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1. Partial sums of Fourier series

The Lp(T) space is equipped with the norm (or quasi-norm)

‖f‖p :=

{ (∫
T |f |

p dλ
)1/p

, 0 < p <∞;

supT |f |, p =∞,

where T := [−π, π].

The Fourier coefficients and partial sums of the Fourier series of f ∈
L1(T) is defined by

f̂ (k) :=
1

2π

∫
T
f (x)e−ıkx dx (k ∈ Z),

snf (x) :=
∑
|k|≤n

f̂ (k)eıkx (n ∈ N).
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Theorem 1 (Riesz). If f ∈ Lp(T) for some 1 < p <∞ then

‖snf‖p ≤ Cp ‖f‖p (n ∈ N)

and

lim
n→∞

snf = f in Lp-norm.

Theorem 2 (Carleson, Hunt). If f ∈ Lp(T) for some 1 < p < ∞
then ∥∥∥∥sup

n∈N
|snf |

∥∥∥∥
p

≤ Cp ‖f‖p

and if 1 < p ≤ ∞ then

lim
n→∞

snf = f a.e.
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2. Summability of one-dimensional Fourier
series

The Fejér and Riesz means are given by

σnf (x) :=
1

n

n−1∑
k=0

skf (x) =
∑
|j|≤n

(
1− |j|

n

)
f̂ (j)eıjx

and

σαnf (x) :=
∑
|j|≤n

(
1−

(
|j|
n

)γ)α
f̂ (j)eıjx

with 0 < α <∞, 1 ≤ γ <∞. Let

σα∗ f := sup
n∈N
|σαnf | .
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Corollary 1 (Zygmund, Riesz). If 0 < α < ∞ and f ∈ L1(T)
then

‖σα∗ f‖1,∞ = sup
ρ>0

ρ λ (σα∗ f > ρ) ≤ C ‖f‖1 .

This weak type (1, 1) inequality and the density argument of Marcin-
kiewicz and Zygmund imply

Corollary 2 (Lebesgue, Riesz). If 0 < α <∞ and f ∈ L1(T) then

lim
n→∞

σαnf = f a.e.
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Theorem 3 (Marcinkiewicz, Zygmund). Suppose that X0 ⊂ Lp is
dense in Lp. Let Tn (n ∈ N) be linear operators such that

lim
n→∞

Tnf = f a.e. for every f ∈ X0.

If

sup
ρ>0

ρ λ (T∗f > ρ)1/p ≤ C ‖f‖p (f ∈ Lp)

for some 1 ≤ p <∞, then

lim
n→∞

Tnf = f a.e. for every f ∈ Lp,

where

T∗f := sup
n∈N
|Tnf | (f ∈ Lp).
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3. More-dimensional partial sums

Let

u · x :=

d∑
k=1

ukxk, ‖x‖q :=

{ (∑d
k=1 |xk|q

)1/q
, 0 < q <∞;

supi=1,...,d |xi|, q =∞.

Taking the Kronecker product of d trigonometric systems we obtain
the d-dimensional trigonometric system:

eık·x =

d∏
j=1

eıkjxj.

The Fourier coefficients of an integrable function are given by

f̂ (k) =
1

(2π)d

∫
Td
f (x)e−ık·x dx (k ∈ Zd).
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For f ∈ L1(Td) the nth `q-partial sum (q = 1 triangular, q = 2
circular, q =∞ cubic partial sum) sqnf (n ∈ N) is given by

sqnf (x) :=
∑

k∈Zd,‖k‖q≤n

f̂ (k)eık·x =
1

(2π)d

∫
Td
f (x− u)Dq

n(u) du

where

Dq
n(u) :=

∑
k∈Zd,‖k‖q≤n

eık·u

is the `q Dirichlet kernel.
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Figure 1. Regions of the `q-partial sums for d = 2.
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Theorem 4 (Fefferman). If q = 1,∞ and f ∈ Lp(Td) for some
1 < p <∞ then

‖sqnf‖p ≤ Cp ‖f‖p (n ∈ N)

and

lim
n→∞

sqnf = f in Lp-norm.

If q = 2 then the same result is valid only for p = 2.

Theorem 5 (Fefferman). If q = 1,∞ and f ∈ Lp(Td) for some
1 < p <∞ then ∥∥∥∥sup

n∈N
|sqnf |

∥∥∥∥
p

≤ Cp ‖f‖p

and if 1 < p ≤ ∞, then

lim
n→∞

sqnf = f a.e.
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Theorem 5 does not hold for circular partial sums.

Theorem 6 (Stein and Weiss). If q = 2 and p < 2d/(d + 1), then
there exists a function f ∈ Lp(Td) whose circular partial sums
sqnf diverge almost everywhere. For p = 2 it is an open problem.
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4. `q-summability

The `q Fejér and Riesz means of f are defined by

σqnf (x) =
∑

k∈Zd,‖k‖q≤n

(
1− ‖k‖q

n

)
f̂ (k)eık·x

=
1

(2π)d

∫
Td
f (x− u)Kq

n(u) du,

σq,αn f (x) =
∑

k∈Zd,‖k‖q≤n

(
1−

(
‖k‖q
n

)γ)α
f̂ (k)eık·x

=
1

(2π)d

∫
Td
f (x− u)Kq,α

n (u) du,
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where the `q Fejér- and Riesz kernels are given by

Kq
n(u) :=

∑
k∈Zd,‖k‖q≤n

(
1− ‖k‖q

n

)
eık·u

and

Kq,α
n (u) :=

∑
k∈Zd,‖k‖q≤n

(
1−

(
‖k‖q
n

)γ)α
eık·u.

Then

σqnf (x) =
1

n

n−1∑
k=0

sqkf (x) (q = 1, q =∞).
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The nth divided difference of a function f is introduced as

[x1]f := f (x1), [x1, . . . , xn]f :=
[x1, . . . , xn−1]f − [x2, . . . , xn]f

x1 − xn
.

It is known that

D1
n(x) = [cosx1, . . . , cosxd]Gn, (x ∈ Td),

where

Gn(cosx) := (−1)[(d−1)/2]2 cos(x/2)(sinx)d−2soc ((n + 1/2)x)

and

socx :=

{
cosx, if d is even;
sinx, if d is odd.
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If d = 1 then

D1
n(x) = Dq

n(x) =
sin((n + 1/2)x)

sin(x/2)
,

if d = 2 then

D1
n(x) = [cos x1, cosx2]Gn =

[cosx1]Gn − [cosx2]Gn

cosx1 − cosx2

= 2
cos(x1/2) cos((n + 1/2)x1)− cos(x2/2) cos((n + 1/2)x2)

cosx1 − cosx2
.

The cubic Dirichlet kernels can be given by

D∞n (x) =

d∏
i=1

sin((n + 1/2)xi)

sin(xi/2)
.
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If q = 2 then the continuous version of the Dirichlet kernel

D2
t (x) :=

∫
Rd

1{‖v‖2≤t}e
ıx·v dv

can be expressed as

D2
t (x) = ‖x‖−d/22 td/2Jd/2 (2π‖x‖2t) ,

where

Jν(t) =
(t/2)ν√

π Γ(ν + 1/2)

∫ 1

−1
eıts(1−s2)v−1/2 ds (ν > −1/2, t > 0)

are the Bessel functions.
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5. Norm convergence of the summability

A Banach space B consisting of measurable functions on Td is called
a homogeneous Banach space, if

(i) ‖f‖1 ≤ C‖f‖B for all f ∈ B,
(ii) for all f ∈ B and x ∈ Td, Txf := f (· − x) ∈ B and
‖Txf‖B = ‖f‖B,

(iii) the function x 7→ Txf from Td to B is continuous for all
f ∈ B.

It is easy to see that the spaces Lp(Td) (1 ≤ p <∞), C(Td), Lorentz
spaces Lp,q(Td) (1 < p < ∞, 1 ≤ q < ∞) and Hardy space H1(Td)
are homogeneous Banach spaces.
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Theorem 7. If q = 1,∞ and α > 0 then∫
Td
|Kq,α

n (x)| dx ≤ C (n ∈ N).

If q = 2 then the same holds for α > (d− 1)/2.

Theorem 8. If q = 1,∞, α > 0 and B is a homogeneous Banach
space on Td then

‖σq,αn f‖B ≤ C ‖f‖B (n ∈ N)

and

lim
n→∞

σq,αn f = f in B-norm for all f ∈ B.

If q = 2 then the same holds for α > (d− 1)/2.

The inequality holds also for B = L∞(Td).
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6. Circular Bochner-Riesz means (q = γ = 2)

Theorem 9. Suppose that d ≥ 2 and q = γ = 2. If 0 ≤ α ≤
(d− 1)/2 and

p ≤ 2d

d + 1 + 2α
or p ≥ 2d

d− 1− 2α
,

then the Bochner-Riesz operators σ2,αn are not uniformly bounded
on Lp(Td) (see Figure 2).
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Figure 2. Uniform unboundedness of σ2,α
n .
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Theorem 10 (Carleson and Sjölin). Suppose that d = 2 and q =
γ = 2. If 0 < α ≤ 1/2 and

4

3 + 2α
< p <

4

1− 2α
,

then the Bochner-Riesz operators σ2,αn are uniformly bounded on
Lp(Td) (see Figure 3).
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Figure 3. Uniform boundedness of σ2,α
n when d = 2.
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Theorem 11 (Fefferman). Suppose that d ≥ 3 and q = γ = 2. If
d−1

2(d+1) ≤ α ≤ d−1
2 and

2d

d + 1 + 2α
< p <

2d

d− 1− 2α
,

then the Bochner-Riesz operators σ2,αn are uniformly bounded on
Lp(Td) (see Figure 4).

Theorem 12 (Stein and Weiss). Suppose that d ≥ 3 and q = γ =
2. If 0 < α < d−1

2(d+1) and

2(d− 1)

d− 1 + 4α
< p <

2(d− 1)

d− 1− 4α
,

then the Bochner-Riesz operators σ2,αn are uniformly bounded on
Lp(Td) (see Figure 4).
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Figure 4. Uniform boundedness of σ2,α
n when d ≥ 3.
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Figure 5. Open question of the uniform boundedness of σ2,α
n when d ≥ 3.
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7. Hp(Td) Hardy spaces

A function f is in the periodic Hardy space Hp(Td) (0 < p ≤ ∞) if

‖f‖Hp :=

∥∥∥∥sup
0<t

∣∣f ∗ P d
t

∣∣∥∥∥∥
p

<∞,

where

P d
t (x) :=

∑
m∈Zd

e−t‖m‖2e2πım·x (x ∈ Td, t > 0)

is the d-dimensional Poisson kernel. Then

Hp(Td) ∼ Lp(Td) (1 < p ≤ ∞).
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The atomic decomposition is a useful characterization of Hardy spaces.
A bounded function a is a Hp-atom if there exists a cube I ⊂ Td such
that

supp a ⊂ I,

‖a‖∞ ≤ |I|−1/p,∫
I

a(x)xk dx = 0 for all multi-indices k = (k1, . . . , kd)

with ‖k‖2 ≤ [d(1/p− 1)].
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Theorem 13. A function f is in Hp(Td) (0 < p ≤ 1) if and only
if there exist a sequence (ak, k ∈ N) of Hp-atoms and a sequence
(µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p <∞ and
∞∑
k=0

µka
k = f in the sense of distributions.

Moreover,

‖f‖Hp ∼ inf

( ∞∑
k=0

|µk|p
)1/p

.
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Theorem 14. For each n ∈ Nd, let Vn : L1(Td) → L1(Td) be a
bounded linear operator and let

V∗f := sup
n∈Nd
|Vnf |.

Suppose that ∫
Td\I
|V∗a|p0 dλ ≤ Cp0

for all Hp0-atoms a and for some fixed 0 < p0 ≤ 1, where the cube
I is the support of the atom. If V∗ is bounded from Lp1(Td) to
Lp1(Td) for some 1 < p1 ≤ ∞, then

‖V∗f‖p ≤ Cp ‖f‖Hp (f ∈ Hp(Td))

for all p0 ≤ p ≤ p1.
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8. A.e. convergence of the `q-summability

The maximal operator is defined by

σq,α∗ f := sup
n∈N
|σq,αn f | .

If f ∈ L∞(Td), then

‖σq,α∗ f‖∞ ≤ C ‖f‖∞ .

Moreover, if f ∈ Lp(Td) for some 1 < p <∞, then

‖σq,α∗ f‖p ≤ Cp ‖f‖p .
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Theorem 15 (Oswald, Weisz). If q = 1,∞, α > 0 and
d/(d + 1) < p ≤ ∞ then

‖σq,α∗ f‖p ≤ Cp ‖f‖Hp (f ∈ Hp(Td))

and for f ∈ Hd/(d+1)(Td),

‖σq,α∗ f‖d/(d+1),∞ = sup
ρ>0

ρλ (σq,α∗ f > ρ)(d+1)/d ≤ C ‖f‖Hd/(d+1)
.

If q = 2 and α > (d − 1)/2 then the same holds with the critical
index d/(d/2 + α + 1/2) instead of d/(d + 1).
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Theorem 16 (Stein, Taibleson, Weiss, Oswald). If q = ∞ and
α = 1 (resp. q = 2) then the operator σq,α∗ is not bounded from
Hp(Td) to Lp(Td) if p is smaller or equal to the critical index
d/(d + 1) (resp. d/(d/2 + α + 1/2)).

Corollary 3 (Marcinkiewicz, Zhizhiashvili, Stein, Weiss, Oswald,
Berens, Weisz). Suppose that q = 1,∞ and α > 0 or q = 2 and
α > (d− 1)/2. If f ∈ L1(Td) then

‖σq,α∗ f‖1,∞ = sup
ρ>0

ρλ (σq,α∗ f > ρ) ≤ C ‖f‖1 .

Corollary 4 (Marcinkiewicz, Zhizhiashvili, Oswald, Stein, Weiss,
Berens, Weisz). Suppose that q = 1,∞ and α > 0 or q = 2 and
α > (d− 1)/2. If f ∈ L1(Td) then

lim
n→∞

σq,αn f = f a.e.
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9. Circular Bochner-Riesz means (q = γ = 2)

Theorem 17 (Tao). Suppose that d ≥ 2 and q = γ = 2. If
0 < α ≤ (d− 1)/2 and

1 < p <
2d− 1

d + 2α
or p >

2d

d− 1− 2α
,

then the maximal operator σ2,α∗ is not bounded on Lp(Td) (see
Figure 6).
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Figure 6. Unboundedness of σ2,α
∗ on Lp(Td).
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Theorem 18 (Carbery). Suppose that d = 2 and q = γ = 2. If
0 < α ≤ 1/2 and

2

1 + 2α
< p <

4

1− 2α
,

then the maximal Bochner-Riesz operator σ2,α∗ is bounded on Lp(Td)
(see Figure 7).
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Figure 7. Boundedness of σ2,α
∗ on Lp(Td) when d = 2.
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Theorem 19 (Christ). Suppose that d ≥ 3 and q = γ = 2. If
d−1

2(d+1) ≤ α ≤ d−1
2 and

2(d− 1)

d− 1 + 2α
< p <

2d

d− 1− 2α
,

then the maximal Bochner-Riesz operator σ2,α∗ is bounded on Lp(Td)
(see Figure 8).

Theorem 20 (Stein and Weiss). Suppose that d ≥ 3 and q = γ =
2. If 0 < α < d−1

2(d+1) and

2(d− 1)

d− 1 + 2α
< p <

2(d− 1)

d− 1− 4α
,

then the maximal Bochner-Riesz operator σ2,α∗ is bounded on Lp(Td)
(see Figure 8).
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Figure 8. Boundedness of σ2,α
∗ on Lp(Td) when d ≥ 3.
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It is still an open question as to whether σ2,α∗ is bounded or unbounded
in the region of Figure 9. If d = 2, then the question is open on the
right hand side of the region of Figure 9 only, i.e., for 1/p ≥ 1/2.

Figure 9. Open question of the boundedness of σ2,α
∗ when d ≥ 3.
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Theorem 21 (Carbery, Rubio de Francia and Vega). Suppose that
d ≥ 2 and q = γ = 2. If 0 < α ≤ (d− 1)/2 and

2(d− 1)

d− 1 + 2α
< p <

2d

d− 1− 2α
,

then for all f ∈ Lp(Td)

lim
n→∞

σq,αn f = f a.e.

(see Figure 10).
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Figure 10. Almost everywhere convergence of σq,αn f , f ∈ Lp(Td).
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This talk is based on my work:

F. Weisz: Summability of Multi-Dimensional Trigonometric Fourier
Series. Surveys in Approximation Theory, 7, 1-179, 2012
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