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Abstract. When we represent Zd as a finite disjoint union of translated integer sub-
lattices, the translated sublattices must possess some special properties. We call such a
representation a lattice tiling. We develop a theoretical framework, based on multiple
residues and dual groups. We prove that in any such lattice tiling of Zd, if p is a prime
and pk divides the determinant of one translated sublattice, then pk also divides the de-
terminant of (at least) one of the other translated sublattices. We also investigate the
question of when a lattice tiling must possess at least two translated sublattices which are
translates of one another, and we give in general dimension a sufficient condition in terms
of cyclic lattices.

1. Introduction

1.1. Overview. Suppose we decompose the integer lattice Zd into a finite, disjoint union
of integer translates of sublattices of Zd. We call such a decomposition of the integer lattice
a lattice tiling. Given a lattice tiling, what can be said about the structure of the translated
sublattices? For d = 1, an interesting question was posed by Erdős, namely whether there
are always at least two arithmetic progressions (1-dimensional translated sublattices) which
are translates of each other. Newman and Mirsky gave a classic but unpublished proof of
the affirmative answer to this question, which combined combinatorial number theory with
an analysis of generating functions, and was given almost immediately after it was posed
by Erdős.

Extending these notions to higher dimensions, we say that a lattice tiling has the transla-
tion property if at least two of its translated sublattices are integer translates of each other.
To motivate the results of this paper, we focus on the following three questions:

Question 1.1. What are some natural and general necessary conditions for the existence
of a lattice tiling?

Question 1.2. In any general dimension d, are there some nice sufficient conditions for a
lattice tiling to have the translation property?

Question 1.3. For d = 2, is there a lattice tiling which does not have the translation
property?

In the process of trying to answer these questions, we develop some analytic tools which
may be of independent interest. These tools involve generating functions associated to sub-
lattices of Zd, residue calculus of holomorphic functions of several variables [12], and some
elementary considerations. In the recent paper [6], the translation property for higher di-
mensional lattice tilings was considered from a discrete Fourier perspective. The translation
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property for dimension d > 1 was apparently first considered in another unpublished man-
uscript, this time an MIT Master’s thesis by A. Schwartz [11], using purely combinatorial
methods.

Although Question 1.3 remains open, we show that any potential counterexample to it
must be large in the sense that there must be a lattice whose determinant is divisible by
the squares of at least two primes. Using a brute force computer program we have shown
that there is no counterexample if all the lattices have determinants bounded from above
by 36.

On the other hand, for any dimension d ≥ 3, there are counterexamples in [6] that show
that there are 4 lattice translates which form a lattice tiling of Zd, but which do not have
the translation property. We discuss these examples in Section 7 and classify all possible
translation-free tilings that consist of at most four lattices.

1.2. Terminology and notation. We now provide concise definitions of notions that will
be used throughout the paper.

We call L a lattice if it is a finite index subgroup of Zd, of full rank. The index of L in Zd
is called the determinant of L. Throughout the article, we write d−dimensional vectors in
bold, to distinguish them from scalars. Thus any vector v has coordinates (v1, . . . , vd), and
we furthermore write v ≥ 0 if v1, . . . , vd ≥ 0. We write 0 := (0, . . . , 0) and 1 := (1, . . . , 1).

Suppose now that z = (z1, . . . , zd) ∈ Cd and v = (v1, . . . ,vd) ∈ Zd. We define

χz(v) = zv1
1 . . . zvdd ∈ C.

Although it is not technically traditional, and such a homomorphism is sometimes called a
quasi-character in algebraic number theory [7], we shall refer to χz simply as a character.
For a lattice L ⊂ Zd, we call a complex point z ∈ Cd a dual point of L if χz(v) = 1 for all
v ∈ L. We write

Td = {(z1, . . . , zd) ∈ Cd : |z1| = · · · = |zd| = 1}.
Each element z ∈ Td ⊂ Cd gives us a character (in the standard sense) over Zd; that is,

it provides a homomorphism from Zd to S1 given by v 7→ χz(v). Since a point z ∈ Td is a
dual point of L if and only if χz restricted to L is trivial, we see that the dual points can
be regarded as characters on the finite abelian group

GL := Zd/L,

which we call the group of the lattice. We note that all the coordinates of a dual point have
modulus 1. We also say that a character has finite order if each zj is additionally assumed
to be a root of unity, a condition tantamount to saying that the image of ρz is finite. It is a
standard fact that the dual points form a group, known as the Pontryagin dual to GL, and

it is particularly useful that this group is isomorphic to GL. We call this group ĜL. We
clearly have

|ĜL| = |GL| = detL.

For any integer vector v ∈ Zd, we call the discrete set of vectors

v + L := {v + w | w ∈ L}

a lattice translate of L. The vector v will be referred to as a translate vector. Thus, a
more formal description of a lattice tiling is the existence of a collection of (d−dimensional)
lattices L1, . . . ,Ln and translate vectors v1, . . . ,vn ∈ Zd such that

n⋃
j=1

{vj + Lj} = Zd,
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and such that {vi +Li} ∩ {vj +Lj} = ∅ for all i 6= j. In other words, for any w ∈ Zd there
exists a unique j ∈ {1, . . . , n} such that w − vj ∈ Lj .

1.3. Statement of results. We first remark that if v1 +L1, . . . ,vn+Ln are the translated
sublattices of any lattice tiling, then for all i, j we must have

(1.4) gcd(detLi, detLj) > 1.

Although this particular result may be thought of as a warm-up, we give a formal proof of
(1.4) in Proposition 2.5, in section 2.1. In dimension 1, this was most likely already known
by Mirsky and Newman and is an elementary fact. One of our main results is the following
necessary arithmetic condition on primes dividing the determinants of the lattice translates
in any lattice tiling.

Theorem 1.5. If we have a lattice tiling, and if there is a prime p such that pk divides
the determinant of one of the lattice translates, then pk divides the determinant of another
lattice translate.

We give the proof of Theorem 1.5 in Section 6.3. We call a lattice L a cyclic lattice if the

dual group ĜL is a cyclic group. To give an answer to question (1.2), we have the following
result, stated in terms of cyclic lattices.

Theorem 1.6. If we have a lattice tiling such that the lattice translate with largest deter-
minant is cyclic, then our lattice tiling has the translation property.

In dimension 2 we can prove a stronger condition, made precise in Theorem 6.4. Finally,
the following necessary and sufficient condition for a lattice tiling to exist, which we call
the character formula, is a basic tool that we use often in our proofs.

Theorem 1.7. Let χz be any character of finite order then we have a lattice tiling with the
lattice translates v1 + L1, . . . ,vn + Ln if and only if

(1.8)
∑

j : z∈ĜLj

χz(vj)

detLj
=

{
1, if z = (1, . . . , 1)

0, otherwise.

The ‘only if’ part of Theorem 1.7 is stated and proved in Proposition 5.10. The ‘if’ part
is Theorem 5.16.

We also address the problem of classifying tilings without the translation property, which
we call translation-free lattice tilings, and Lemma 7.1, Proposition 7.2, and Proposition 7.3
in section 7 together give a complete classification of all lattice tilings that consist of at
most four lattice translates.

1.4. Historical overview. Note that equation (1.8) is a basic relation between roots of
unity, with rational coefficients. Indeed, the 1-dimensional case has been extensively studied
using vanishing sums of roots of unity over the rationals. In dimension 1, a lattice tiling is
also known in the literature as a Disjoint Covering System (DCS). Paul Erdős initiated the
study of covering systems in general (which means that the arithmetic progressions may
not necessarily be disjoint, see [5]), and Erdős credits the beautiful proof of the translation
property that we have defined above, for dimension 1, to an unpublished paper by Mirsky
and Newman, and independently to an unpublished paper of Davenport and Rado. Many
interesting papers have since been written about the 1-dimensional case of lattice tilings,
and for more background, including some fascinating results on vanishing sums of roots of
unity, the reader may refer to [2], [3], [4], [9], [10], [13].

There was a related question in the context of a general finite nilpotent group G. Suppose
that such a group G is partitioned into some cosets of some of its subgroups. Then the
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conjecture, known as the Herzog-Schonheim conjecture, was that at least two of the cosets
must have the same index. The Herzog-Schonheim conjecture was solved in 1986, in the
paper [1].

Since a lattice tiling may also be thought of as a covering of the group Zd by a finite
disjoint union of cosets of subgroups of Zd, it then follows from [1], in our abelian group
setting, that any lattice tiling must contain at least two lattice translates of the same de-
terminant. In other words, there are two lattice translates that must have the same volume
for their fundamental domain. But almost any other question about these fundamental
domains remains open.

Finally, we mention that Paul Erdős himself has been quoted as saying in 1995 that
“Perhaps my favorite problem of all concerns covering systems”.

Acknowledgements. We thank Professor Krzysztof Przeslawski for bringing the Master’s
thesis [11] to our attention. The project was started when M.B. and S.R. were visiting Renyi
Institute in Budapest. We would like to thank the Renyi Institute for their hospitality. The
authors S.R. and D.N. would like to thank the University of Warsaw for their hospitality,
where this project was continued.

2. Lattices, generating functions, and characters

2.1. The tiling condition.

Definition 2.1. A tiling v1 + L1, . . . ,vn + Ln of Zd splits if {1, . . . , n} can be partitioned
into I1 ∪ . . . ∪ Ik with k > 1, |Ij | > 0 for j = 1, . . . , k, |I1| > 1 so that for any j = 1, . . . , k
the union ⋃

i∈Ij

{vi + Li}

is another lattice translate. Otherwise a tiling is called primitive. This definition merely
captures the intuition that one might like to generate more complex lattice tilings by starting
with a simple one, and splitting one of the existing lattice translates into new “coarser”
lattice translates.

Lemma 2.2. Assume that L ⊂ Zd is a lattice with detL = p, for p a prime. Fix any
integer vector v /∈ L. Then we have span{L,v} = Zd.

Proof. Let T be the lattice generated by L and v. Since v /∈ L, we have L ( T ⊂ Zd and
the index of T in Zd is therefore a proper divisor of p. We conclude that det T = 1 and
hence T = Zd. �

Proposition 2.3. If we have detLk = p with p a prime for some k then the tiling either
splits or all the lattices in the tiling are equal to Lk.

Proof. Assume that detL1 = p and translate the tiling if necessaray so that v1 = 0. By
this assumption, we have L1 ∩ (vi + Li) = ∅ for all i > 1, so that vi /∈ span{L1,Li} and
hence span{L1,Li} ( Zd. From Lemma 2.2, we conclude that Li ⊂ L1 for all i > 1 and
this implies vi + Li lies in the translate of L1 under vi.

Since Zd/L1 is a group with p elements, it is isomorphic to Z/pZ. Let us fix an iso-

morphism Zd/L1 → Z/pZ and define π : Zd → Zd/L1
∼=→ Z/pZ as a composition of the

projection map with this isomorphism. For any k ∈ {0, . . . , p− 1}, we define the subset of
indices

Ik = {i ∈ {1, . . . , n} : π(vi) = k}.
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The union ⋃
i∈Ik

{vi + Li}

is equal to π−1(k), therefore it is a translate of L1. If for some k, |Ik| > 1, we have a
splitting. If for all k we have |Ik| = 1, this means that all the lattices are isomorphic to
L1. �

Lemma 2.4. Assume that the lattices L1, . . . ,Ln have coprime determinants, i.e.

gcd(detL1, . . . ,detLn) = 1.

Then the lattice L generated by
⋃
Li, over the integers, is isomorphic to Zd.

Proof. Let L be the lattice generated by L1, . . . ,Ln. Repeating the argument in Lemma 2.2,
we see that detL | detLi for 1 ≤ i ≤ n. Thus we have detL | gcd(detL1, . . . ,detLn) = 1
and consequently L = Zd. �

Proposition 2.5. Let v1 + L1, . . . ,vn + Ln be a lattice tiling. Then for any i and j we
have gcd(detLi,detLj) > 1.

Proof. Assume that gcd(detL1,detL2) = 1. By Lemma 2.4, L1∪L2 generate Zd and so any
integer vector v ∈ Zd can be written as w1 −w2 for w1 ∈ L1 and w2 ∈ L2. Representing
v2 − v1 in this form, we have v1 + w1 = v2 + w2 ∈ (v1 +L1)∩ (v2 +L2) 6= ∅. We obtain a
contradiction. �

2.2. Generating functions. We define one of our main objects of study, namely a gener-
ating function that is attached to each lattice translate of a lattice tiling.

Definition 2.6. Let v + L be a lattice translate, so that L is any integer sublattice of Zd
and v is an integer vector. We define its generating function by

ΘL(z) =
∑

w∈L+v
w≥0

χz(w) :=
∑

w∈L+v
w≥0

wz.

Note the important fact that we are restricting our summation to the positive orthant.
This makes the series absolutely convergent for all z = (z1, . . . , zd) such that |zj | < 1 for all
1 ≤ j ≤ d. Our next step is to give an algorithm of computing Θ and to show that Θ is in
fact a rational function on Cd. To this end we introduce another definition.

Definition 2.7. Let L be a lattice. We define t1, . . . , td as the minimal positive integers
such that (0, . . . , 0, tj , 0, . . . ) ∈ L. These integers are called the polar values of L.

Example 2.8. Assume that L is a lattice in dimension 2 spanned by the vectors (a, b) and

(c, d). Let us define ã = gcd(a, c) and b̃ = gcd(b, d), moreover a′ = a/ã, c′ = c/ã, b′ = b/b̃

and d′ = d/b̃. Then it is routine to see that

t1 =
|ad− bc|

ã
, t2 =

|ad− bc|
b̃

.

It easy to see that if (a, b) and (c, d) span L, then the determinant of L is |ad−bc|. Hence
the polar values divide the determinant, a fact that we can prove in any dimension.

Lemma 2.9. The polar values divide the determinant.

Proof. Let e1 = (1, 0, . . . , 0). The fact that t1 is a polar value means that t1e1 ∈ L and for
any k = 1, . . . , t1− 1, ke1 6∈ L. Consider the subgroup of GL = Zd/L spanned by the image
of e1. We see that its order is t1, so it divides the order of GL. �
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Lemma 2.10. Let S be the half open cube

(2.11) S = {(x1, . . . , xd) : 0 ≤ xi < ti}.

Then we have

(2.12) #(S ∩ L) =
t1t2 . . . td

detL
.

Proof. Let (v1, . . . , vd) be a basis of L ⊂ Zd, and consider the map J : Rd → Rd defined by

(2.13) J(x1, . . . , xd) = x1v1 + · · ·+ xdvd.

Then J is a linear map and J(Zd) = L. Let T = J−1(S). Then T is a half-open paral-
lelepiped with integral corners. We have

#(S ∩ L) = #(T ∩ Zd) = vol(T ) =
volS

det J
=
t1 . . . td
detL

.

�

Proposition 2.14. Let v + L be a lattice translate and t1,. . . , td be the polar values of L.
Then

ΘL(z) =
Rv(z)

(1− zt11 ) . . . (1− ztdd )
,

where

(2.15) Rv(z) =
∑

w∈S∩(v+L)

χz(w).

Proof. Let LS be the lattice spanned by vectors (t1, 0, . . . , 0),. . . , (0, . . . , td). It is clear that

ΘLS (z) =
1

(1− zt11 ) . . . (1− ztdd )
.

Now we have

v + L =
⋃

w∈S∩(v+L)

{w + LS}.

Hence

ΘL =
∑
w∈S

χz(w)ΘLS (z) =
Rv(z)

(1− zt11 ) . . . (1− ztdd )
.

�

Remark 2.16. If the lattice translate is in fact a lattice, i.e. if v = 0, then we write R(z)
instead of Rv(z). This will be used later in Lemma 3.4.

Example 2.17. Consider a lattice L = 2Z × 2Z ∪ [(1, 1) + 2Z × 2Z] = {(x, y) : x + y =
0 mod 2}. The generating function of the lattice 2Z × 2Z is clearly 1

(1−x2)(1−y2)
. We get

therefore

ΘL(x, y) =
1 + xy

(1− x2)(1− y2)
.

Example 2.18. Assume that L is spanned by v1 = (4, 1) and v2 = (2, 3). Then t1 = 10
and t2 = 5. In this example we see that S ∩ L = {(0, 0), (4, 1), (8, 2), (2, 3), (6, 4)} (the
marked points on Figure 1). Hence R(x, y) = 1 + x4y + x2y3 + x4y6 + x4y6.
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Figure 1. A lattice spanned by (4, 1) and (2, 3). Here the polar values are
t1 = 10 and t2 = 5. See Example 2.18.

3. More on dual points and characters

Let us recall from the introduction that z ∈ Cd is called a dual point of L if χz(w) = 1
for all w ∈ L. The following “orthogonality relation” for the characters χz is well-known,
but as it is crucial to our proofs, we include the proof for the sake of completeness.

Lemma 3.1. Let L ⊂ Zd be a lattice with a basis v1, . . . ,vd and the fundamental paral-
lelepiped P = {λ1v1 + · · · + λdvd : 0 ≤ λi < 1} ⊂ Rd. If z = (z1, . . . , zd) is a dual point
different from 1 = (1, . . . , 1), then ∑

v∈Zd∩P

χz(v) = 0.

Proof. Observe that the elements of P ∩Zd are in one-to-one correspondence with elements
of the quotient group Zd/L and χz(v) can be regarded as the evaluation of the character
given by z on the element v ∈ Zd/L. This character is non-trivial because z 6= 1. Now we
use the standard fact that the average of a non-trivial character over a compact group (in
particular over a finite group) is zero, and we are done. �

Example 3.2. Assume that v1 = (4, 1) and v2 = (2, 3). The points in P are (0, 0),
(1, 1), (2, 1), (3, 1), (2, 2), (3, 2), (4, 2), (3, 3), (4, 3) and (5, 3); see Figure 2. We con-

sider z = (ε, ε), where ε = e2πi/5. Then χz has the following values at these points:
ε0, ε2, ε3, ε4, ε4, ε0, ε1, ε1, ε2 and ε3. The sum is clearly 0.

The next result will also be very useful for us. We first prove it for lattices, namely when
the translation vector is (0, . . . , 0).

Proposition 3.3. Suppose that z = (z1, . . . , zd) ∈ Cd satisfies zt11 = · · · = ztdd = 1 and z is
not a dual point of L (the ti are the polar values). Then R(z) = 0.

Proof. By definition z is a dual point of the lattice LS , defined to be the integral span of
the vectors (t1, 0, . . . , 0),. . . , (0, . . . , 0, td). The map J defined in (2.13) induces the dual
map J∗ : Td → Td by the formula

χJ∗z(v) = χz(Jv).
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0 1 2 3 4 5 6 7 8
0

1

2
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Figure 2. The points in the paralelliped P for the lattice spanned by (4, 1)
and (2, 3).

Let y = J∗z, T = J−1(LS) and P(T ) the fundamental parallelepiped of T . By definition,
J∗ maps dual points of LS to dual points of J−1(T ). We have

R(z1, . . . , zd) =
∑

m∈S∩L

χz(m) =
∑

v∈P(T )

χz(Jv) =
∑

v∈P (T )

χy(v).

Now y is a dual point of T , but y 6= 1, otherwise z would be a dual point of L. The result
follows by applying Lemma 3.1. �

We shall generalize Proposition 3.3 in the following way.

Lemma 3.4. Let L be a lattice with polar values (t1, . . . , td). Suppose that z = (z1, . . . , zd)

satisfies zt11 = · · · = ztdd = 1. Then for any translate vector v we have

Rv(z) = χz(v)R(z).

Proof. Let S be a cube as in (2.11). We split the sum (2.15) as follows.

Rv(z) =
∑

w∈(v+L)∩S
w−v∈S

χz(w) +
∑

w∈(v+L)∩S
w−v 6∈S

χz(w).

The first term is the same as
χz(v)

∑
u∈L∩S
u+v∈S

χz(u).

For the second term, observe that if w−v 6∈ S, then there exists a unique element u′ ∈ LS
such that w − v − u′ ∈ S. Writing Hence we obtain∑

w∈(v+L)∩S
w−v 6∈S

χz(w) =
∑

u∈L∩S
u+v 6∈S

χz(u + v − u′).

Now we note that χz(u + v − u′) = χz(v)χz(u)χz(−u′), but χz(−u′) = 1 because of the
assumptions on z. Thus

Rv(z) = χz(v)
∑

u∈L∩S
u+v∈S

χz(u) + χz(v)
∑

u∈L∩S
u+v 6∈S

χz(u)

and the proof is finished. �

We finish this section with another important result, whose proof follows immediately from
Pontryagin duality.
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Lemma 3.5. Assume that L ⊂ Zd is a lattice and v ∈ Zd \ L. Then there exists a dual

point z ∈ ĜL such that χz(v) 6= 1.

Corollary 3.6. If we are given two lattices L1 and L2 and each dual point of L1 is a dual

point of L2 then L2 ⊂ L1. In particular, if ĜL1 = ĜL2 as subgroups of Td, then L1 = L2.

Proof. Assume that v ∈ L2 \L1. Then there exist a dual point z of L1 such that χz(v) 6= 1.
But as z is a dual point of L2 by assumption, we get χz(v) = 1, a contradiction. �

4. An explicit computation of the dual group

We recall that a lattice L is called cyclic if ĜL is a cyclic group. In this section we first

show that for any given integer lattice L, the dual group ĜL can be given as the zero set
of a natural collection of polynomial equations, which are in fact the collection of factors
in the denominator of ΘL(z). Then, in Theorem 4.5 we give a general characterization of
a cyclic lattice in terms of the coordinates of its basis vectors. In the case of 2-dimensional
lattice tilings, this characterization is particularly simple and will be especially useful for
us in the ensuing sections of the paper.

Suppose we have a lattice L ⊂ Zd, with a basis consisting of the integer vectors v1, . . . ,vd.
Upon choosing a basis of Zd we may write each vector vk for 1 ≤ k ≤ d in the form

vk = (n1,k, n2,k, . . . , nd,k).

We want first to characterize the characters of L. Recall that these are elements z ∈ Cd,
such that for any v ∈ L we have χz(v) = 1. Since χz can be regarded as a homomorphism
from L to C∗, clearly z ∈ Cd is a character if and only if for any k = 1, . . . , d we have
χz(vk) = 1. Writing z = (z1, . . . , zd) the latter condition translates into a system of d
polynomial equations in the variables z1, . . . , zd:

(4.1) z
n1,k

1 z
n2,k

2 . . . z
nd,k
d = 1,

over all 1 ≤ k ≤ d.

We define the matrix N = {ni,j}, whose columns are the basis vectors of the lattice
L, and note that N is invertible. We denote its determinant by detN = ∆. Clearly
GL = Zd/N · Zd. Note that changing a basis of L corresponds to multiplying N from the
left by an unimodular matrix U1. On the other hand, changing a basis of Zd amounts to
multiplying N from the right by an unimodular matrix U2. Clearly the groups Zd/N · Zd
and Zd/U1NU2 · Zd are isomorphic.

Let M = {Mi,j} be the adjugate matrix of N , namely the matrix defined by the relation
MT = ∆ · N−1. The entries of M are the determinants of the various (d − 1) × (d − 1)
minors of N , and are in this case integers.

Lemma 4.2. There are exactly ∆ distinct solutions to the system of polynomial equations
(4.1), and they are given by 

z1

z2
...
zd

 =


e

2πi
∆ (l1M1,1+···+ldM1,d)

e
2πi
∆ (l1M2,1+···+ldM2,d)

...

e
2πi
∆ (l1Md,1+···+ldMd,d)


as the ld vary over the integers.
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Proof. We take logarithms of both sides of (4.1), where we use the multi-valued complex
log function, which gives us log(1) = 0+2πil, for all l ∈ Z. We thus get, for each 1 ≤ k ≤ d:

n1,k log(z1) + n2,k log(z2) . . . nd,k log(zd) = 2πild(4.3)

We must take into account all possible branches of the multi-valued log function when
applying the log to a product of complex numbers, so that using log(zd) = Log(zd) + 2πimd

gives us:

(4.4)


n1,1Log(z1) + n1,1(2πim1) + · · ·+ nd,1Log(zd) + nd,1(2πimd)
n1,2Log(z1) + n1,2(2πim1) + · · ·+ nd,2Log(zd) + nd,2(2πimd)

...
...

...
n1,dLog(z1) + n1,d(2πim1) + · · ·+ nd,dLog(zd) + nd,d(2πimd)

 =

2πil1
...

2πild

 .

We may rewrite (4.4) as follows:
Log(z1) + 2πim1

Log(z2) + 2πim2
...

Log(zd) + 2πimd

 =
2πi

∆
M

l1...
ld

 .

We finally arrive at Log(zk) + 2πimk = 2πi
∆ (l1Mk,1 + · · ·+ ldMk,d), so that

zk = e
2πi
∆ (l1Mk,1+···+ldMk,d).

�

Theorem 4.5. L is a cyclic lattice if and only if gcd(M1,1,M1,2, . . . ,Md,d) = 1

Proof. Using Smith normal form for the ring of integer matrices, we can find two unimodular
matrices U1 and U2 such that U1NU2 = A is a diagonal matrix with diagonal entries
satisfying ai+1 | ai for 1 ≤ i ≤ d− 1. It is moreover known that the product ad−k+1 · · · ad is
equal to the greatest common divisor of all k× k minors of the matrix N for all 1 ≤ k ≤ d.
The lattice generated by A now has dual group Za1⊕Za2⊕· · ·⊕Zad , which is isomorphic to

ĜL. Thus, L is cyclic if and only if a2 = 1 and this is equivalent to the arithmetic condition
gcd(M1,1, . . . ,Md,d) = 1. �

In particular, it follows immediately from Theorem 4.5 that if L ⊂ Z2 is spanned by (a, b)
and (c, d), then it is cyclic if and only if gcd(a, b, c, d) = 1.

5. Residue calculus

5.1. Residues of generating functions. Assume now that we have lattices L1, . . . ,Ln
in Zd. Denote the polar values of the lattice Li by ti,1, . . . , ti,d. Assume that there exist
non-negative vectors v1, . . . ,vn such that we have the lattice tiling

(5.1)

{
{v1 + L1} ∪ {v2 + L2} ∪ · · · ∪ {vn + Ln} = Zd,
{vi + Li} ∩ {vj + Lj} = ∅ for i 6= j.

Let Θi be a generating function of vi + Li.

Lemma 5.2. We have the following equality of rational functions, with z = (z1, . . . , zd):

(5.3)

n∑
i=1

Θi(z) =
1

(1− z1) · · · (1− zd)
.
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Moreover, the identity (5.3) is equivalent to the condition that v1 +L1, . . . , vn+Ln provide
a lattice tiling of Zd.

Proof. The right hand side of (5.3) is the generating function for the tiling consisting of a
single lattice Zd. Let us choose z such that |zj | < 1 for all j. By the tiling condition we
have

(5.4)
∑
w∈Zd
w≥0

χz(w) =
n∑
j=1

∑
w∈vj+Lj

w≥0

χz(w),

where we use the fact that we can change the summation order of absolutely convergent
power series. Equation (5.4) is equivalent to (5.3) for z such that |zj | < 1, see Definition 2.6.

Both sides of (5.3) are rational functions agreeing on an open subset of Cd, so they are equal.
It is also clear that (5.4) implies the tiling condition. �

We now fix some z ∈ Cd. Consider a torus T = {u ∈ Cd : |z1 − u1| = . . . = |zd − ud| = ε}
for ε > 0 sufficiently small. Equation (5.3) implies that

(5.5)

n∑
j=1

∫
T

Θj(u)du =

∫
T

du

(1− u1) . . . (1− ud)
.

Here du = du1 ∧ . . . ∧ dud is the volume form on T (note that (5.5) can be regarded as
comparison of multidimensional residues, see [12]). We want to study the integrals appearing
on the right hand side of (5.5). To this end recall that by Proposition 2.14 that we can
write

Θi(z) =
Ri(z)

(1− zti,11 ) · · · (1− zti,dd )
,

where

Ri(z) =
∑

v∈Si∩vi+Li

χz(v).

Lemma 5.6. For any j = 1, . . . , n, the integral∫
T

Rj(u)

(1− utj,11 ) . . . (1− utj,kd )
du

is zero unless z ∈ ĜLj . In the latter case it is equal to (−2πi)d

detLj
χz(vj + 1).

Proof. As Rj is analytic at z, we have

(5.7)

∫
T

Rj(u)

(1− utj,11 ) . . . (1− utj,dd )
du = Rj(z)

∫
T

du

(1− utj,11 ) . . . (1− utj,dd )
.

But ∫
T

du

(1− utj,11 ) . . . (1− utj,dd )
=

d∏
k=1

∫
|uk−zk|=ε

duk

1− utj,kk

.

By Goursat’s lemma the integrals on the right hand side vanish unless z
tj,1
1 = · · · = z

tj,d
d = 1.

So assume that z
tj,1
1 = · · · = z

tj,d
d = 1. Since for any x0 ∈ C and any integer m > 0∫

|x−x0|=ε

dx

1− xm
x=zx0= z

∫
|z−1|=ε

dz

1− zm
= −2πi

x0

m
,
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we have

(5.8)

n∏
k=1

∫
|uk−zk|=ε

duk

1− utj,kk

=
(−2πi)d

tj,1 . . . tj,d
z1 . . . zd.

Given that z
tj,1
1 = · · · = z

tj,d
d = 1, to compute Rj(z) in this case we use Proposition 3.3

and Lemma 3.4. We get Rj(z) = 0 unless z is a dual point of Lj . In this case, by Lemma 3.4
we have

(5.9) Rj(z) =
tj,1 . . . tj,d

detLj
χz(vj).

Substituting the Rj from (5.9) and the integral from (5.8) into (5.7) we conclude the proof.
�

We now combine Lemma 5.6 with Lemma 5.2 to obtain our main technical result.

Proposition 5.10. Let z be a dual point of L1. Then we have

(5.11)
∑

j : z∈ĜLj

χz(vj)

detLj
=

{
1, if z = 1

0 otherwise.

Proof. Consider (5.5). On the right hand side we obtain 0 if z 6= 1; if z = 1, the integral is
(−2πi)d. The integral on the left hand side is computed using Lemma 5.6. The proposition
follows immediately. �

From Proposition 5.10 we can deduce an immediate corollary.

Corollary 5.12. Assume that z is a dual point of Li and z 6= (1, . . . , 1). Then there exists
at least one other Lj such that z is also a dual point of Lj.

Proof. If z belongs only to ĜLi , then the right hand side of (5.11) is
χz(vi)
detLi 6= 0, and we

obtain a contradiction. �

Example 5.13. Consider the four lattices L1 = (2Z × 2Z × Z), L2 = (2Z × Z × 2Z),
L3 = (Z× 2Z× 2Z) and L4 = (2Z× 2Z× 2Z)∪ (1, 1, 1) + ((2Z× 2Z× 2Z). It is known that
(1, 0, 0) + L1, (0, 0, 1) + L2, (0, 1, 0) + L3 and L4 tile Z3. We have

z1

(1− z2
1)(1− z2

2)(1− z3)
+

z3

(1− z2
1)(1− z2)(1− z2

3)
+

+
z2

(1− z1)(1− z2
2)(1− z2

3)
+

1 + z1z2z3

(1− z2
1)(1− z2

2)(1− z2
3)

=

=
1

(1− z1)(1− z2)(1− z3)
.

The dual point are respectively

L1 : (1,−1, 1), (−1, 1, 1), (−1,−1, 1)

L2 : (1, 1,−1), (−1, 1, 1), (−1, 1,−1)

L3 : (1, 1,−1), (1,−1, 1), (1,−1,−1)

L4 : (1,−1,−1), (−1, 1,−1), (−1,−1, 1).

We see that each point (±1,±1,±1) different from (1, 1, 1) and (−1,−1,−1) occurs precisely
twice.

Corollary 5.14. Assume that the point z 6= 1 is a dual point of the lattice Li and Lj and
no other lattice. Then detLi = detLj.
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Proof. By (5.11) we get
χz(vi)

detLi
+
χz(vj)

detLj
= 0.

But the numerators are roots of unity, so the denominators, both being positive integers,
must agree. �

Corollary 5.15. We have the following relation
n∑
i=1

1

detLi
= 1.

Proof. Apply (5.11) with z = 1. �

This “density” result, which shows that the sum of the densities is always 1, can also be
proved in an elementary way. Namely, we observe that the number of integer points of Li
in a cube [−N,N ]d is equal to (2N)d/ detLi + O(Nd−1). We can now prove Theorem 1.6
from the introduction.

Proof of Theorem 1.6. Indeed, let z be an element in ĜL1 of maximal order equal to detL1.

By Proposition 5.12 there exists j > 1 such that z ∈ ĜLj . But then the whole group

spanned by L1 lies in ĜLj , hence ĜL1 ⊂ ĜLj . By maximality of detL1 we have ĜL1 = ĜLj .
Now Corollary 3.6 implies that L1 = Lj . �

5.2. Sufficiency of the residue condition. We will show now that the conditions given
by Proposition 5.10 are sufficient for the tiling. More precisely, we have the following result.

Theorem 5.16. Let v1+L1, . . . ,vn+Ln be translate lattices in Zd with generating functions
Θ1, . . . ,Θn. Suppose that for any z ∈ Td we have the relation (5.11) then the lattices tile
Zd.

Remark 5.17. If z is not a dual point of any of lattices, then (5.11) is an empty relation.
Therefore it is enough to check (5.11) only in finitely many places.

Proof. We shall strive to prove that Θ1, . . . ,Θn satisfy (5.3). In the following, for a poly-
nomial P in variables z1, . . . , zd, we write degk P as the degree in variable k.

Observe that each generating function Θj vanishes at infinity. More precisely, if we fix

z1, . . . , ẑk, . . . , zd such that for any m 6= k, z
tmj
m 6= 1 (where tmj denotes the m-th polar

value of Θj), we have limzk→∞Θj(z1, . . . , zd) = 0. This is a direct consequence of the fact,
that degk R

v
j < tmk. In particular if we define

Θ(z) = Θ1(z) + · · ·+ Θn(z)− 1

(1− z1) . . . (1− zd)
,

then Θ also vanishes at infinity. We can write Θ in the following way.

Θ(z) =
R(z)

Q1(z1) . . . Qd(zd)
,

where R is a polynomial in z1, . . . , zd and Qm is the least common multiplier of ztm1
m −

1, . . . , ztmdm − 1. Notice that Qm is square free. The asymptotics of Θ implies that

(5.18) degk R < degQk.

Now we use the residue condition (5.3). We claim that if u1, . . . , ud are such that Q1(u1) =
· · · = Qd(ud) = 0, then R(u1, . . . , ud) = 0. In fact, R(u1, . . . , ud) is then proportional to the
residue of the form Θ(z)dz at u1, . . . , ud. But this residue is zero by the assumption of the
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theorem. In fact, if u = (u1, . . . , ud) is not a dual point of Lj , then the residue of Θj(z)dz
at u is zero (see proof of Lemma 5.6), if it is a dual point of some lattices, then we use
(5.11).

By induction we shall show that for any k, and any uk+1, . . . , ud such that Qk+1(uk+1) =
· · · = Qd(ud) = 0 we have

R(z1, . . . , zk, uk+1, . . . , ud) ≡ 0 as a polynomial in z1, . . . , zk

The induction assumption (for k = 0) is done. Now suppose we have proved it for k − 1.
The polynomial

Pk(z1, . . . , zk−1, zk) := R(z1, . . . , zk, uk+1, . . . , ud)

vanishes for zk = uk for any uk such that Qk(uk) = 0. Hence Pk is divisible by (zk − w1) ·
. . . · (zk−wl), where w1, . . . , wl are roots of Qk. Since Qk is square free, we have l = degQk.
But degk Pk < degQk. The only possibility is that Pk ≡ 0.

The statement for k = d implies that R is identically zero. This is equivalent to (5.3),
and the proof is finished. �

Remark 5.19. The above proof is a generalization of the fact that if a rational function on
C has only simple poles, vanishes at infinity and has residue 0 at each pole, then it is equal
to zero everywhere. One could express the above proof in the language of multidimensional
residues, but we wanted the proofs to be accessible to non-experts.

6. Dual points and lattice tilings in dimension 2

6.1. Characterisation of dual groups in dimension 2. Theorem 4.5 tells us that a
two-dimensional lattice L generated by v1 = (a, b) and v2 = (c, d) is cyclic if and only if
gcd(a, b, c, d) = 1. The quantity e = gcd(a, b, c, d) does not depend on the choice of basis
and we will call it the multiplicity of L.

It follows from the Smith Normal Form (see Section 4) that we have an isomorphism,

namely ĜL = Ze ⊕ ZdetL
e

. Furthermore e2|detL. In particular, if detL is square free, the

lattice is necessarily cyclic.

In more than two dimensions, the cyclicity is more subtle and the groups ĜL might be
more complicated. For example, the lattice spanned by (2, 0, 0), (0, 2, 0) and (0, 0, 2) has
the group Z/2Z⊕ Z/2Z⊕ Z/2Z.

To stress the difference between the two-dimensional case and the higher dimensional
one, we first prove a simple result.

Lemma 6.1. Let L1 and L2 be two sublattices of Z2 with equal multiplicities e1 = e2 = e.
Assume that there is a common vector w = (a, b) ∈ L1∩L2 such that gcd(a, b) = e. Assume
also that detL1 = detL2, then we have L1 = L2.

Proof. Rescaling the two lattices by the factor 1/e we can assume that e = 1. Let w = (a, b)
and v1 = (c1, d1), v2 = (c2, d2) be two vectors such that (w,vi) spans Li and adi − bci =
detLi, i = 1, 2. The equality of determinants implies that

a(d1 − d2) = b(c1 − c2).

As gcd(a, b) = 1, we infer that there exists k ∈ Z such that c1 − c2 = ka, d1 − d2 = kb.
This means that v2 = v1 + kw. In particular v2 ∈ L1, so L2 ⊂ L1. Precisely the same
arguments prove that L1 ⊂ L2. �

Remark 6.2. The proof does not work if we do not assume that gcd(a, b) = e. For example
consider L1 = 2Z×Z and L2 = Z× 2Z. Then (2, 2) ∈ L1∩L2 and detL1 = detL2 = 2, but
L1 and L2 are different. In the language of dual points and dual groups we can reformulate
Lemma 6.1 as follows.
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Corollary 6.3. Let us be given two lattices L1 and L2 with the same multiplicity e and

determinant ∆. Assume that there exists g1 ∈ ĜL1 and g2 ∩ ĜL2, both of order ∆/e, such
that ge1 = ge2. Then L1 = L2.

Proof. Let g = ge1 = ge2 = (z1, z2) ∈ T2. Consider the two integer lattices 1
eL1 and 1

eL1.

They both are cyclic, have determinant ∆/e2 and admit g as a common dual point. Now

g also has order ∆/e2, hence it is a generator for both Ĝ 1
e
L1

and Ĝ 1
e
L2

. So we must have

Ĝ 1
e
L1

= Ĝ 1
e
L2

. The result follows easily by applying Corollary 3.6 and then rescaling to the

original lattices. �

6.2. Tilings in dimension 2. In this subsection we assume that we are given lattices
v1 + L1,. . . ,vn + Ln, which provide a lattice tiling of Z2. Let us reorder the lattices in the
following way.

(a) If i < j, then 1
ei

detLi ≥ 1
ej

detLj . In other words, the maximal cyclic subgroup of

ĜLi has at least the same order as the maximal cyclic subgroup of ĜLj .

(b) If i < j, but 1
ei

detLi = 1
ej

detLj , then detLi ≥ detLj .

Theorem 6.4. If the number e1 is of the form pr for p a prime, then the tiling has the
translation property.

Proof. We set α = detL1/e1. Let z ∈ ĜL1 be an element of order α. We define a sequence

1 = n1 < n2 < · · · < ns of indices such that z belongs to ĜLn1
, . . . , ĜLns and to no other

lattice. To shorten the notation we will write Lzk, vz
k instead of Ln1 , vn1 .

The maximum order over all elements in ĜLzk is detLzk/ezk. By the ordering condition we

have detLzk/ezk ≤ α. But ĜLzk contains the element z of order α. Hence detLzk/ezk = α.

Lemma 6.5. There cannot be two indices nk and nl, nk 6= nl such that ezk = ezl .

Proof. If this were the case, the lattices Lzk and Lzl would have the same determinant and
multiplicity and would share an element z of order equal to the order of each lattice. By
Corollary 6.3 we obtain that Lzk = Lzl , so there exists a translate. �

Let us apply now Proposition 5.10 to get the following equation

(6.6)
s∑

k=1

χz(vz
k)

αezk
= 0,

where we wrote detLzk = αezk. Now the expression χz(vz
k) is a root of unity. Let us note

ak = χz(vz
1)−1χz(vz

k).

We denote by g the minimal positive integer such that agk = 1 for all k = 1, . . . , s. Equation
(6.6) takes the following form:

(6.7)
s∑

k=1

ak
ezk

= 0.

We use now the following lemma.

Lemma 6.8. Suppose that there exists a prime q an integer l > 0, and an index k ∈
{1, . . . , s} such that ql|ezk. Then there exists k′ ∈ {1, . . . , s}, k′ 6= k such that ql|ezk′.
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Proof of Lemma 6.8. Assume the contrary, so that there exists a unique k such that ql|ezk.
Let B be the least common multiplier of ez1, . . . , e

z
s and Bk = B/ezk. By assumptions of the

lemma, for any n 6= k we have q|Bn and q 6 |Bk.
Equation (6.7) can be now rewritten as

(6.9) Bk +
∑
n6=k

Bmε
γn = 0,

where ε is a root of unity of order g, γn ∈ {0, . . . , g − 1} and an from (6.7) is equal to
εγn−γjaj . The expression on the left hand side is a polynomial in ε. Let us denote this
polynomial by P (ε). By assumption on B1, . . . , Bs we have.

P (ε) = Bk + qQ(ε),

where Q is a polynomial with integer coefficients.
Now, let H be the minimal integer polynomial for a g-th root of unity. It is a monic,

symmetric polynomial. Since P (ε) = 0, H divides P . Since H is monic, the quotient
R = P/H ∈ Z[x] has integer coefficients. We end up with the following relation in the ring
Z[x]:

(6.10) Bk + qQ(x) = R(x)H(x).

Let us now reduce this equation modulo q. We get Bk mod q = (R mod q)(H mod q), where
H mod q has positive degree (because H is monic) and Bk 6≡ 0 mod q. This cannot hold,
for either deg(R mod q) ≥ 0 and the r.h.s. has positive degree, or R ≡ 0 mod q so the l.h.s.
must be zero. �

Remark 6.11. We point out that Lemma 6.8 works without any assumption on the existence
of a translate. It is a direct consequence of Proposition 5.10, that is of the tiling condition.
The result is valid also in higher dimensions, if we define e as the quotient of determinant
over the order.

Conclusion of the proof of Theorem 6.4
We apply now Lemma 6.8 to ql = pr = ez1 = e1. We find another index k > 1 such that

pr|ezk. But ezk ≤ e1 = pr by the tiling condition, so we must have ezk = e1. But this is
excluded by Lemma 6.5.

�

6.3. Proof of Theorem 1.5. Suppose that v1 +L1,. . . ,vn+Ln provide a tiling of Zd. For
each 1 ≤ t ≤ n, we denote by gt the maximal order of all of the elements in Lt. We also set
et = detLt/gt.

Suppose pk with k > 0 divides detLt. It follows that pa|gt and pb|et for some non-negative

integers such that a+ b = k. It is easy to see that a > 0. Let us choose an element z ∈ ĜLt
of order pa and assume that z ∈ Ĝz

Lk with k = 1, . . . , r for some r. Proposition 5.10 implies
that

r∑
j=1

χz(vz
j )

detLzj
= 0.

We act as in the proof of Lemma 6.8. We write χz(vz
j ) = εγj for some root of unity of

order pa, multiply the equation by the least common multiplier of the detLzj ’s and reduce
modulo p. The theorem quickly follows. �
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7. Translation-free tilings with a few lattices

We call a tiling translation-free if it does not have the translation property. In this section
we show that the counterexample in dimension 3 given in [6] is minimal.

Lemma 7.1. There is no translation-free tiling with three or less lattices.

Proof. Obviously, there is no translation-free tiling with two lattices. Suppose now that
there is a translation-free tiling with three lattices L1,L2 and L3. We may assume that
detL1 ≥ detL2 ≥ detL3. By Corollary 5.15, we have

1

detL1
+

1

detL2
+

1

detL3
= 1.

If detL3 = 2, then v1 + L1 and v2 + L2 provide a tiling of 2Z × Zd−1 by Proposition 2.3,
hence L1 = L2. So suppose detL3 = 3. But then detL1 = 3 and detL2 = 3, in particular

the group ĜL1 is cyclic. By Theorem 1.6 there must exist a translate. �

Proposition 7.2. A translation-free tiling with four lattices has detL1 = detL2 = detL3 =
detL4 = 4.

Proof. Again assume that detL1 ≥ detL2 ≥ detL3 ≥ detL4. As before, if detL4 = 2, then
L1,L2 and L3 tile 2Z × Zd−1, and this tiling is non-special by Lemma 7.1. Assume that
detL4 = 3. By Proposition 2.5, 3 must divide detL1,detL2 and detL3. Let di = 1

3 detLi.
We must have

1

d1
+

1

d2
+

1

d3
= 2,

which is possible only if d3 = 1 and d1 = d2 = 2. But then the group ĜL1 has order 6,
hence it is cyclic, so there is a translate.

Now since we have shown that for i = 1, . . . 4, detLi ≥ 4 we have

1

detL1
+

1

detL2
+

1

detL3
+

1

detL4
≤ 1

with an equality detL1 = detL2 = · · · = detL4 = 4. �

We can fully classify all translation-free tilings with four lattices. It turns out that
the lattice tiling given in Example 5.13, which appeared in [6], completely captures all
translation-free tilings of Zd with exactly 4 lattice translates.

Proposition 7.3. Suppose T is a lattice tiling of Zd with exactly 4 lattice translates, and
d ≥ 3. Then T does not have the translation property if and only if it is given by the lattice
translates:

L1 = 2Z× 2Z× Z× Zd−3 + (1, 0, 0, 0, . . . , 0),

L2 = 2Z× Z× 2Z× Zd−3 + (0, 0, 1, 0, 0, . . . , 0),

L3 = Z× 2Z× 2Z× Zd−3 + (0, 1, 0, 0, 0, . . . , 0),

and

L4 = 2Z× 2Z× 2Z× Zd−3 ∪ {2Z× 2Z× 2Z× Zd−3 + (1, 1, 1, 0, 0, . . . , 0)}.

Proof. We know that detL1 = · · · = detL4 = 4. If any of the groups ĜL1 , . . . , ĜL4 is cyclic,
then by Theorem 1.6 we conclude that the tiling is translation-free. Hence, all the groups
are isomorphic to Z2 × Z2.

Let g1 and g2 generate ĜL1 . By Proposition 5.12 we infer that there exist j > 1 such

that g1 ∈ ĜLj . We shall first show that this j is unique. Indeed, the three elements g1, g2

and g1 + g2 have the property that any two generate ĜL1 . Thus, if two of them belong, say,
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to ĜL2 , it follows that ĜL1 = ĜL2 hence L1 = L2. So they lie in separate groups. As there
are three groups to choose, each of those elements appears precisely once.

A straightforward extension of the above argument shows that there exist three elements
g1, g2, g3 ∈ Td, all of order 2 and with g1 + g2 6= g3, such that

ĜL1 = {1, g1, g2, g1 + g2}

ĜL2 = {1, g1, g3, g1 + g3}

ĜL3 = {1, g2, g3, g2 + g3}

ĜL4 = {1, g1 + g2, g1 + g3, g2 + g3}.

(7.4)

It is now straightforward to construct an automorphism A∗ : Td → Td which maps g1 to
(−1, 1, . . . , 1), g2 to (1,−1, 1, . . . , 1) and g3 to (1, 1,−1, 1, . . . , 1). The dual map A : Zd → Zd
maps then the lattice L1 to 2Z×2Z×Zd−2, L2 to 2Z×Z×2Z×Zd−3, L3 to Z×2Z×2Z×Zd−3

and L4 to (2Z× 2Z× 2Z + ((1, 1, 1) + 2Z× 2Z× 2Z))× Zd−3. �

8. Open questions

We end with some open questions which arise naturally from the results above.

Problem 8.1. For dimensions d ≥ 2, give a necessary and sufficient condition, in terms of
the arithmetic of the lattice translates, for a lattice tiling to possess the translation property.

We call a lattice tiling primitive if it is not a split tiling. In other words, a primitive
lattice tiling is a tiling that we cannot form by splitting any previously formed tiling which
had a smaller number of lattice translates.

Problem 8.2. Given any positive integer n, is there always a primitive lattice tiling with
exactly n lattice translates?

And, of course, perhaps the most surprising state of affairs is that Question 1.3 from the
introduction, concerning two dimensional lattice tilings, remains open.
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