Summability of multi-dimensional Fourier series

4th Workshop on Fourier Analysis and Related Fields 26-30 August, 2013, Budapest

> FERENC WEISZ Department of Numerical Analysis Eötvös Loránd University Hungary E-mail: weisz@inf.elte.hu

1. PARTIAL SUMS OF FOURIER SERIES The $L_p(\mathbb{T})$ space is equipped with the norm (or quasi-norm)

$$||f||_p := \begin{cases} \left(\int_{\mathbb{T}} |f|^p \, d\lambda \right)^{1/p}, \ 0$$

where $\mathbb{T} := [-\pi, \pi]$.

The Fourier coefficients and partial sums of the Fourier series of $f \in L_1(\mathbb{T})$ is defined by

$$\widehat{f}(k) := \frac{1}{2\pi} \int_{\mathbb{T}} f(x) e^{-\imath kx} \, dx \qquad (k \in \mathbb{Z}),$$

$$s_n f(x) := \sum_{|k| \le n} \widehat{f}(k) e^{ikx} \qquad (n \in \mathbb{N}).$$

Theorem 1 (Riesz). If $f \in L_p(\mathbb{T})$ for some 1 then $<math>\|s_n f\|_p \le C_p \|f\|_p$ $(n \in \mathbb{N})$

and

$$\lim_{n \to \infty} s_n f = f \qquad in \ L_p \text{-norm.}$$

Theorem 2 (Carleson, Hunt). If $f \in L_p(\mathbb{T})$ for some 1 then

$$\left\| \sup_{n \in \mathbb{N}} |s_n f| \right\|_p \le C_p \left\| f \right\|_p$$

and if 1 then

$$\lim_{n \to \infty} s_n f = f \qquad a.e.$$

2. Summability of one-dimensional Fourier series

The Fejér and Riesz means are given by

$$\sigma_n f(x) := \frac{1}{n} \sum_{k=0}^{n-1} s_k f(x) = \sum_{|j| \le n} \left(1 - \frac{|j|}{n} \right) \widehat{f}(j) e^{ijx}$$

and

$$\sigma_n^{\alpha} f(x) := \sum_{|j| \le n} \left(1 - \left(\frac{|j|}{n}\right)^{\gamma} \right)^{\alpha} \widehat{f}(j) e^{ijx}$$

with $0 < \alpha < \infty, 1 \leq \gamma < \infty$. Let

$$\sigma_*^{\alpha} f := \sup_{n \in \mathbb{N}} |\sigma_n^{\alpha} f|.$$

Corollary 1 (Zygmund, Riesz). If $0 < \alpha < \infty$ and $f \in L_1(\mathbb{T})$ then

$$\|\sigma_*^{\alpha}f\|_{1,\infty} = \sup_{\rho>0} \rho \,\lambda \left(\sigma_*^{\alpha}f > \rho\right) \le C \,\|f\|_1.$$

This weak type (1, 1) inequality and the density argument of Marcinkiewicz and Zygmund imply

Corollary 2 (Lebesgue, Riesz). If $0 < \alpha < \infty$ and $f \in L_1(\mathbb{T})$ then

$$\lim_{n \to \infty} \sigma_n^{\alpha} f = f \qquad a.e.$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Theorem 3 (Marcinkiewicz, Zygmund). Suppose that $X_0 \subset L_p$ is dense in L_p . Let T_n $(n \in \mathbb{N})$ be linear operators such that

$$\lim_{n \to \infty} T_n f = f \quad a.e. \text{ for every } f \in X_0.$$

$$\sup_{\rho>0} \rho \lambda \left(T_* f > \rho\right)^{1/p} \le C \left\|f\right\|_p \qquad (f \in L_p)$$

for some $1 \leq p < \infty$, then

$$\lim_{n \to \infty} T_n f = f \quad a.e. \text{ for every } f \in L_p,$$

where

If

$$T_*f := \sup_{n \in \mathbb{N}} |T_n f| \qquad (f \in L_p).$$

3. MORE-DIMENSIONAL PARTIAL SUMS Let

$$u \cdot x := \sum_{k=1}^{d} u_k x_k, \qquad \|x\|_q := \begin{cases} \left(\sum_{k=1}^{d} |x_k|^q\right)^{1/q}, \ 0 < q < \infty; \\ \sup_{i=1,\dots,d} |x_i|, \qquad q = \infty. \end{cases}$$

Taking the Kronecker product of d trigonometric systems we obtain the d-dimensional trigonometric system:

$$e^{ik \cdot x} = \prod_{j=1}^d e^{ik_j x_j}.$$

The Fourier coefficients of an integrable function are given by

$$\widehat{f}(k) = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x) e^{-ik \cdot x} \, dx \qquad (k \in \mathbb{Z}^d)$$

For $f \in L_1(\mathbb{T}^d)$ the *n*th ℓ_q -partial sum $(q = 1 \text{ triangular}, q = 2 \text{ circular}, q = \infty$ cubic partial sum) $s_n^q f$ $(n \in \mathbb{N})$ is given by

$$s_n^q f(x) := \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} \widehat{f}(k) e^{ik \cdot x} = \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x-u) D_n^q(u) \, du$$

where

$$D_n^q(u) := \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} e^{ik \cdot u}$$

is the ℓ_q Dirichlet kernel.

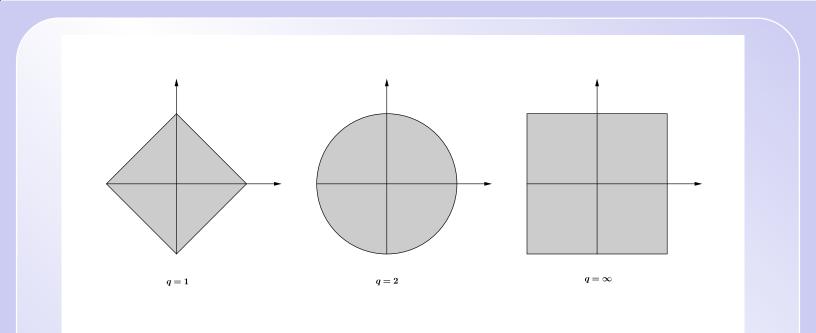


FIGURE 1. Regions of the ℓ_q -partial sums for d = 2.

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Theorem 4 (Fefferman). If $q = 1, \infty$ and $f \in L_p(\mathbb{T}^d)$ for some 1 then

$$\left\|s_{n}^{q}f\right\|_{p} \leq C_{p}\left\|f\right\|_{p} \qquad (n \in \mathbb{N})$$

and

$$\lim_{n \to \infty} s_n^q f = f \qquad in \ L_p \text{-norm.}$$

If q = 2 then the same result is valid only for p = 2.

Theorem 5 (Fefferman). If $q = 1, \infty$ and $f \in L_p(\mathbb{T}^d)$ for some 1 then

$$\left\|\sup_{n\in\mathbb{N}}|s_n^q f|\right\|_p \le C_p \,\|f\|_p$$

and if 1 , then

$$\lim_{n \to \infty} s_n^q f = f \qquad a.e.$$

Theorem 5 does not hold for circular partial sums.

Theorem 6 (Stein and Weiss). If q = 2 and p < 2d/(d+1), then there exists a function $f \in L_p(\mathbb{T}^d)$ whose circular partial sums $s_n^q f$ diverge almost everywhere. For p = 2 it is an open problem.

4. ℓ_q -SUMMABILITY

The ℓ_q Fejér and Riesz means of f are defined by

$$\begin{split} \sigma_n^q f(x) &= \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} \left(1 - \frac{\|k\|_q}{n} \right) \widehat{f}(k) e^{\imath k \cdot x} \\ &= \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x-u) K_n^q(u) \, du, \end{split}$$

$$\begin{split} \sigma_n^{q,\alpha} f(x) &= \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} \left(1 - \left(\frac{\|k\|_q}{n}\right)^{\gamma} \right)^{\alpha} \widehat{f}(k) e^{ik \cdot x} \\ &= \frac{1}{(2\pi)^d} \int_{\mathbb{T}^d} f(x-u) K_n^{q,\alpha}(u) \, du, \end{split}$$

where the ℓ_q Fejér- and Riesz kernels are given by

$$K_n^q(u) := \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} \left(1 - \frac{\|k\|_q}{n}\right) e^{ik \cdot u}$$

and

$$K_n^{q,\alpha}(u) := \sum_{k \in \mathbb{Z}^d, \|k\|_q \le n} \left(1 - \left(\frac{\|k\|_q}{n}\right)^{\gamma} \right)^{\alpha} e^{ik \cdot u}.$$

Then

$$\sigma_n^q f(x) = \frac{1}{n} \sum_{k=0}^{n-1} s_k^q f(x) \qquad (q = 1, q = \infty).$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

The *n*th divided difference of a function f is introduced as

$$[x_1]f := f(x_1), \qquad [x_1, \dots, x_n]f := \frac{[x_1, \dots, x_{n-1}]f - [x_2, \dots, x_n]f}{x_1 - x_n}$$

It is known that

$$D_n^1(x) = [\cos x_1, \dots, \cos x_d]G_n, \qquad (x \in \mathbb{T}^d),$$

where

$$G_n(\cos x) := (-1)^{[(d-1)/2]} 2\cos(x/2)(\sin x)^{d-2} \operatorname{soc}\left((n+1/2)x\right)$$

and

$$\operatorname{soc} x := \begin{cases} \cos x, & \text{if } d \text{ is even;} \\ \sin x, & \text{if } d \text{ is odd.} \end{cases}$$

If d = 1 then

$$D_n^1(x) = D_n^q(x) = \frac{\sin((n+1/2)x)}{\sin(x/2)},$$

if d = 2 then

$$D_n^1(x) = [\cos x_1, \cos x_2]G_n = \frac{[\cos x_1]G_n - [\cos x_2]G_n}{\cos x_1 - \cos x_2}$$
$$= 2\frac{\cos(x_1/2)\cos((n+1/2)x_1) - \cos(x_2/2)\cos((n+1/2)x_2)}{\cos x_1 - \cos x_2}$$

The cubic Dirichlet kernels can be given by

$$D_n^{\infty}(x) = \prod_{i=1}^d \frac{\sin((n+1/2)x_i)}{\sin(x_i/2)}.$$

If q = 2 then the continuous version of the Dirichlet kernel

$$D_t^2(x) := \int_{\mathbb{R}^d} \mathbf{1}_{\{\|v\|_2 \le t\}} e^{ix \cdot v} \, dv$$

can be expressed as

$$D_t^2(x) = \|x\|_2^{-d/2} t^{d/2} J_{d/2} \left(2\pi \|x\|_2 t\right),$$

where

$$J_{\nu}(t) = \frac{(t/2)^{\nu}}{\sqrt{\pi} \,\Gamma(\nu + 1/2)} \int_{-1}^{1} e^{its} (1 - s^2)^{\nu - 1/2} \, ds \qquad (\nu > -1/2, t > 0)$$

are the Bessel functions.

5. NORM CONVERGENCE OF THE SUMMABILITY

A Banach space B consisting of measurable functions on \mathbb{T}^d is called a *homogeneous Banach space*, if

(i)
$$||f||_1 \leq C ||f||_B$$
 for all $f \in B$,

- (ii) for all $f \in B$ and $x \in \mathbb{T}^d$, $T_x f := f(\cdot x) \in B$ and $\|T_x f\|_B = \|f\|_B$,
- (iii) the function $x \mapsto T_x f$ from \mathbb{T}^d to B is continuous for all $f \in B$.

It is easy to see that the spaces $L_p(\mathbb{T}^d)$ $(1 \le p < \infty)$, $C(\mathbb{T}^d)$, Lorentz spaces $L_{p,q}(\mathbb{T}^d)$ $(1 and Hardy space <math>H_1(\mathbb{T}^d)$ are homogeneous Banach spaces. **Theorem 7.** If $q = 1, \infty$ and $\alpha > 0$ then

$$\int_{\mathbb{T}^d} |K_n^{q,\alpha}(x)| \, dx \le C \qquad (n \in \mathbb{N}).$$

If q = 2 then the same holds for $\alpha > (d - 1)/2$.

Theorem 8. If $q = 1, \infty, \alpha > 0$ and B is a homogeneous Banach space on \mathbb{T}^d then

$$\|\sigma_n^{q,\alpha}f\|_B \le C \|f\|_B \qquad (n \in \mathbb{N})$$

and

$$\lim_{n \to \infty} \sigma_n^{q,\alpha} f = f \qquad in \ B \text{-norm for all } f \in B.$$

If q = 2 then the same holds for $\alpha > (d - 1)/2$. The inequality holds also for $B = L_{\infty}(\mathbb{T}^d)$. 6. CIRCULAR BOCHNER-RIESZ MEANS $(q = \gamma = 2)$ Theorem 9. Suppose that $d \ge 2$ and $q = \gamma = 2$. If $0 \le \alpha \le (d-1)/2$ and

$$p \le \frac{2d}{d+1+2\alpha}$$
 or $p \ge \frac{2d}{d-1-2\alpha}$

then the Bochner-Riesz operators $\sigma_n^{2,\alpha}$ are not uniformly bounded on $L_p(\mathbb{T}^d)$ (see Figure 2).

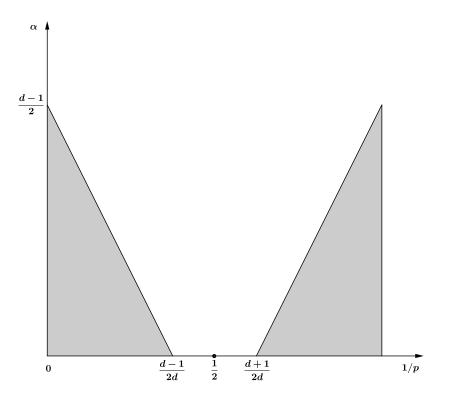


FIGURE 2. Uniform unboundedness of $\sigma_n^{2,\alpha}$.

Theorem 10 (Carleson and Sjölin). Suppose that d = 2 and $q = \gamma = 2$. If $0 < \alpha \le 1/2$ and

$$\frac{4}{3+2\alpha}$$

then the Bochner-Riesz operators $\sigma_n^{2,\alpha}$ are uniformly bounded on $L_p(\mathbb{T}^d)$ (see Figure 3).

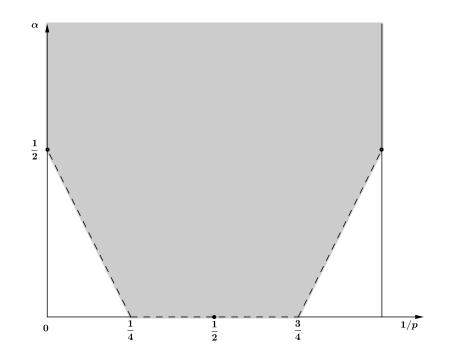


FIGURE 3. Uniform boundedness of $\sigma_n^{2,\alpha}$ when d = 2.

Theorem 11 (Fefferman). Suppose that $d \ge 3$ and $q = \gamma = 2$. If $\frac{d-1}{2(d+1)} \le \alpha \le \frac{d-1}{2}$ and

$$\frac{2d}{d+1+2\alpha}$$

then the Bochner-Riesz operators $\sigma_n^{2,\alpha}$ are uniformly bounded on $L_p(\mathbb{T}^d)$ (see Figure 4).

Theorem 12 (Stein and Weiss). Suppose that $d \ge 3$ and $q = \gamma = 2$. If $0 < \alpha < \frac{d-1}{2(d+1)}$ and

$$\frac{2(d-1)}{d-1+4\alpha}$$

then the Bochner-Riesz operators $\sigma_n^{2,\alpha}$ are uniformly bounded on $L_p(\mathbb{T}^d)$ (see Figure 4).

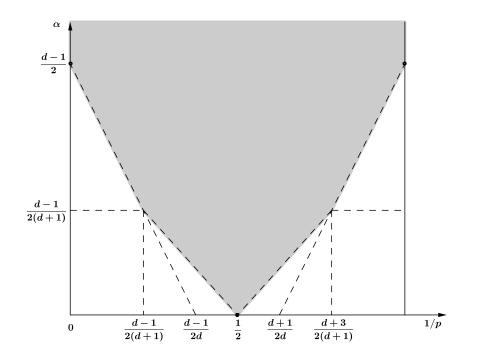


FIGURE 4. Uniform boundedness of $\sigma_n^{2,\alpha}$ when $d \ge 3$.

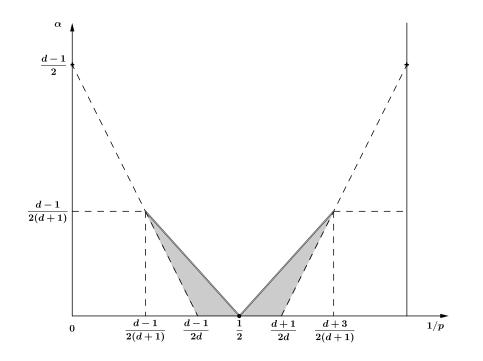


FIGURE 5. Open question of the uniform boundedness of $\sigma_n^{2,\alpha}$ when $d \ge 3$.

▪ First ■ Prev ■ Next ■ Last ■ Go Back ■ Full Screen ■ Close ■ Quit

7. $H_p(\mathbb{T}^d)$ Hardy spaces

A function f is in the periodic Hardy space $H_p(\mathbb{T}^d)$ (0 if

$$\|f\|_{H_p} := \left\|\sup_{0 < t} \left| f * P_t^d \right| \right\|_p < \infty,$$

where

$$P_t^d(x) := \sum_{m \in \mathbb{Z}^d} e^{-t \|m\|_2} e^{2\pi i m \cdot x} \qquad (x \in \mathbb{T}^d, t > 0)$$

is the *d*-dimensional *Poisson kernel*. Then

$$H_p(\mathbb{T}^d) \sim L_p(\mathbb{T}^d) \qquad (1$$

The atomic decomposition is a useful characterization of Hardy spaces. A bounded function a is a H_p -atom if there exists a cube $I \subset \mathbb{T}^d$ such that

supp
$$a \subset I$$
,
 $\|a\|_{\infty} \leq |I|^{-1/p}$,
 $\int_{I} a(x)x^{k} dx = 0$ for all multi-indices $k = (k_{1}, \dots, k_{d})$
with $\|k\|_{2} < [d(1/p-1)]$.

Theorem 13. A function f is in $H_p(\mathbb{T}^d)$ (0 if and only $if there exist a sequence <math>(a^k, k \in \mathbb{N})$ of H_p -atoms and a sequence $(\mu_k, k \in \mathbb{N})$ of real numbers such that

$$\sum_{k=0}^{\infty} |\mu_k|^p < \infty \quad and \quad \sum_{k=0}^{\infty} \mu_k a^k = f \quad in \ the \ sense \ of \ distributions.$$

Moreover,

$$\|f\|_{H_p} \sim \inf\left(\sum_{k=0}^{\infty} |\mu_k|^p\right)^{1/p}$$

●First ●Prev ●Next ●Last ●Go_Back ●Full Screen ●Close ●Quit

Theorem 14. For each $n \in \mathbb{N}^d$, let $V_n : L_1(\mathbb{T}^d) \to L_1(\mathbb{T}^d)$ be a bounded linear operator and let

$$V_*f := \sup_{n \in \mathbb{N}^d} |V_n f|.$$

Suppose that

$$\int_{\mathbb{T}^d \setminus I} |V_*a|^{p_0} \, d\lambda \le C_{p_0}$$

for all H_{p_0} -atoms a and for some fixed $0 < p_0 \leq 1$, where the cube I is the support of the atom. If V_* is bounded from $L_{p_1}(\mathbb{T}^d)$ to $L_{p_1}(\mathbb{T}^d)$ for some $1 < p_1 \leq \infty$, then

$$\|V_*f\|_p \le C_p \|f\|_{H_p} \qquad (f \in H_p(\mathbb{T}^d))$$

for all $p_0 \leq p \leq p_1$.

8. A.E. CONVERGENCE OF THE ℓ_q -SUMMABILITY The maximal operator is defined by

$$\sigma_*^{q,\alpha}f := \sup_{n \in \mathbb{N}} |\sigma_n^{q,\alpha}f|.$$

If $f \in L_{\infty}(\mathbb{T}^d)$, then

$$\|\sigma_*^{q,\alpha}f\|_{\infty} \le C \,\|f\|_{\infty} \,.$$

Moreover, if $f \in L_p(\mathbb{T}^d)$ for some 1 , then

$$\left\|\sigma_{*}^{q,\alpha}f\right\|_{p} \leq C_{p}\left\|f\right\|_{p}.$$

Theorem 15 (Oswald, Weisz). If $q = 1, \infty, \alpha > 0$ and d/(d+1) then

$$\left\|\sigma_{*}^{q,\alpha}f\right\|_{p} \leq C_{p}\left\|f\right\|_{H_{p}} \qquad (f \in H_{p}(\mathbb{T}^{d}))$$

and for $f \in H_{d/(d+1)}(\mathbb{T}^d)$,

$$\|\sigma_*^{q,\alpha}f\|_{d/(d+1),\infty} = \sup_{\rho>0} \rho\lambda \left(\sigma_*^{q,\alpha}f > \rho\right)^{(d+1)/d} \le C \|f\|_{H_{d/(d+1)}}$$

If q = 2 and $\alpha > (d - 1)/2$ then the same holds with the critical index $d/(d/2 + \alpha + 1/2)$ instead of d/(d + 1).

Theorem 16 (Stein, Taibleson, Weiss, Oswald). If $q = \infty$ and $\alpha = 1$ (resp. q = 2) then the operator $\sigma_*^{q,\alpha}$ is not bounded from $H_p(\mathbb{T}^d)$ to $L_p(\mathbb{T}^d)$ if p is smaller or equal to the critical index d/(d+1) (resp. $d/(d/2 + \alpha + 1/2)$).

Corollary 3 (Marcinkiewicz, Zhizhiashvili, Stein, Weiss, Oswald, Berens, Weisz). Suppose that $q = 1, \infty$ and $\alpha > 0$ or q = 2 and $\alpha > (d-1)/2$. If $f \in L_1(\mathbb{T}^d)$ then $\|\sigma_*^{q,\alpha}f\|_{1,\infty} = \sup_{\rho>0} \rho\lambda \ (\sigma_*^{q,\alpha}f > \rho) \leq C \|f\|_1$.

Corollary 4 (Marcinkiewicz, Zhizhiashvili, Oswald, Stein, Weiss, Berens, Weisz). Suppose that $q = 1, \infty$ and $\alpha > 0$ or q = 2 and $\alpha > (d-1)/2$. If $f \in L_1(\mathbb{T}^d)$ then $\lim_{n \to \infty} \sigma_n^{q,\alpha} f = f$ a.e. 9. CIRCULAR BOCHNER-RIESZ MEANS $(q = \gamma = 2)$ Theorem 17 (Tao). Suppose that $d \ge 2$ and $q = \gamma = 2$. If $0 < \alpha \le (d-1)/2$ and

$$1 \frac{2d}{d-1-2\alpha},$$

then the maximal operator $\sigma_*^{2,\alpha}$ is not bounded on $L_p(\mathbb{T}^d)$ (see Figure 6).

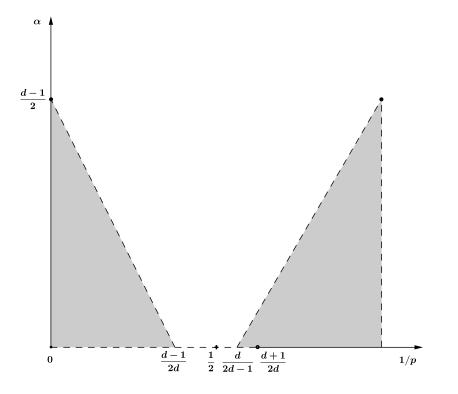


FIGURE 6. Unboundedness of $\sigma_*^{2,\alpha}$ on $L_p(\mathbb{T}^d)$.

Theorem 18 (Carbery). Suppose that d = 2 and $q = \gamma = 2$. If $0 < \alpha \le 1/2$ and

$$\frac{2}{1+2\alpha}$$

then the maximal Bochner-Riesz operator $\sigma_*^{2,\alpha}$ is bounded on $L_p(\mathbb{T}^d)$ (see Figure 7).

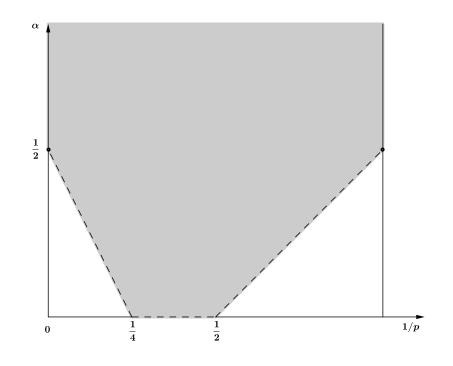


FIGURE 7. Boundedness of $\sigma_*^{2,\alpha}$ on $L_p(\mathbb{T}^d)$ when d=2.

Theorem 19 (Christ). Suppose that $d \ge 3$ and $q = \gamma = 2$. If $\frac{d-1}{2(d+1)} \le \alpha \le \frac{d-1}{2}$ and

$$\frac{2(d-1)}{d-1+2\alpha}$$

then the maximal Bochner-Riesz operator $\sigma_*^{2,\alpha}$ is bounded on $L_p(\mathbb{T}^d)$ (see Figure 8).

Theorem 20 (Stein and Weiss). Suppose that $d \ge 3$ and $q = \gamma = 2$. If $0 < \alpha < \frac{d-1}{2(d+1)}$ and

$$\frac{2(d-1)}{d-1+2\alpha}$$

then the maximal Bochner-Riesz operator $\sigma_*^{2,\alpha}$ is bounded on $L_p(\mathbb{T}^d)$ (see Figure 8).

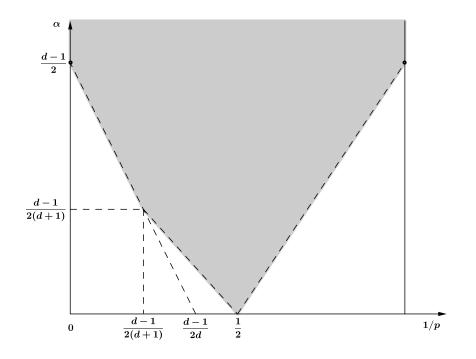


FIGURE 8. Boundedness of $\sigma_*^{2,\alpha}$ on $L_p(\mathbb{T}^d)$ when $d \geq 3$.

It is still an open question as to whether $\sigma_*^{2,\alpha}$ is bounded or unbounded in the region of Figure 9. If d = 2, then the question is open on the right hand side of the region of Figure 9 only, i.e., for $1/p \ge 1/2$.

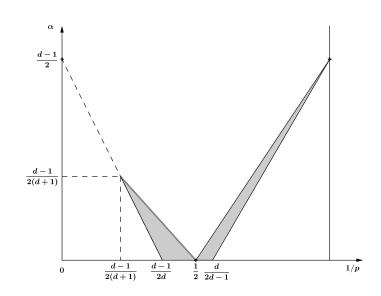


FIGURE 9. Open question of the boundedness of $\sigma_*^{2,\alpha}$ when $d \geq 3$.

Theorem 21 (Carbery, Rubio de Francia and Vega). Suppose that $d \ge 2$ and $q = \gamma = 2$. If $0 < \alpha \le (d-1)/2$ and

$$\frac{2(d-1)}{d-1+2\alpha}$$

then for all $f \in L_p(\mathbb{T}^d)$

$$\lim_{n \to \infty} \sigma_n^{q,\alpha} f = f \qquad a.e.$$

(see Figure 10).

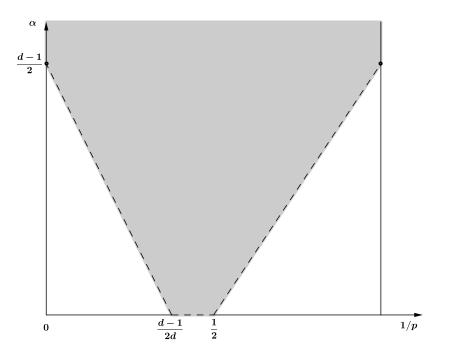


FIGURE 10. Almost everywhere convergence of $\sigma_n^{q,\alpha} f, f \in L_p(\mathbb{T}^d)$.

This talk is based on my work:

F. Weisz: Summability of Multi-Dimensional Trigonometric Fourier Series. Surveys in Approximation Theory, 7, 1-179, 2012