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Let G be an abelian group, and A ⊆ G be a finite set.

Sets with small doubling

A is called a set with small doubling if

|A + A| ≤ K |A| .

Examples

A = P = {a, a + d , . . . , a + d(k − 1)} ,

A = P1 + · · ·+ Ps (generalized arithmetic progression),

large subsets of P1 + · · ·+ Ps (P) .
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Theorem (Freiman, 1973)

Let A ⊆ Z, and |A + A| ≤ K |A|. Then there is
Q = P1 + · · ·+ Pd such that

A ⊆ Q

and
|Q| ≤ C |A| ,

where d , C depend on K only.

Thus, A is a large subset of a generalized arithmetic
progression.
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Freiman, Fn
2

Theorem (Freiman)

Let A ⊆ Fn
2, and |A + A| ≤ K |A|. Then there is a subspace Q

of dimension d such that

A ⊆ Q and |Q| ≤ C |A| ,

where d , C depend on depend on K only
(d(K ) ∼ 2K , C (K ) ∼ exp(K )).

Example

Let A = {e1, . . . , es}, |A + A| ∼ |A|2/2 ∼ s2.
Thus K ∼ s, and C (K ) ∼ exp(K ).
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Subsets

Instead of covering A let us find a structural subset of A.

Polynomial Freiman–Ruzsa Conjecture

Let A ⊆ Fn
2, and |A + A| ≤ K |A|. Then there is a subspace Q

such that
|A ∩ Q| ≥ |A|/C1(K ) ,

and
|Q| ≤ C2(K )|A| ,

where C1,C2 depends on K polynomially.

It is known (Sanders, 2012) for
C1(K ) ∼ C2(K ) ∼ exp(log4(K )).
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Balog–Szemerédi–Gowers

Additive energy

Let A,B ⊆ G be sets. The (common) additive energy of A
and B

E(A,B) = E2(A,B) :=

|{a1 + b1 = a2 + b2 : a1, a2 ∈ A, b1, b2 ∈ B}| .

If A = B then write E(A) for E(A,A).

Example, E(A) large

A is an arithmetic progression (Z) or subspace (Fn
2).

If |A + A| ≤ K |A| then E(A) ≥ |A|3/K .
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Balog–Szemerédi–Gowers

Theorem (Balog–Szemerédi–Gowers)

Let G be an abelian group, and A ⊆ G be a finite set.
Suppose that E(A) ≥ |A|3/K . Then there is A∗ ⊆ A such that

|A∗| ≥ |A|/C1(K ) ,

and
|A∗ + A∗| ≤ C2(K )|A∗| ,

where C1,C2 depend on K polynomially.

So, firstly, we find a structural subset and, secondly, all bounds
are polynomial.
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So, |A + A| ≤ K |A| ⇒ E(A) ≥ |A|3/K .
But E(A) ≥ |A|3/K ⇒ |A∗ + A∗| ≤ C (K )|A∗| for some
polynomially large A∗.

Can we have it for the whole A?

Example

A ⊆ Fn
2,

A = Q
⊔

Λ ,

where Q is a subspace, |Q| ∼ |A|1/3 and Λ is a basis
(|Λ| ∼ |A|).

E(Q) ∼ E(A) but |A + A| ≥ |Λ + Λ| � |A|2.
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Example, again

A ⊆ Fn
2,

A = Q
⊔

Λ ,

where Q is a subspace, |Q| ∼ |A|1/3 and Λ is a basis
(|Λ| ∼ |A|).

E(Q) ∼ E(A) and, similarly, E(A,Q) ∼ E(A). Hence

E(A,Q)

|Q|
>

E(A,A)

|A|
=

E(A)

|A|
.
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Convolutions

(g ∗ h)(x) :=
∑
y

g(y)h(x − y) ,

(g ◦ h)(x) :=
∑
y

g(y)h(x + y) ,

Consider the hermitian positively defined operator (matrix)

T(x , y) = (A ◦ A)(x − y)A(x)A(y) ,

where A(x) is the characteristic function of the set A, i.e.
A(x) = 1, x ∈ A and A(x) = 0 otherwise.
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Recall
T(x , y) = (A ◦ A)(x − y)A(x)A(y) .

We have

〈TA,A〉 =
∑
x ,y

(A ◦ A)(x − y)A(x)A(y) = ‖A ◦ A‖2
2 = E(A) ,

and, similarly,〈
T
A(x)

|A|1/2
,
A(x)

|A|1/2

〉
=

E(A)

|A|
<

〈
T
Q(x)

|Q|1/2
,
Q(x)

|Q|1/2

〉
=

E(A,Q)

|Q|
.

Thus, the action of T on (normalized) Q is larger then the
action of T on (normalized) A.
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Let
µ1 ≥ µ2 ≥ · · · ≥ µ|A| > 0

be the spectrum of T and

f1, f2, . . . , f|A|

the correspondent eigenfunctions.
By Courant–Fisher Theorem

µ1 = max
‖f ‖2=1

〈Tf , f 〉 .

Thus, f1 ’sits’ on Q not A !
Here A = Q

⊔
Λ.
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Conjecture

The structured pieces of A ⊆ G are supports of the
eigenfunctions of T.

Holds
• not for any A, A should be a ’popular difference set’ :

A = {x : (B ◦ B)(x) ≥ c |B |}

for some B , c = c(K ) > 0

• may be we need in some another ’weights’.
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Operators

Let G be an abelian group, and A ⊆ G be a finite set. Take
any real function g such that g(−x) = g(x). Put

Tg
A(x , y) = g(x − y)A(x)A(y) .

Let
µ1(Tg

A) ≥ µ1(Tg
A) ≥ · · · ≥ µ|A|(T

g
A)

be the spectrum of Tg
A and

f1, f2, . . . , f|A|

the correspondent eigenfunctions.
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Tg
A(x , y) = g(x − y)A(x)A(y) .

Examples

• If A = G, g(x) = B(x), B ⊆ G then TB
G the adjacency

matrix of Cayley graph defined by B .
• If g(x) = B(x) and A is any then TB

A is a submatrix of
Cayley graph.
• Put g(x) = (A ◦ A)(x). Then T = TA◦A

A . Always

µ1(T) ≥ E(A)

|A|
.
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Further examples

Let Γ ⊆ F∗q be a subgroup, q = ps , |Γ| divides q − 1, n = q−1
|Γ| ,

g be a primitive root. Then

Γ = {1, gn, g2n, . . . , g(t−1)n} ,

Consider the orthonormal family of multiplicative characters
on Γ

χα(x) = |Γ|−1/2 · Γ(x)e
2πiαl
|Γ| , x = gl , 0 ≤ l < |Γ| .
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Lemma

Let Γ ⊆ F∗q be a subgroup, g be any real even Γ–invariant
function

g(γx) = g(x) , γ ∈ Γ .

Then χα, α = 0, 1, . . . , |Γ| − 1 are eigenfunctions of Tg
Γ .

In particular
E(Γ) = |Γ|µ1(Tg

Γ) ,

E(Γ) = max
f : ‖f ‖2=|Γ|

E(Γ, f ) ,

and

E(Γ,A) ≥ E(Γ)
|A|2

|Γ|2
, A ⊆ Γ .
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f : G→ C be a function, Ĝ = {ξ}, ξ : G→ D be the group
of homomorphisms.

Fourier transform

f̂ (ξ) :=
∑
x

f (x)ξ(x) , ξ ∈ Ĝ .

Properties of Tg
A

We have
• Spec (TB̂

A) = Spec (TÂ
Bc ) = Spec (TÂc

B ).

• Spec (TB̂
A(TB̂

A)∗) = |G| · Spec (T
|B̂|2
A )

Here f c(x) := f (−x) for any function f : G→ C.
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Further properties

|A|g(0) =

|A|∑
j=1

µj(T
g
A) ,

∑
z

|g(z)|2(A ◦ A)(z) =

|A|∑
j=1

|µj(T
g
A)|2 .

Example

Let T = TA◦A
A . Then

|A|∑
j=1

|µj(T
g
A)|2 =

∑
z

(A ◦ A)3(z) := E3(A) .
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Structural E2,E3 result

Theorem (Shkredov, 2013)

Let A ⊆ G be a set, E(A) = |A|3/K , and E3(A) = M |A|4/K 2.
Then there is A∗ ⊆ A s.t.

|A∗| ≥ M−C |A| ,

and for any n,m

|nA∗ −mA∗| ≤ K ·MC(n+m)|A∗| .

Let Q ⊆ Fn
2 be a subspace, A ⊆ Q be a random subset s.t.

|A| = |Q|/K ⇒ E(A) ∼ |A|3/K , E3(A) ∼ |A|4/K 2 ⇒ M ∼ 1.

|A− A| ∼ K |A| ∼ |Q| as well as |nA−mA| ∼ |Q| .
I. D. Shkredov The eigenvalues method in Combinatorial Number Theory
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The additive energy of subgroups

Theorem (Konyagin, 2002)

Let Γ ⊆ Fp be a multiplicative subgroup, |Γ| � p2/3. Then

E(Γ) := |{g1 + g2 = g3 + g4 : g1, g2, g3, g4 ∈ Γ}| � |Γ|5/2 .

Theorem (Shkredov, 2012)

Let Γ ⊆ Fp be a multiplicative subgroup, |Γ| � p3/5−. Then

E(Γ) := |{g1 + g2 = g3 + g4 : g1, g2, g3, g4 ∈ Γ}|

� |Γ|
22
9 log

2
3 |Γ| .
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Why ?

Suppose that E(Γ) ∼ |Γ|5/2 = |Γ|3/K , K ∼ |Γ|1/2.

Lemma

We have

E3(Γ)� |Γ|3 log |Γ| =
M |Γ|4

K 2
,

where M ∼ log |Γ|.

Thus by our structural result Γ stabilized under addition but
kΓ = Fp (more delicate arguments give the better bounds).

Thus, E(Γ) = |Γ|5/2−ε0 , ε0 > 0.
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Theorem (Shkredov, 2012)

Let P ⊆ Γ be an arbitrary progression, and |Γ| � p2/3. Then

|Γ + P | ≥ c |Γ||P |1−o(1) , c > 0 .

Further applications :

• new bounds for exponential sums over subgroups,
• variational formula for exponential sums over subgroups,
• multiplicative properties of eigenvalues and so on.
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Convex sets

A = {a1, ..., an} ⊆ R is called convex if

ai+1 − ai > ai − ai−1 for all i .

Example.
A = {12, 22, . . . , n2} .
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Theorem (Iosevich, Konyagin, Rudnev, Ten, 2006)

Let A ⊆ R be a convex set. Then

E(A)� |A|5/2 .

Theorem (Shkredov, 2012–2013)

Let A ⊆ R be a convex set. Then

E(A)� |A|
32
13 log

71
65 |A| .

Proof : a formula for higher moments of eigenvalues and
estimation of eigenvalues.
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Further applications

New upper bounds for the additive energy for sets with

• small product set |AA|.
• small |A(A + 1)|.

General principle :

higher moments of convolutions + (small) irregularity of A±A
give a non–trivial upper bound for the additive energy.
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Doubling constants

If Γ ⊆ Fp is a random set, |Γ| ≤ √p then

|Γ± Γ| ≥ |Γ|2−ε , ε > 0 .

Conjecture

Let Γ ⊆ Fp be a subgroup, |Γ| ≤ √p. Then

|Γ± Γ| ≥ |Γ|2−ε , ε > 0 .

Theorem (Garcia–Voloch, 1988)

Suppose that |Γ| = O(p3/4). Then

|Γ± Γ| ≥ c1|Γ|4/3 .
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Theorem (Heath–Brown and Konyagin, 2000)

Suppose that |Γ| = O(p2/3). Then

|Γ± Γ| ≥ c2|Γ|3/2 .

Theorem (Shkredov–Vyugin, 2010)

Suppose that |Γ| = O(p1/2). Then

|Γ− Γ| ≥ c3
|Γ|5/3

log1/2 |Γ|
, |Γ + Γ| ≥ c3

|Γ|8/5

log3/5 |Γ|

For subgroups |Γ| > p1/2 there are better results (the same
method) Schoen–Shkredov, 2010.
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Convex sets

Recall that A = {a1, ..., an} ⊆ R is called convex if

ai+1 − ai > ai − ai−1 for all i .

Conjecture (Elekes–Nathanson–Rusza, 1999)

Let A ⊆ R be a convex set. Then

|A + A| � |A|2−ε ,
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Theorem (Elekes–Nathanson–Rusza, 1999)

Let A ⊆ R be a convex set. Then

|A + A| � |A|3/2 ,

Theorem (Schoen–Shkredov, 2011)

Let A ⊆ R be a convex set. Then

|A− A| � |A|8/5−ε ,

and
|A + A| � |A|14/9−ε .

Operators method.
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Further applications

New lower bounds for the doubling constants for sets with

• small product set |AA|.
• small |A(A + 1)|.
• mixed sets |f (A) + B |, f is a convex function.

An so on.
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Heilbronn’s exponential sums

Let p be a prime number.
Heilbronn’s exponential sum is defined by

S(a) =

p∑
n=1

e
2πi · an

p

p2 .

Fermat quotients defined as

q(n) =
np−1 − 1

p
, n 6= 0 (mod p) .
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Theorem (Heath–Brown, Konyagin, 2000)

Let p be a prime, and a 6= 0 (mod p). Then

|S(a)| � p
7
8 .

Theorem (Shkredov, 2012–2013)

Let p be a prime, and a 6= 0 (mod p). Then

|S(a)| � p
31
36 log

1
6 p .
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By lp denote the smallest n such that q(n) 6= 0 (mod p).

Theorem (Bourgain, Ford, Konyagin, Shparlinski, 2010)

One has
lp ≤ (log p)

463
252

+o(1)

as p →∞.

Previously Lenstra (1979) : lp � (log p)2+o(1).

Theorem (Shkredov, 2012–2013)

One has
lp ≤ (log p)

463
252
−ε0+o(1) , ε0 > 0 ,

ε0 is an absolute (small) constant.
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Other applications are :

• discrepancy of Fermat quotients,
• new bound for the size of the image of q(n),
• estimates for Ihara sum,
• better bounds for the sums

k∑
n=1

χ(q(n)) ,
k∑

n=1

χ(nq(n)) .

• Surprising inequalities between E(A) and Es(A), s ∈ (1, 2].
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A and Ax

Let A ⊆ G be a set. Put Ax = A ∩ (A− x).

Corollary (Shkredov, 2012)∑
x

|Ax |2

|A± Ax |
≤ |A|−2

∑
x

|Ax |3 ,

and ∑
x ,y ,z∈A

|Ax−y ||Ax−z ||Ay−z | ≥ |A|−3(
∑
x

|Ax |2)3 .
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Chang Theorem

Let G be an abelian group, and A ⊆ G be a finite set.

Dissociated sets

A set Λ = {λ1, . . . , λd} ⊆ G is called dissociated if any
equation of the form

d∑
j=1

εjλj = 0 , where εj ∈ {0,±1}

implies εj = 0 for all j .

Exm. G = Fn
2.
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Proof of Chang Theorem via operators

Chang theorem

For any dissociated set Λ, any set A ⊆ G, |A| = δ|G| and an
arbitrary function f , supp f ⊆ A∑

ξ∈Λ

|f̂ (ξ)|2 ≤ |A| log(1/δ) · ‖f ‖2
2 .

∑
x∈Λ

|f̂ (x)|2 = 〈TΛ̂
Af , f 〉 ≤ µ1(TΛ̂

A)‖f ‖2
2 = µ1(TÂ

Λ)‖f ‖2
2
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Estimating µ1(TÂ
Λ)

suppw ⊆ Λ, k ∼ log(1/δ).

µ1(TÂ
Λ) := max

‖w‖2=1
〈TÂ

Λw ,w〉 =
∑
x

|ŵ(x)|2A(x) .

µk
1(TÂ

Λ) ≤
∑
x

|ŵ(x)|2k · |A|k−1

∑
x

|ŵ(x)|2k = |G|
∑

x1+···+xk=x ′1+···+x ′k

w(x1) . . .w(xk)w(x ′1) . . .w(x ′k)

≤ NC kk!‖w‖2k
2 = NC kk! .
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Advantages of the approach

• Relaxation of dissociativity.∑
∑

j |εj |�log(1/δ)

εjλj = 0 instead of

|Λ|∑
j=1

εjλj = 0 .

• Very weak dissociativity (
∑

j |εj | ≤ C )
• Other operators Tg

A. Higher moments∑
ξ∈Λ

|Â(ξ)|l , l > 2 ,

dual Chang theorems∑
x∈Λ

(A1 ∗ A2)2(x)� |A1||A2| log (min{|A1|, |A2|}) .
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Concluding remarks

• Studying the eigenvalues and the eigenfunctions of T, we
obtain the information about the initial object E(A).

• Our approach tries to emulate Fourier analysis onto A not
on the whole group G.

Conjecture

The structured pieces of A ⊆ G are supports of the
eigenfunctions of T.
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Considered examples

In all examples above (multiplicative subgroups, convex sets
and so on), we have

µ1 � µ2 ≥ µ3 ≥ . . . , µ1 dominates .

PFRC case

If our set A is a sumset A = B − B , |A| = K |B | (or popular
difference set) then

µ1 ∼ µ2 ∼ · · · ∼ µk ≥ µk+1 ≥ . . . , k ∼ K , .

So, there many roughly equal eigenvalues.
The correspondent eigenfunctions lives on ”disjoint” (sub)sets
of B − b, b ∈ B .
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Thank you for your attention!
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