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ABSTRACT. For infinitely many primes p = 4k+1 we give a slightly
improved upper bound for the maximal cardinality of a set B C 7Z,
such that the difference set B — B contains only quadratic residues.
Namely, instead of the "trivial” bound |B| < /p we prove |B| <
/P — 1, under suitable conditions on p. The new bound is valid
for approximately three quarters of the primes p = 4k + 1.
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1. INTRODUCTION

Let ¢ be a prime-power, say ¢ = p*. We will be interested in es-
timating the maximal cardinality s(q) of a set B C F, such that the
difference set B — B contains only squares. While our main interest is
in the case k = 1, we find it instructive to compare the situation for
different values of k.

This problem makes sense only if —1 is a square; to ensure this
we assume ¢ = 1 (mod 4). The universal upper bound s(q) < /g
can be proved by a pigeonhole argument or by simple Fourier anlysis,
and it has been re-discovered several times (see [7, Theorem 3.9], [11,
Problem 13.13], [3, Proposition 4.7], [2, Chapter XIII, Theorem 14],
[10, Theorem 31.3], [9, Proposition 4.5], [6, Section 2.8] for various
proofs). For even k we have equality, since F,. can be constructed as a
quadratic extension of F /2, and then every element of the embedded
field Fr/2 will be a square. It is known that every case of equality can
be obtained by a linear transformation from this one, [1].

Such problems and results are often formulated in terms of the Paley
graph P, which is the graph with vertex set FF, and an edge between
r and y if and only if x — y = a* for some non-zero a € F,,.
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Paley graphs are self-complementary, vertex and edge transitive, and
(q,(q—1)/2,(q—5)/4,(q—1)/4)-strongly regular (see [2] for these and
other basic properties of P,). Paley graphs have received considerable
attention over the past decades because they exhibit many properties
of random graphs G(q, 1/2) where each edge is present with probability
1/2. Indeed, P, form a family of quasi-random graphs, as shown in [4].

With this terminology s(g) is the cliqgue number of P,. The general
lower bound s(g) > (1 + o(1))log, ¢ is established in [5], while it is
proved in [8] that s(p) > clog plogloglog p for infinitely many primes
p. The “trivial” upper bound s(p) < /p is notoriously difficult to
improve, and it is mentioned explicitly in the selected list of problems
[6]. The only improvement we are aware of concerns the special case
p = n? + 1 for which it is proved in [12] that s(p) < n — 1 (the same
result was proved independently by T. Sanders — unpublished, personal
communication). It is more likely, heuristically, that the lower bound
is closer to the truth than the upper bound. Numerical data [15, 14]
up to p < 10000 suggest (very tentatively) that the correct order of
magnitude for the clique number of P, is clog?p (see the discussion
and the plot of the function s(p) at [16]).

In this note we prove the slightly improved upper bound s(p) <
v/P— 1 for the majority of the primes p = 4k+1 (we will often suppress
the dependence on p, and just write s instead of s(p)).

We will denote the set of nonzero quadratic residues by @), and that
of nonzero non-residues by N@Q. Note that 0 ¢ @ and 0 ¢ NQ.

2. THE IMPROVED UPPER BOUND

Theorem 2.1. Let q be a prime-power, ¢ = p*, and assume that k is
odd and ¢ =1 (mod 4). Let s = s(q) be the mazimal cardinality of a
set B C I, such that the difference set B — B contains only squares.
(i) If [\/q) is even then s* +s—1 <,

(i) if [\/q] is odd then s* +2s —2 < q.

Proof. The claims hold if s < [,/g]. Hence we may assume that s >
lval-
Lemma 2.2. Let D C IF, be a set such that
D CNQ, D—D cC Qu{0}.
With r = |D| we have

qg—1

(1) s(q) <1+ -
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Proof. Let B be a maximal set such that B — B C Q U {0}, |B| =
s(q) = s. Consider the equation

by —by=2d, bi,by € B, d€ D, z € NQ.

This equation has exactly s(s — 1)r solutions; indeed, every pair of
distinct by,by € B and a d € D determines z uniquely. On the other
hand, given b; and z, there can be at most one pair b, and d to form a
solution. Indeed, if there were another pair b, d’, then by substracting
the equations
bl—bQIZd, bl—bIQIZd/

we get (b — by) = z(d — d'), a contradiction, as the left hand side is a
square and the right hand side is not. This gives s(s—1)r < s(¢g—1)/2
as wanted. U

We try to construct such a set D in the form D = (B —t)NNQ with
a suitable . The required property then follows from D — D C B — B.

Let x denote the quadratic multiplicative character, i.e. x(t) = £1
according to whether t € Q or t € N@Q (and x(0) = 0). Let

(2) p(t) = x(b—1).
beB
Clearly
p(t) =[(B=t)NQ| = |(B-t)N N,
and hence for t ¢ B we have

(B-nnxg =20

To find a large set in this form we need to find a negative value of .
We list some properties of this function. For ¢t € B we have ¢(t) =
s — 1, and otherwise

o(t) <s—2, p(t)=s (mod 2)

(the inequality expresses the maximality of B). Furthermore,
> w(t) =0,
t

and, since translations of the quadratic character have the quasi-orthogonality
property
D> O x(t+a)x(t+b) = -1
t

for a # b, we conclude

> o) =s(g—1)—s(s —1) = s(g—s).
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By substracting the contribution of t € B we obtain

ng = —s(s—1),

1¢B

D o) =s(g—s)—s(s—1)* =s(g—s*+5—1).
t¢B
These formulas assume an even nicer form by introducing the func-
tion ¢1(t) = ¢(t) + 1:

(3) D eilt) =q- 5,

t¢B

(4) > i) =(s+1)(q— 7).

t¢B
As a byproduct, the second equation shows the familiar estimate s <
V/Q, so we have s = [\/q] < \/q (recall that we assume that s > [,/q],
the theorem being trivial otherwise).

Now we consider separately the cases of odd and even s. If s is even,
then, since Zt 5 ¢(t) < 0 and each summand is even, we can find a
t Wlth o(t) < —2 This gives us an r with » > (s + 2)/2, and on
substituting this into (1) we obtain the first case of the theorem.

If s is odd, we claim that there is a t with ¢(t) < —3. Otherwise
we have p(t) > —1, that is, ¢1(t) > 0 for all t ¢ B. We also know
o(t) <s—2, p1(t) < s—1fort ¢ B. Consequently

Yoot <(s—=1)> pi(t) = (s —1)(g— 57,

t¢B t¢B
a contradiction to (4). (Observe that to reach a contradiction we need
that ¢ — s? is strictly positive. In case of an even k it can happen that
q = s* and the function ¢; vanishes outside B.)
This t provides us with a set D with r > (s+3)/2, and on substituting
this into (1) we obtain the second case of the theorem. O

Remark 2.3. An alternative proof for the case ¢ = p and s being
odd is as follows. Assume by contradiction that ¢; is even-valued and
nonnegative. Then by (3) it must be 0 for at least

q—s* q+s*—2s

2 2
values of t. Let X, ®, 1 denote the images of x, ¢, ¢; in F, (i.e. the

functions are evaluated mod p). By the previous observation (&, has
—1

at least (q-+s%—2s)/2 zeroes. On the other hand, we have ¥(z) = 27,
and hence ¢, is a polynomial of degree (¢ — 1)/2; its leading coefficient

q—|B|—
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is s = [\/q] # 0 mod p (This last fact may fail if ¢ = p¥, even if k is
odd. Therefore this proof is restricted in its generality. Nevertheless we
include it here, because we believe that it has the potential to lead to
stronger results if ¢ = p.) Consequently ¢; can have at most (¢ — 1)/2
zeros, a contradiction. In the case of even k we can have s = /g =0
(mod p) and so the polynomial ¢; can vanish, as it indeed does when

B is a subfield.

Remark 2.4. It is clear from (1) that any improved lower bound on r
will lead to an improved upper bound on s. If one thinks of elements of
Z, as being quadratic residues randomly with probability 1/2, then we
expect that r > £+c¢y/s. This would lead to an estimate s < \/ﬁ—cpl/“.
This seems to be the limit of this method. In order to get an improved
lower bound on 7 one can try to prove non-trivial upper bounds on

the third moment ., ©3(t). To do this, we would need that the

distribution of numbers % is approximately uniform on @) as by, by, b3
ranges over B. This is plausible because if s ~ /p then the distribution
of B— B must be close to uniform on N@. However, we could not prove

anything rigorous in this direction.

Remark 2.5. Theorem 2.1 gives the bound s < [,/p]—1 for about three
quarters of the primes p = 4k + 1. Indeed, part (ii) gives this bound
for almost all p such that n = [/p] is odd, with the only exception
when p = (n+ 1)? — 3. Part (i) gives the improved bound s <n — 1 if
n? 4+ n —1 > p. This happens for about half of the primes p such that
n is even.
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