 , ... , ap ∈M we have

E

(
aoαn(a1) ... αpn(ap)

− E(ao)αn
(
E(a1)

)
... αpn

(
E(ap)

))
−→ 0

with respect to the strong operator topology

for n→∞ avoiding a zero density set of nat-

ural numbers.



Proof idea

Let (M ,S , α , ωξo) be a state preserving W ∗-
dynamical system as above.

First we prove that, for every weak∗-closed

linear subspace N of M satisfying N ′ξo = H

and Nξo ⊂ HAP , the set G of all linear con-

tractions Θ : N −→ N for which

Θ(T )ξo ∈ {UsTξo ; s ∈ S} , T ∈ N ,

endowed with the topology of the pointwise

strong operator convergence, is a compact

topological group with respect to composi-

tion, having the identical map of N as neutral

element. Moreover, every Θ ∈ G is weak∗-
continuous and G has the following recurrence

property:

For every integer p ≥ 1 ,

Θ1, ...Θp ∈ G , T1, ... Tp ∈ N , ξ1, ... ξp ∈ H



and ε > 0 , there exists a relatively dense (=

syndetic) set N ⊂ N such that∥∥∥Θn
j (Tj)ξj − Tjξj

∥∥∥ ≤ ε , 1 ≤ j ≤ p , n ∈ N .

Afterwards, we define

MAP =
{
x ∈M ; xξo ∈ HAP

}
and apply the above statement to N = MAP .

It turns out that every αs belongs to G and

we can use facts from the theory of Banach

space representations of compact groups.



An application

Let (M ,N , α , ωξo) be a state preserving C∗-
dynamical system as above and let us assume

that M is commutative.

For every 0 ≤ a ∈ M and ε > 0 there exists a

zero density set D ⊂ N and an integer nε ≥ 1

such that∣∣∣∣∣ωξo(aαn(a) ... αpn(a)
)

− ωξo

(
E(a)αn

(
E(a)

)
... αpn

(
E(a)

)))∣∣∣∣∣
=

∣∣∣∣∣ωξo
(
E

(
aαn(a) ... αpn(a)

− E(a)αn
(
E(a)

)
... αpn

(
E(a)

)))∣∣∣∣∣ ≤ ε

2

for nε ≤ n /∈ D . Since E(a) ∈ MAP and α is

almost periodic on MAP , there exists a rela-



tively dense (= syndetic) set N ⊂ N such that∣∣∣∣∣ωξo
(
E(a)αn

(
E(a)

)
... αpn

(
E(a)

)))

− ωξo
(
E(a)p

))∣∣∣∣∣ ≤ ε

2

for n ∈ N . Consequently∣∣∣∣ωξo(aαn(a) ... αpn(a)
)
− ωξo

(
E(a)p

)∣∣∣∣ ≤ ε
and so

ωξo

(
aαn(a) ... αpn(a)

)
≥ ωξo

(
E(a)p

)
− ε

for all nε ≤ n ∈ N \D . We notice that the set
{n ∈ N \D ;n ≥ nε} is of strictly positive lower
density.

In particular, if 0 ≤ a ∈M and a 6= 0 , then

aαn(a) ... αpn(a) 6= 0

for all n belonging to a natural number set
of strictly positive lower density. This is the
ergodic theoretical version of E. Szemerédi’s
celebrated heorem on arithmetical progressions
solving a conjecture of P. Erdős and P. Turán
(see (6) and (2)).
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