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FRAMELETS PREVIOUS CONSTRUCTIONS OUR CONSTRUCTION

Definition

A sequence {φn}∞n=1 of elements in a separable Hilbert space H is
a frame for H if there exist constants C1,C2 > 0 such that

C1‖h‖2 ≤
∞∑
n=1

|〈h, φn〉|2 ≤ C2‖h‖2, ∀h ∈ H,

where 〈·, ·〉 denotes the inner product on H.

The constants C1 and C2 are called frame bounds.

The definition implies that a frame is a complete sequence of
elements of H.

A frame {φn}∞n=1 is tight if we may choose C1 = C2.
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Let A : Rd → Rd , d ≥ 1, be a linear map such that all eigenvalues
of A have modulus greater than 1 and A(Zd) ⊂ Zd .

Definition

A set of functions Ψ = {ψ1, . . . , ψN} ⊂ L2(Rd) is called a wavelet
frame or framelet with dilation A, if the system

{| detA|j/2ψ`(A
jx + k); j ∈ Z, k ∈ Zd , 1 ≤ ` ≤ N} (1)

is a frame for L2(Rd).

If the system (1) is a tight frame for L2(Rd) then Ψ is called a
tight framelet.

If the system (1) is an orthonormal basis for L2(Rd) then Ψ is
called a wavelet.
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It follows from the definition of tight wavelet frame that any
function f ∈ L2(Rd) has the “wavelet” expansion

f (x) =
N∑
`=1

∑
j∈Z

∑
k∈Zd

1

C1
〈f , ψ(j ,k)

` 〉 ψ(j ,k)
` (x).

where ψ
(j ,k)
` (x) = | detA|j/2ψ`(A

jx + k).
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Objective:

For any A dilation matrix with integer entries, we construct a
family of smooth compactly supported tight wavelet frames in
L2(Rd).

When A is a 2× 2 dilation matrix with integer entries and
| detA| = 2, we show a method to construct a family of tight
wavelet frames with only three smooth compactly supported
generators.
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Our construction is made in the Fourier transform side.

The Fourier transform of f ∈ L1(Rd) ∩ L2(Rd) is defined by

f̂ (y) =

∫
Rd

f (x)e−2πix·y dx.
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Theorem ((UEP), Han, Ron and Shen, (1997))

Let φ ∈ L2(Rd) be compactly supported such that
φ̂(A∗t) = P(t)φ̂(t), where P is a trigonometric polynomial, and
|φ̂(0)| = 1. Assume there are trigonometric polynomials or rational
functions Q`, ` = 1, · · · ,N, that satisfy the UEP condition

P(t)P(t + j) +
N∑
`=1

Q`(t)Q`(t + j) (2)

=

{
1 if j ∈ Zd ,
0 if j ∈

(
(A∗)−1(Zd)/Zd

)
\ Zd

If
ψ̂`(A

∗t) := Q`(t)φ̂(t), ` = 1, . . . ,N,

then Ψ = {ψ1, . . . , ψN} is a tight framelet in L2(Rd) with dilation
matrix A and frame bound 1.
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• Daubechies (1988): on R, A = 2

• Ron and Shen (1998): on R2, A =

(
1 1
1 −1

)
.

• Gröchenig and Ron (1998): Rd , any A.

• Han (2003): on Rd , any A.
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Lai and Stöckler (2006) for A = 2 and d = 1.

Theorem

Let A : Rd → Rd be an expansive linear map preserving the integer
lattice and let ΓA∗ = {ps}dA−1

s=0 be a full collection of
representatives of the cosets of (A∗)−1Zd/Zd . Let P(t) be a
trigonometric polynomial defined on Rd such that∑dA−1

s=0 |P(t + ps)|2 ≤ 1. Suppose that there exist trigonometric

polynomials P̃1(A∗t), . . . , P̃M(A∗t) such that

dA−1∑
s=0

|P(t + ps)|2 +
M∑
j=1

|P̃j(A
∗t)|2 = 1. (3)

Then the there exist trigonometric polynomials P and Q`,
` = 1, . . . , | detA|+ M, satisfy the identity (2).
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Our construction:

For a given n ∈ N, denote

H(t) :=
1

dA

dA−1∑
s=0

e−2πit·qs and P(t) = |H(t)|2n, (4)

where {qs}dA−1
s=0 is a full collection of representatives of the cosets

of Zd/AZd .
Then

P(0) = 1 and

dA−1∑
s=0

|P(t + ps)|2 ≤ 1.
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The infinity product
∞∏
j=1

P((A∗)−jt)

converges to a non negative continuous function φ̂ in L2(Rd) such
that ‖φ̂‖L2(Rd ) ≤ 1, φ̂(0) = 1 and it satisfies the refinement
equation

φ̂(A∗t) = P(t)φ̂(t), t ∈ Rd . (5)

Then φ ∈ L2(Rd) such that its Fourier transform is φ̂ is compactly
supported.
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Then there are numbers αk such that

1−
dA−1∑
s=0

|P(t + ps)|2 =
∑
k∈Zd

αke
2πik·A∗(t), αk ∈ R. (6)

If Γ denotes the set of nonzero αk , let the trigonometric
polynomials P̃k be defined by

P̃0(t) = 0, P̃k(t) :=

√
|αk|

2
(1− e2πik·t), if k ∈ Γ \ {0},

(7)
Then

dA−1∑
s=0

|P(t + ps)|2 +
∑
k∈Γ

|P̃k(A∗t)|2 = 1.

Proof. Using the elementary formula
1− cos(2πk · t) = 1

2 |1− e−2πik·t|2.
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By a theorem by Lai and Stöckler and by the UEP,

ψ̂`(A
∗t) := Q`(t)φ̂(t), ` = 1, . . . ,N.

Theorem

Ψ = {ψ1, . . . , ψN} is a tight framelet in L2(Rd) with dilation
matrix A, and the functions ψ` are compactly supported.

The degree of smoothness “increases” with n.
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OUR CONSTRUCTION IN R2

Let A be an 2× 2 dilation matrix with integer entries such that
| detA| = 2.

Two matrices A and B with integer coefficients are integrally
similar if there exists a matrix U with integer entries such that
| detU| = 1 and A = U−1BU.

Ángel San Antoĺın Gil (University of Alicante) Smooth Compactly Supported Tight Framelets



FRAMELETS PREVIOUS CONSTRUCTIONS OUR CONSTRUCTION

Lemma (Lagarias and Wang, 1995)

Let A be an 2× 2 dilation matrix with integer entries such that
| detA| = 2. If detA = −2 then A is integrally similar to A1. If
detA = 2 then A is integrally similar to one of the matrices Ak ,
k = 2, . . . , 6.

A1 :=

(
0 2
1 0

)
, A2 :=

(
0 2
−1 0

)
, A3 :=

(
0 2
−1 1

)
,

A4 :=

(
0 −2
1 −1

)
, A5 :=

(
1 1
−1 1

)
, A6 :=

(
−1 −1

1 −1

)
.
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We now focus on the dilation matrices Ak .
We have

{p0,p1} = {(0, 0)T , (1/2, 0)T}, k = 1, 2, 3, 4

{p0,p1} = {(0, 0)T , (1/2, 1/2)T}, k = 5, 6,

is a full collection of representatives of the cosets of (Ak)−1Z2/Z2.
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Consider a matrix Ak , k = 1, . . . , 6.

Let m, n ∈ N, t = (t1, t2) and P(t) := cos2n(2m − 1)πt1.

Then φ ∈ L2(R2), defined by

φ̂(t) =
∞∏
j=1

P((A∗k)−jt),

is non null and compactly supported.

Obviously,
φ̂(A∗kt) = P(t)φ̂(t), t ∈ R2. (8)
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We have

|P(t)|2+|P(t+p1)|2 = cos4n ((2m − 1)πt1)+sin4n ((2m − 1)π(t1)) ≤ 1

Since the values of the trigonometric polynomial P only depend on
one variable, from a lemma of Riesz we know there is a non null
trigonometric polynomial L(A∗kt) on R2 such that

|L(A∗kt)|2 = 1−
(
|P(t)|2 + |P(t + p1)|2

)
The coefficients of L(A∗kt) may be obtained by spectral
factorization.
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Let

Q1(t) :=
1√
2

[1− cos4n ((2m − 1)πt1)

− cos2n((2m − 1)πt1) sin2n((2m − 1)πt1)],

Q2(t) :=
e i2πt1

√
2

[1− cos4n((2m − 1)πt1)

+ cos2n((2m − 1)πt1) sin2n((2m − 1)πt1)],

and

Q3(t) := −1

2
cos2n((2m − 1)πt1) L(A∗kt),
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Theorem

Let
ψ̂`(A

∗
kt) := Q`(t)φ̂(t), ` = 1, 2, 3

Then Ψ = {ψ1, ψ2, ψ3} is a tight framelet with dilation factor Ak

and frame constant 1, and the functions ψ` have compact support.

The degree of smoothness “increases” with n.

Corollary

Let A dilation matrix preserving the integer lattice with | detA| = 2
and let k ∈ {1, . . . , 6} be such that there exists an integer matrix
U with det(U) = 1, such that A = U−1AkU.
If

θ`(t) = ψ`(Ut) ` = 1, 2, 3,

then Θ = {θ1, θ2, θ3} ⊂ L2(R2) is a tight framelet with A, and the
functions θ` have compact support.
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