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1. PARTIAL SUMS OF FOURIER SERIES
The L,(T) space is equipped with the norm (or quasi-norm)

1/p
11l = { (L1 n)”, 0<p < o

supr | f1, = co.

where T := [—m, 7).

The Fourier coefficients and partial sums of the Fourier series of f €
L1(T) is defined by

1
S /T ey tdz (KD

= [(he” (ncN).

|k|<n



Theorem 1 (Riesz). If f € L,(T) for some 1 < p < oo then

and

i\ s, [ =i in L,-norm.
n—odo

Theorem 2 (Carleson, Hunt). If f € L,(T) for some 1 < p < oo
then

< Gl

p

sup |, f|
neN

and if 1 < p < oo then

iiNs,, = f a.e.
n—o0



2. SUMMABILITY OF ONE-DIMENSIONAL FOURIER
SERIES

The Fejér and Riesz means are given by
N — fracy —_— — ) ij
) = Skf(fv) N ( ) (4)e

and
o B N U A\ X ezjx
oifta) =3 (- (1)) 7o)

with 0 < a < 00,1 < v < 00. Let

e =D (o) f| -

neN



Corollary 1 (Zygmund, Riesz). If 0 < @ < oo and f € L{(T)
then

o fllioo = Slilgm(aii‘f > p) = CHHATE
p

This weak type (1, 1) inequality and the density argument of Marcin-
kiewicz and Zygmund imply

Corollary 2 (Lebesgue, Riesz). If 0 < a < oo and f € Ly(T) then

liWos o f — | a.e.
n—od



Theorem 3 (Marcinkiewicz, Zygmund). Suppose that Xy C L, is
dense in L,. Let T,, (n € N) be linear operators such that

lim T,f = f a.e. for every f € Xj.
n—oo

If
ST f > p)F < O|| [, RS

p>0

for some 1 < p < o0, then
NENE= N a.e. for every | € Ly,
n—>00

where

| (fc L)

neN



3. MORE-DIMENSIONAL PARTIAL SUMS
Let

d d ) 1/q 0 |
QRN — Zukxk, leal, — { (Zk:1 || ) , U< g < o0
k=1

upics,. alods  g= o0

Taking the Kronecker product of d trigonometric systems we obtain
the d-dimensional trigonometric system:

d

ezk-x N H ezkj:cj.

j=1
The Fourier coefficients of an integrable function are given by

Flk) = (2717>d /T d O s (k7%




For f € Li(T%) the nth £,-partial sum (¢ = 1 triangular, ¢ = 2
circular, ¢ = oo cubic partial sum) s f (n € N) is given by

Bi@)= Y Foe*e = | o u)Diw)du

S) d
keZd k)l <n (2} Vg

where

i) = D

kEZd,Hqugn

is the ¢, Dirichlet kernel.



FIGURE 1. Regions of the /,-partial sums for d = 2.
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Theorem 4 (Fefferman). If ¢ = 1,00 and f € L,(TY) for some
1 <p< oo then

|55 1lp < Cp ||l A

and
i s f —\8 in L,-norm.
n—odo

If g = 2 then the same result 1s valid only for p = 2.

Theorem 5 (Fefferman). If ¢ = 1,00 and f € L,(TY) for some
1 <p< oo then

< Gl

p

sup |1 f|
neN

and if 1 < p < oo, then

I SR a.e.
n—oo



Theorem 5 does not hold for circular partial sums.

Theorem 6 (Stein and Weiss). If g = 2 and p < 2d/(d + 1), then
there exists a function f € L,(TY) whose circular partial sums
sl f diverge almost everywhere. For p =2 it is an open problem.



4. £4-SUMMABILITY

The ¢, Fejér and Riesz means of f are defined by

giilo = N (1—”12”61)f(k)e@k-w

A (271T>d - f(z —u)K(u) du,

o) = Z (1 N (Hi”q)V)a A<k>€zk.g;

kGZd,HkHQSn




where the ¢, Fejér- and Riesz kernels are given by

Ki(u) — 8 (1 \ HZ\M) .

keZd ||k|lg<n
and
1 %]lo ) T
Kq’& e NN 7) u.
2 () N (1 (n S
keZdaHquﬁn
Then
1 n—1
offl@)==> sifl) (1=1,9=00)



The nth divided difference of a function f is introduced as

Bl e, 71, (21, . [xg,...,xn]f.

T — Ty
It is known that
e — (coszi, . .., coszy|Gy e
where
Grcosz) = (—D@=D/219 cog(z/2)(sin )% 2s0c¢ ((n + 1/2)x)

and

cosx, if d is even;
50005 . NN
sinx, if d is odd.



If d =1 then

Di() = Dyfa) = b

i @ = 2 ate)

[cos 1] G, — [cos x9] G,

D! L N
BEARN (€052, cos 73| Gy, o .

2(308(331/2) cos((n 4+ 1/2)xy) — cos(xy/2) cos((n + 1/2)552).

COS L1 — COS I

The cubic Dirichlet kernels can be given by




If ¢ = 2 then the continuous version of the Dirichlet kernel

Di(z) := / Lijujp<eye™” dv
Rd
can be expressed as
Dj(z) = |lzlly "t Ty (2rl|lat)

where

Jy(t) = \/%IEZZ—)I—VI/Q) /_16“5(1—52)”_1/2 ds (v > — 12N

are the Bessel functions.



5. NORM CONVERGENCE OF THE SUMMABILITY

A Banach space B consisting of measurable functions on T¢ is called
a homogeneous Banach space, it

) I Fllh < C|[fl| 5 for all f € B,
(iiyfor all f € B and x € T¢ Tf = f(& 0 BCEEES

1T £l = Il fll5,
(iii) the function & — T, f from T? to B is continuous for all
f € B.

It is easy to see that the spaces L,(T¢) (1 < p < oo), C(T?), Lorentz
spaces L, ,(T%) (1 < p < 00,1 < ¢ < 00) and Hardy space H;(T%)
are homogeneous Banach spaces.



Theorem 7. If g = 1,00 and a > 0 then
/ K1) de = G AR
Td
If ¢ = 2 then the same holds for a > (d — 1) /2.

Theorem 8. If ¢ =1,00, a > 0 and B is a homogeneous Banach
space on T¢ then

e fllz < Cllfllg (n € N)
and

ool © [ = f in B-norm for all f € B.
n—oo

If ¢ = 2 then the same holds for o > (d — 1) /2.
The inequality holds also for B = L(T%).



6. CIRCULAR BOCHNER-RIESZ MEANS (g =

— 2)
Theorem 9. Suppose that d > 2 and ¢q = v = 2. If 0 < a <
(d—1)/2 and

2 N
or
¥ = e P = T

then the Bochner-Riesz operators o>% are not uniformly bounded

on L,(TY) (see Figure 2).

2,
n



GURE 2. Uniform unboundedness of 0721’0‘.
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Theorem 10 (Carleson and Sjolin). Suppose that d = 2 and q =
2 () < o < 1/ 2\ewd

<p< ,
BN o, XN

2,
n

then the Bochner-Riesz operators o7% are uniformly bounded on

L,(T%) (see Figure 3).



E 3. Uniform boundedness of 6% when d = 2.
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Theorem 11 (Fefferman). Suppose that d > 3 and g =~ = 2. If

d—1
(d+1)<cv< L and

2d Y
d+1+2a & 0N
2@

then the Bochner-Riesz operators 2% are uniformly bounded on

L,(T%) (see Figure 4).

Theorem 12 (Stein and Weiss). Suppose that d > 3 and g = v =

2. [f()<oz< (d+1) and
2(d — 1) 2(d — 1)
T N
2a

then the Bochner-Riesz operators o>% are uniformly bounded on

L,(T%) (see Figure /).
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E 4. Uniform boundedness of 072;‘" when d > 3.
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question of the uniform boundedness of ¢2* when d > 3.

Go Back Full Screen



7. Hy(T% HARDY SSRGS
A function f is in the periodic Hardy space H,(T%) (0 < p < oo) if

< 00,
p

11l := |lsup | * Y]

where

Plm) = Z eimlz2mmes (g e A

meZd

1s the d-dimensional Poisson kernel. Then

BRI () (1< p < o0).



The atomic decomposition is a useful characterization of Hardy spaces.
A bounded function a is a H,-atom if there exists a cube I C T% such
that

supp a C 1,
[ 7,

/a(:p)xk dx = 0 for all multi-indices k = (ky, ..., kq)
I
with [|kl2 < [d(1/p —1)].



Theorem 13. A function f is in H,(T?) (0 < p < 1) if and only
if there exist a sequence (a*,k € N) of Hy-atoms and a sequence
(ux, k € N) of real numbers such that

©9) @)
Z e Noc  and Z,ukak = [ in the sense of distributions.
k=0 k=0

Moreover,

N 1/p
£, ~ int (z w) .
k=0



Theorem 14. For each n € N%, let V,, : Li(T%) — L(T% be a

bounded linear operator and let

V@f?;: Sup Hﬁufy

neNd

Suppose that
/ Voo dn e
Ta\ I

Jor all Hy,-atoms a and for some fized 0 < pg < 1, where the cube
I is the support of the atom. If V. is bounded from L, (T?) to
L, (T%) for some 1 < p; < oo, then

I, (< 21

for all py < p < py.



8. A.E. CONVERGENCE OF THE gq—SUMMABILITY

The mazimal operator is defined by

o?*f = suple SR
neN

[ @=L (), then
el < C || fll

Moreover, if f € L,(T¢) for some 1 < p < oo, then

||Og’&f|‘p S Cp ||f||p



Theorem 15 (Oswald, Weisz). If ¢ = 1,00, a > 0 and
d/(d+1) <p < oo then

o2 £, < Collflly (f € BT
and for f € Hyya41)(T?),

B s o) (017 > ) < O [ R

>0 d+1)

If g =2 and a > (d — 1)/2 then the same holds with the critical
index d/(d/2 4+ o+ 1/2) instead of d/(d + 1).



Theorem 16 (Stein, Taibleson, Weiss, Oswald). If ¢ = oo and
a =1 (resp. q =2) then the operator o!“ is not bounded from
H,(T%) to L,(T% if p is smaller or equal to the critical index
d/(d+1) (resp. d/(d/24+a+1/2)).

Corollary 3 (Marcinkiewicz, Zhizhiashvili, Stein, Weiss, Oswald,
Berens, Weisz). Suppose that ¢ = 1,00 and o > 0 or ¢ = 2 and

a>(d—1)/2. If f € Li(T?) then
o8 e = 0P A (02°F > ) < £l

p>

Corollary 4 (Marcinkiewicz, Zhizhiashvili, Oswald, Stein, Weiss,
Berens, Weisz). Suppose that ¢ = 1,00 and o > 0 or ¢ = 2 and

a>(d—1)/2. If f € Li(T?) then

[l f — a.e.
n—oo



9. CIRCULAR BOCHNER-RIESZ MEANS (g = v = 2)

Theorem 17 (Tao). Suppose that d > 2 and q = v = 2. If
O<a<(d—1)/2 and

NN R 7
or
SRR P~ N

[ <

then the mazimal operator o7® is not bounded on L,(T?%) (see
Figure 6).



URE 6. Unboundedness of 02 on L,(T?).
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Theorem 18 (Carbery). Suppose that d = 2 and ¢ = v = 2. If
0<a<1/2 and

<p <
1+ 2« p 1~y

then the mazimal Bochner-Riesz operator o2 is bounded on L,(T%)
(see Figure 7).



E 7. Boundedness of 02 on L,(T?) when d = 2.
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Theorem 19 (Christ). Suppose that d > 3 and ¢ = v = 2. If

(d+1)<cv< L and

2d—1)
d—1+20 & T

then the mazimal Bochner-Riesz operator o2 is bounded on L (T
(see Figure 8).

Theorem 20 (Stein and Weiss). Suppose that d > 3 and ¢ = v =
2. I[f0<a< 2(dd—+11) and

s - ))
P P 4

then the mazimal Bochner-Riesz operator o2 is bounded on L p I
(see Figure 8).
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E 8. Boundedness of 02 on L,(T?) when d > 3.
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It is still an open question as to whether o+ is bounded or unbounded
in the region of Figure 9. If d = 2, then the question is open on the
right hand side of the region of Figure 9 only, i.e., for 1/p > 1/2.

-1 | 1
2d+ 1)

d—1 d—1 1 d 1/p
2(d+1) 2d 2 2d—1

FIGURE 9. Open question of the boundedness of o2% when d > 3.



Theorem 21 (Carbery, Rubio de Francia and Vega). Suppose that
d>2 and ¢g=v=2. If 0 < a < (dNFOm

2d -1
d—1+20 & (T

then for all f € L,(TY)

s € [ = f a.e.
n—oo

(see Figure 10).



Almost everywhere convergence of a4 f, f € L,(T?).
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This talk is based on my work:

F. Weisz: Summability of Multi-Dimensional Trigonometric Fourier
Series. Surveys in Approximation Theory, 7, 1-179, 2012
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