The eigenvalues method in Combinatorial Number Theory

I.D. Shkredov

Steklov Mathematical Institute

I. D. Shkredov The eigenvalues method in Combinatorial Number Theory

Let **G** be an abelian group, and $A \subseteq \mathbf{G}$ be a finite set.

Sets with small doubling

A is called a set with small doubling if

$$|A+A|\leq K|A|.$$

Examples

$$A = P = \{a, a + d, \dots, a + d(k - 1)\},\$$

 $A = P_1 + \dots + P_s$ (generalized arithmetic progression), large subsets of $P_1 + \dots + P_s(P)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (Freiman, 1973)

Let $A \subseteq \mathbb{Z}$, and $|A + A| \leq K|A|$. Then there is $Q = P_1 + \cdots + P_d$ such that

$$A \subseteq Q$$

and

$$|Q|\leq C|A|\,,$$

where d, C depend on K only.

Thus, A is a large subset of a generalized arithmetic progression.

・ロン ・回と ・ヨン ・ヨン

Freiman, \mathbb{F}_2^n

Theorem (Freiman)

Let $A \subseteq \mathbb{F}_2^n$, and $|A + A| \leq K|A|$. Then there is a subspace Q of dimension d such that

$$A\subseteq Q$$
 and $|Q|\leq C|A|$,

where *d*, *C* depend on depend on *K* only $(d(K) \sim 2K, C(K) \sim \exp(K))$.

Example

Let
$$A = \{e_1, \ldots, e_s\}$$
, $|A + A| \sim |A|^2/2 \sim s^2$.
Thus $K \sim s$, and $C(K) \sim \exp(K)$.

Subsets

Instead of covering A let us find a structural subset of A.

Polynomial Freiman-Ruzsa Conjecture

Let $A \subseteq \mathbb{F}_2^n$, and $|A + A| \leq K|A|$. Then there is a subspace Q such that

 $|A\cap Q|\geq |A|/C_1(K),$

and

 $|Q| \leq C_2(K)|A|,$

where C_1 , C_2 depends on K polynomially.

It is known (Sanders, 2012) for $C_1(K) \sim C_2(K) \sim \exp(\log^4(K)).$

Balog–Szemerédi–Gowers

Additive energy

Let $A, B \subseteq \mathbf{G}$ be sets. The (common) additive energy of A and B

$$\operatorname{E}(A,B) = \operatorname{E}_2(A,B) :=$$

$$|\{a_1 + b_1 = a_2 + b_2 : a_1, a_2 \in A, b_1, b_2 \in B\}|$$

If A = B then write E(A) for E(A, A).

Example, E(A) large

A is an arithmetic progression (\mathbb{Z}) or subspace (\mathbb{F}_2^n).

If $|A + A| \leq K|A|$ then $E(A) \geq |A|^3/K$.

Balog–Szemerédi–Gowers

Theorem (Balog–Szemerédi–Gowers)

Let **G** be an abelian group, and $A \subseteq \mathbf{G}$ be a finite set. Suppose that $E(A) \ge |A|^3/K$. Then there is $A_* \subseteq A$ such that

 $|A_*| \geq |A|/C_1(K),$

and

$$|A_* + A_*| \leq C_2(K)|A_*|,$$

where C_1 , C_2 depend on K polynomially.

So, firstly, we find a structural subset and, secondly, all bounds are polynomial.

So, $|A + A| \leq K|A| \Rightarrow E(A) \geq |A|^3/K$. But $E(A) \geq |A|^3/K \Rightarrow |A_* + A_*| \leq C(K)|A_*|$ for some polynomially large A_* .

Can we have it for the whole A?

Example $A \subseteq \mathbb{F}_2^n$, $A = Q \bigsqcup \Lambda$, where Q is a subspace, $|Q| \sim |A|^{1/3}$ and Λ is a basis $(|\Lambda| \sim |A|)$.

 $\operatorname{E}(Q) \sim \operatorname{E}(A) ext{ but } |A + A| \geq |\Lambda + \Lambda| \gg |A|^2.$

(ロ) (同) (E) (E) (E)

Example, again $A \subseteq \mathbb{F}_2^n$, $A = Q \bigsqcup \Lambda$, where Q is a subspace, $|Q| \sim |A|^{1/3}$ and Λ is a basis $(|\Lambda| \sim |A|)$.

 $\operatorname{E}(Q) \sim \operatorname{E}(A)$ and, similarly, $\operatorname{E}(A, Q) \sim \operatorname{E}(A)$. Hence $\frac{\operatorname{E}(A, Q)}{|Q|} > \frac{\operatorname{E}(A, A)}{|A|} = \frac{\operatorname{E}(A)}{|A|}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Convolutions

$$(g * h)(x) := \sum_{y} g(y)h(x - y),$$

 $(g \circ h)(x) := \sum_{y} g(y)h(x + y),$

Consider the hermitian positively defined operator (matrix)

$$T(x, y) = (A \circ A)(x - y)A(x)A(y),$$

where A(x) is the characteristic function of the set A, i.e. A(x) = 1, $x \in A$ and A(x) = 0 otherwise.

・ロト ・回ト ・ヨト ・ヨト

Recall

$$T(x,y) = (A \circ A)(x-y)A(x)A(y).$$

We have

$$\langle \mathrm{T} A, A \rangle = \sum_{x,y} (A \circ A)(x-y)A(x)A(y) = \|A \circ A\|_2^2 = \mathrm{E}(A),$$

and, similarly,

$$\left\langle \mathrm{T}\frac{\mathcal{A}(x)}{|\mathcal{A}|^{1/2}},\frac{\mathcal{A}(x)}{|\mathcal{A}|^{1/2}}\right\rangle = \frac{\mathrm{E}(\mathcal{A})}{|\mathcal{A}|} < \left\langle \mathrm{T}\frac{\mathcal{Q}(x)}{|\mathcal{Q}|^{1/2}},\frac{\mathcal{Q}(x)}{|\mathcal{Q}|^{1/2}}\right\rangle = \frac{\mathrm{E}(\mathcal{A},\mathcal{Q})}{|\mathcal{Q}|}.$$

Thus, the action of T on (normalized) Q is larger than the action of T on (normalized) A.

イロト イヨト イヨト イヨト

Let

$$\mu_1 \geq \mu_2 \geq \cdots \geq \mu_{|\mathcal{A}|} > 0$$

be the spectrum of $\ensuremath{\mathrm{T}}$ and

$$f_1, f_2, \ldots, f_{|\mathcal{A}|}$$

the correspondent eigenfunctions. By Courant–Fisher Theorem

$$\mu_1 = \max_{\|f\|_2=1} \langle \mathrm{T}f, f \rangle \,.$$

Thus, f_1 'sits' on Q not A ! Here $A = Q \bigsqcup \Lambda$.

イロト イヨト イヨト イヨト

Conjecture

The structured pieces of $A \subseteq \mathbf{G}$ are supports of the eigenfunctions of T.

Holds

• not for any A, A should be a 'popular difference set' :

$$A = \{x : (B \circ B)(x) \ge c|B|\}$$

for some B, c = c(K) > 0

• may be we need in some another 'weights'.

イロト イヨト イヨト イヨト

Operators

Let **G** be an abelian group, and $A \subseteq \mathbf{G}$ be a finite set. Take any real function g such that g(-x) = g(x). Put

$$T^g_A(x,y) = g(x-y)A(x)A(y).$$

Let

$$\mu_1(\mathbf{T}_{\mathcal{A}}^g) \geq \mu_1(\mathbf{T}_{\mathcal{A}}^g) \geq \cdots \geq \mu_{|\mathcal{A}|}(\mathbf{T}_{\mathcal{A}}^g)$$

be the spectrum of $\mathrm{T}^{g}_{\mathcal{A}}$ and

$$f_1, f_2, \ldots, f_{|A|}$$

the correspondent eigenfunctions.

・ロト ・ 同ト ・ ヨト ・ ヨト

$$T^g_A(x,y) = g(x-y)A(x)A(y).$$

Examples

- If $A = \mathbf{G}$, g(x) = B(x), $B \subseteq \mathbf{G}$ then $T_{\mathbf{G}}^{B}$ the adjacency matrix of Cayley graph defined by B.
- If g(x) = B(x) and A is any then T_A^B is a submatrix of Cayley graph.
- Put $g(x) = (A \circ A)(x)$. Then $T = T_A^{A \circ A}$. Always

$$\mu_1(\mathbf{T}) \geq \frac{\mathbf{E}(\mathbf{A})}{|\mathbf{A}|} \, .$$

イロト イポト イヨト イヨト 二日

Further examples

Let $\Gamma \subseteq \mathbb{F}_q^*$ be a subgroup, $q = p^s$, $|\Gamma|$ divides q - 1, $n = \frac{q-1}{|\Gamma|}$, **g** be a primitive root. Then

$$\Gamma = \{1, \mathbf{g}^n, \mathbf{g}^{2n}, \dots, \mathbf{g}^{(t-1)n}\}$$

Consider the orthonormal family of multiplicative characters on $\boldsymbol{\Gamma}$

$$\chi_lpha(x) = |\mathsf{\Gamma}|^{-1/2} \cdot \mathsf{\Gamma}(x) e^{rac{2\pi i lpha l}{|\mathsf{\Gamma}|}}\,, \quad x = \mathbf{g}^l\,, \quad 0 \leq l < |\mathsf{\Gamma}|\,.$$

・ロン ・回と ・ヨン ・ヨン

Lemma

Let $\Gamma \subseteq \mathbb{F}_q^*$ be a subgroup, g be any real even $\Gamma\text{-invariant}$ function

$$g(\gamma x) = g(x), \qquad \gamma \in \Gamma.$$

Then χ_{α} , $\alpha = 0, 1, ..., |\Gamma| - 1$ are eigenfunctions of T_{Γ}^{g} .

In particular

$$E(\Gamma) = |\Gamma|\mu_1(\mathbf{T}_{\Gamma}^g),$$
$$E(\Gamma) = \max_{f : \|f\|_2 = |\Gamma|} E(\Gamma, f),$$

and

$$\operatorname{E}(\Gamma, A) \ge \operatorname{E}(\Gamma) \frac{|A|^2}{|\Gamma|^2}, \quad A \subseteq \Gamma.$$

(日) (四) (E) (E) (E)

 $f : \mathbf{G} \to \mathbb{C}$ be a function, $\widehat{\mathbf{G}} = \{\xi\}$, $\xi : \mathbf{G} \to \mathbb{D}$ be the group of homomorphisms.

Fourier transform

$$\widehat{f}(\xi) := \sum_{x} f(x) \overline{\xi(x)}, \quad \xi \in \widehat{\mathsf{G}}.$$

Properties of T_A^g

We have

- Spec $(T_A^{\widehat{B}}) =$ Spec $(T_{B^c}^{\widehat{A}}) =$ Spec $(T_B^{\widehat{A}^c})$.
- Spec $(T_{\mathcal{A}}^{\widehat{\mathcal{B}}}(T_{\mathcal{A}}^{\widehat{\mathcal{B}}})^*) = |\mathbf{G}| \cdot \text{Spec} (T_{\mathcal{A}}^{|\widehat{\mathcal{B}}|^2})$

Here $f^{c}(x) := f(-x)$ for any function $f : \mathbf{G} \to \mathbb{C}$.

(ロ) (同) (E) (E) (E)

Further properties

$$egin{aligned} |A|g(0) &= \sum_{j=1}^{|A|} \mu_j(\mathrm{T}^g_A)\,, \ &\sum_{z} |g(z)|^2 (A \circ A)(z) &= \sum_{j=1}^{|A|} |\mu_j(\mathrm{T}^g_A)|^2\,. \end{aligned}$$

Example

Let $T = T_A^{A \circ A}$. Then

$$\sum_{j=1}^{|\mathcal{A}|} |\mu_j(\mathrm{T}^g_{\mathcal{A}})|^2 = \sum_z (\mathcal{A} \circ \mathcal{A})^3(z) := \mathrm{E}_3(\mathcal{A}) \,.$$

I. D. Shkredov

The eigenvalues method in Combinatorial Number Theory

Structural E_2, E_3 result

Theorem (Shkredov, 2013)

Let $A \subseteq \mathbf{G}$ be a set, $E(A) = |A|^3/K$, and $E_3(A) = M|A|^4/K^2$. Then there is $A_* \subseteq A$ s.t.

$$|A_*| \geq M^{-C}|A|,$$

and for any *n*, *m*

$$|nA_* - mA_*| \leq K \cdot M^{C(n+m)}|A_*|.$$

Let $Q \subseteq \mathbb{F}_2^n$ be a subspace, $A \subseteq Q$ be a random subset s.t. $|A| = |Q|/K \Rightarrow E(A) \sim |A|^3/K$, $E_3(A) \sim |A|^4/K^2 \Rightarrow M \sim 1$. $|A - A| \sim K|A| \sim |Q|$ as well as $|nA - mA| \sim |Q|$.

The additive energy of subgroups

Theorem (Konyagin, 2002)

Let $\Gamma \subseteq \mathbb{F}_p$ be a multiplicative subgroup, $|\Gamma| \ll p^{2/3}$. Then

$$\mathrm{E}(\Gamma) := |\{g_1 + g_2 = g_3 + g_4 : g_1, g_2, g_3, g_4 \in \Gamma\}| \ll |\Gamma|^{5/2}$$

Theorem (Shkredov, 2012)

Let $\Gamma \subseteq \mathbb{F}_p$ be a multiplicative subgroup, $|\Gamma| \ll p^{3/5-}$. Then $\mathrm{E}(\Gamma) := |\{g_1 + g_2 = g_3 + g_4 : g_1, g_2, g_3, g_4 \in \Gamma\}|$ $\ll |\Gamma|^{\frac{22}{9}} \log^{\frac{2}{3}} |\Gamma|.$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Why?

Suppose that
$$\mathrm{E}(\Gamma) \sim |\Gamma|^{5/2} = |\Gamma|^3/K$$
, $K \sim |\Gamma|^{1/2}$.

Lemma

We have

$$\mathrm{E}_3(\Gamma) \ll |\Gamma|^3 \log |\Gamma| = rac{M |\Gamma|^4}{K^2} \, ,$$

where $M \sim \log |\Gamma|$.

Thus by our structural result Γ stabilized under addition but $k\Gamma = \mathbb{F}_p$ (more delicate arguments give the better bounds).

Thus,
$$E(\Gamma) = |\Gamma|^{5/2 - \varepsilon_0}$$
, $\varepsilon_0 > 0$.

Theorem (Shkredov, 2012)

Let $P \subseteq \Gamma$ be an arbitrary *progression*, and $|\Gamma| \ll p^{2/3}$. Then $|\Gamma + P| \ge c |\Gamma| |P|^{1-o(1)}, \quad c > 0.$

Further applications :

- new bounds for exponential sums over subgroups,
- variational formula for exponential sums over subgroups,
- multiplicative properties of eigenvalues and so on.

A D A A B A A B A A B A

Convex sets

$$A = \{a_1, ..., a_n\} \subseteq \mathbf{R} \text{ is called } convex \text{ if}$$
$$a_{i+1} - a_i > a_i - a_{i-1} \text{ for all } i.$$

Example.

$$A = \{1^2, 2^2, \ldots, n^2\}.$$

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

Э

Theorem (losevich, Konyagin, Rudnev, Ten, 2006
Let
$$A \subseteq \mathbb{R}$$
 be a convex set. Then

 ${
m E}(A) \ll |A|^{5/2}$.

Theorem (Shkredov, 2012-2013)

Let $A \subseteq \mathbb{R}$ be a convex set. Then

$$E(A) \ll |A|^{\frac{32}{13}} \log^{\frac{71}{65}} |A|$$
.

Proof : a formula for higher moments of eigenvalues and estimation of eigenvalues.

・ロト ・回ト ・ヨト ・ヨト

3

Further applications

New upper bounds for the additive energy for sets with

- small product set |AA|.
- small |A(A+1)|.

General principle :

higher moments of convolutions + (small) irregularity of $A \pm A$ give a non-trivial upper bound for the additive energy.

・ロン ・回と ・ヨン ・ヨン

Doubling constants

If $\Gamma \subseteq \mathbb{F}_p$ is a random set, $|\Gamma| \leq \sqrt{p}$ then $|\Gamma \pm \Gamma| \geq |\Gamma|^{2-\varepsilon}, \quad \varepsilon > 0.$

Conjecture

Let $\Gamma \subseteq \mathbb{F}_p$ be a subgroup, $|\Gamma| \leq \sqrt{p}$. Then

$$|\Gamma \pm \Gamma| \ge |\Gamma|^{2-\varepsilon}, \quad \varepsilon > 0.$$

Theorem (Garcia–Voloch, 1988)

Suppose that $|\Gamma| = O(p^{3/4})$. Then

 $|\Gamma \pm \Gamma| \geq c_1 |\Gamma|^{4/3}.$

I.D. Shkredov The eigenvalues method in Combinatorial Number Theory

Theorem (Heath–Brown and Konyagin, 2000)

Suppose that
$$|\Gamma| = O(p^{2/3})$$
. Then

 $|\Gamma \pm \Gamma| \ge c_2 |\Gamma|^{3/2}.$

Theorem (Shkredov-Vyugin, 2010)

Suppose that $|\Gamma| = O(p^{1/2})$. Then

$$|\Gamma - \Gamma| \ge c_3 rac{|\Gamma|^{5/3}}{\log^{1/2}|\Gamma|}\,, \quad |\Gamma + \Gamma| \ge c_3 rac{|\Gamma|^{8/5}}{\log^{3/5}|\Gamma|}$$

For subgroups $|\Gamma| > p^{1/2}$ there are better results (the same method) **Schoen–Shkredov, 2010**.

Convex sets

Recall that $A = \{a_1, ..., a_n\} \subseteq \mathbf{R}$ is called convex if

 $a_{i+1}-a_i>a_i-a_{i-1}$ for all i.

Conjecture (Elekes–Nathanson–Rusza, 1999)

Let $A \subseteq \mathbb{R}$ be a convex set. Then

 $|A+A|\gg |A|^{2-\varepsilon}\,,$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ●のへの

Theorem (Elekes–Nathanson–Rusza, 1999)

Let $A \subseteq \mathbb{R}$ be a convex set. Then

$$|A+A|\gg |A|^{3/2},$$

Theorem (Schoen–Shkredov, 2011)

Let $A \subseteq \mathbb{R}$ be a convex set. Then

$$|A-A|\gg |A|^{8/5-\varepsilon},$$

and

$$|A+A| \gg |A|^{14/9-\varepsilon}$$

Operators method.

▲日> ▲圖> ▲国> ▲国>

3

Further applications

New lower bounds for the doubling constants for sets with

- small product set |AA|.
- small |A(A+1)|.
- mixed sets |f(A) + B|, f is a convex function.

An so on.

イロト イポト イヨト イヨト

Heilbronn's exponential sums

Let *p* be a prime number. Heilbronn's exponential sum is defined by

$$S(a) = \sum_{n=1}^{p} e^{2\pi i \cdot rac{an^p}{p^2}}$$

Fermat quotients defined as

$$q(n)=rac{n^{p-1}-1}{p},\quad n
eq 0\pmod{p}.$$

Theorem (Heath–Brown, Konyagin, 2000)

Let p be a prime, and $a \neq 0 \pmod{p}$. Then

 $|S(a)| \ll p^{\frac{7}{8}}$.

Theorem (Shkredov, 2012–2013)

Let p be a prime, and $a \neq 0 \pmod{p}$. Then

 $|S(a)| \ll p^{\frac{31}{36}} \log^{\frac{1}{6}} p$.

By l_p denote the smallest n such that $q(n) \neq 0 \pmod{p}$.

Theorem (Bourgain, Ford, Konyagin, Shparlinski, 2010)

One has

$$I_{p} \leq (\log p)^{rac{463}{252} + o(1)}$$

as $p \to \infty$.

Previously Lenstra (1979) : $I_p \ll (\log p)^{2+o(1)}$.

Theorem (Shkredov, 2012–2013)

One has

$$I_p \leq (\log p)^{rac{463}{252}-arepsilon_0+o(1)}\,,\quad arepsilon_0>0\,,$$

 ε_0 is an absolute (small) constant.

・ロン ・回と ・ヨン ・ヨン

Other applications are :

- discrepancy of Fermat quotients,
- new bound for the size of the image of q(n),
- estimates for Ihara sum,
- better bounds for the sums

$$\sum_{n=1}^k \chi(q(n)), \quad \sum_{n=1}^k \chi(nq(n)).$$

Surprising inequalities between E(A) and E_s(A), s ∈ (1,2].

・ロト ・同ト ・ヨト ・ヨト

A and $\overline{A_x}$

Let
$$A \subseteq \mathbf{G}$$
 be a set. Put $A_x = A \cap (A - x)$.

Corollary (Shkredov, 2012)

$$\sum_{x} \frac{|A_{x}|^{2}}{|A \pm A_{x}|} \leq |A|^{-2} \sum_{x} |A_{x}|^{3},$$

and

$$\sum_{x,y,z\in A} |A_{x-y}| |A_{x-z}| |A_{y-z}| \geq |A|^{-3} (\sum_x |A_x|^2)^3 \, .$$

◆□ > ◆□ > ◆□ > ◆□ > ●

E

Chang Theorem

Let **G** be an abelian group, and $A \subseteq \mathbf{G}$ be a finite set.

Dissociated sets

A set $\Lambda = \{\lambda_1, \dots, \lambda_d\} \subseteq \mathbf{G}$ is called *dissociated* if any equation of the form

$$\sum_{j=1}^d arepsilon_j \lambda_j = 0\,, \quad ext{ where } \quad arepsilon_j \in \{0,\pm 1\}$$

implies $\varepsilon_j = 0$ for all *j*.

Exm. $\mathbf{G} = \mathbb{F}_2^n$.

・ロン ・回と ・ヨン ・ヨン

Proof of Chang Theorem via operators

Chang theorem

For any dissociated set Λ , any set $A \subseteq \mathbf{G}$, $|A| = \delta |\mathbf{G}|$ and an arbitrary function f, supp $f \subseteq A$

$$\sum_{\xi\in \Lambda} |\widehat{f}(\xi)|^2 \leq |\mathcal{A}|\log(1/\delta)\cdot \|f\|_2^2$$
 .

$$\sum_{x\in\Lambda}|\widehat{f}(x)|^2=\langle \mathrm{T}_A^{\widehat{\Lambda}}f,f\rangle\leq \mu_1(\mathrm{T}_A^{\widehat{\Lambda}})\|f\|_2^2=\mu_1(\mathrm{T}_A^{\widehat{A}})\|f\|_2^2$$

・ロト ・回ト ・ヨト ・ヨト

Estimating $\mu_1(T^{\widehat{A}}_{\Lambda})$

$$\begin{split} \operatorname{supp} w &\subseteq \Lambda, \ k \sim \log(1/\delta). \\ \mu_1(\mathrm{T}^{\widehat{A}}) &:= \max_{\|w\|_2 = 1} \langle \mathrm{T}^{\widehat{A}}_{\Lambda} w, w \rangle = \sum_x |\widehat{w}(x)|^2 A(x) \, . \\ \mu_1^k(\mathrm{T}^{\widehat{A}}_{\Lambda}) &\leq \sum_x |\widehat{w}(x)|^{2k} \cdot |A|^{k-1} \\ \sum_x |\widehat{w}(x)|^{2k} &= |\mathbf{G}| \sum_{x_1 + \dots + x_k = x'_1 + \dots + x'_k} w(x_1) \dots w(x_k) \overline{w(x'_1)} \dots \overline{w(x'_k)} \\ &\leq N C^k k! \|w\|_2^{2k} = N C^k k! \, . \end{split}$$

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○

臣

Advantages of the approach

Relaxation of dissociativity.

$$\sum_{\lambda_j \mid arepsilon_j \mid \ll \log(1/\delta)} arepsilon_j \lambda_j = 0 \quad ext{ instead of }$$

$$\sum_{j=1}^{|\Lambda|} \varepsilon_j \lambda_j = 0.$$

- Very weak dissociativity (∑_j |ε_j| ≤ C)
 Other operators T^g_A. Higher moments

$$\sum_{\xi\in\Lambda}|\widehat{A}(\xi)|^{\prime}\,,\quad I>2\,,$$

dual Chang theorems

Σ

$$\sum_{x \in \Lambda} (A_1 * A_2)^2(x) \ll |A_1| |A_2| \log \left(\min\{|A_1|, |A_2|\} \right) \,.$$

Concluding remarks

• Studying the eigenvalues and the eigenfunctions of T, we obtain the information about the initial object E(A).

• Our approach tries to emulate Fourier analysis *onto* A not on the whole group **G**.

Conjecture

The structured pieces of $A \subseteq \mathbf{G}$ are supports of the eigenfunctions of T.

・ロト ・同ト ・ヨト ・ヨト

Considered examples

In all examples above (multiplicative subgroups, convex sets and so on), we have

$$\mu_1 \gg \mu_2 \ge \mu_3 \ge \dots, \quad \mu_1 \text{ dominates}$$

PFRC case

If our set A is a sumset A = B - B, |A| = K|B| (or popular difference set) then

$$\mu_1 \sim \mu_2 \sim \cdots \sim \mu_k \geq \mu_{k+1} \geq \ldots, \quad k \sim K,$$

So, there many roughly equal eigenvalues. The correspondent eigenfunctions lives on "disjoint" (sub)sets of B - b, $b \in B$.

Thank you for your attention!

I. D. Shkredov The eigenvalues method in Combinatorial Number Theory

・ロン ・回と ・ヨン・

э