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Abstract

We study an elementary extremal problem on trigonometric polynomials of degree 3. We
discover a distinguished torus of extremal functions.

1 Introduction

Let A = {Xo,A1,..., A1} be a set of n frequencies and let T = {z € C : |z| = 1}. We study
the following extremal problem:

To find n complex coeflicients ¢y, cy,...,c,—1 with given moduli sum |cg| + |e1| + -+ +
|cn—1| = 1 such that the maximum maxer | Y ¢;2*| is minimal.
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Note that this maximum’s inverse is the Sidon constant S(A). D. J. Newman (see [4, Chapter 3])
obtained the upper bound S({0,1,..., N}) < v/N that is slightly better than the straightforward
upper bound /N + 1: by Parseval’s theorem for the L? space on the set Uy of Nth roots of
unity, putting

cotcrz+ - Feno12V ey = f(2),

we have

max | f(2)|* = max max | f(zw)|?
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and H. S. Shapiro showed (ibid.) that equality can hold exactly if N € {1,2,4}. If N = 3, we
shall show in the final section that the functions

i2v/2cosT —1—3sinT 34sinT 3—sinT , i2y/2cosT —1+3sinT ,
+ zZ+ 25+ z
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have their modulus bounded by 3/5 for each 7, so that 5/3 < S({0,1,2,3}) < V/3.

A motivation for this problem is that we wish to know whether the real and complex uncondi-
tionality constants are distinct for basic sequences of characters z™, but this remains undecided.

2 Hervé Queffélec’s proof

When I showed Hervé Queffélec a proof that S(A) < v/n —1 for all sets A with n elements, he
showed me how to adapt D. J. Newman’s argument to this more general case.



Let A be a set of n frequencies. We may suppose that min A = 0 = Ag; let N = max A =
An—1. Then

max |f(2)]? = max max |f(zw)|?
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Let us now try to understand what is behind D. J. Newman’s argument.

3 Interpolating linear functionals on the space C,(T)

If L is a subspace of the space C(T') of complex continuous functions on a compact space T' with
n dimensions, then every functional [ on L extends isometrically to a functional on C(T') by
the Hahn-Banach theorem, that is, to a Radon measure by the Riesz representation theorem.
But the unit ball of the space of measures is the weak*-closed convex hull of Dirac masses. By
Carathéodory’s theorem for the space L that has 2n real dimensions, | extends isometrically to
a linear combination of at most 2n + 1 Dirac masses. Under additional hypotheses that are met
in our situation where T' = T, one can gain one dimension: there are m < 2n points 2z € T
and coefficients b, € C such that for every f € L one has I(f) = > brf(zx) and ||I|| = > |bk]
(see [2, Exercice 6.8].) This implies in particular that there is a function f € L whose maximum
modulus points contain the zj.

Let us now specialise to the case L = C(T) with A a finite set. Let us make the ad hoc
hypothesis that the z; are the Nth roots of unity, whose set forms the group Uy: this obliges
us to restrict our study to those functionals { such that {(e;) = l(e;) if j = 7' mod N, where
we write e;(z) = 27 for z € T and j € Z. Then the condition I(f) =Y by f(21) reads

N-1
I(ej) =Y bre /N for j € A,
k=0

which may be interpreted as telling that the i(e;) are the Fourier coefficients of the measure

on Uy given by
N—

_

M= bk5ei2k7r/N
k=0
(where the Dirac measures act on Uy). The set A might not be present in all classes modulo N:
let us set I(e;) = 0 if j is in a class in which A is absent. A “trivial” solution to these equations
is then given by
1 = I(ej) if thereis 7 = jmod N in A
b = — Z o —i2jkm/N J’ J =17
N = 0 otherwise.

The norm of p is bounded by
N-1

> |l

k=0

and is attained at u € C(Uy) if and only if u(e'2*™/N)b, = |by| for every k, up to a nonzero
complex factor. This yields an upper bound for the norm of [ that becomes an equality if there
is an f € C(T) of norm 1 such that f(e!2™/N) = y(ei2k™/N),



4 My proof
Here is a first application. The Sidon constant of a set A is also the supremum of the norm of
the linear functionals [ such that {(e;) is a unimodular complex number for all j € A:
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Proposition 4.1. Let A be a finite subset of Z. The Sidon constant of A is at most (# A—1)/2,

Proof. One may suppose that min A = 0 and choose N = max A. Let [ be a linear functional
with coefficients I(e;) of modulus 1: one may suppose that I(ey) = I(en). Then
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Remark 4.2. If A = {0,1,...,n}, then Inequality (2) is an equality if and only if (l(ej));l;o1
is a biunimodular sequence, that is a unimodular function on U, whose Fourier transform is
also unimodular. In other words, the matrix H = (I(ej_x))o<jk<n—1 I8 a circulant complex
Hadamard matriz, where the indices j — k are computed modulo n: it satisfies H*H = nld.

Such matrices always exist: see [1].

5 The real unconditional constant of {0, 1,2,3}

Here is a second application. Recall that the real unconditional constant of a sequence of
elements of a normed space is the maximal distortion caused by multiplying the coefficients of a
linear combination of these elements by +1. By a slight abuse of language, the real unconditional
constant of a set A in the space C(T) is thus the supremum of the norm of the linear functionals [
such that I(e;) € {—1,1} for all j € A.

Proposition 5.1. Let A = {0,1,2,3}. The real unconditional constant of A in C(T) is 5/3.

Proof. The polynomial —4/15+2z/5+2%/5+22% /15 studied in the next section will show that the
real unconditional constant of Cx (T) is at least 5/3. As [ has the same norm as [: f ~— I(f(-4)),
for which I(e;) = (—1)7l(e;), and as —I, one may suppose that I(eg) = I(e3) = 1. Let us now
try to lift [ to a sum of Dirac measures on the third roots of unity. Such a lifting is either the
Dirac measure at 0 or

(l(ej)OSjSQ) € {(L 717 71)3 (17 71a 1)7 (17 17 71)}
and these three cases yield the same norm
1 . . . .
g(Il — 11— 1| + |1 _ el27r/3 _ el4‘n’/3| + |1 _ e147r/3 _ el27\'/3‘> _ 5/3- 0
6 The case {0,1,2,3}: a distinguished family of polynomi-
als

Let f(z,7) be given by

i2y/2cosT —1—3sinT 3 +sinT 3—sinT , i2v2cosT —1+3sin7 ,
+ z+ z°+ z°.
15 10 10 15



One computes that the moduli sum of the coefficients is 1, independently of 7. Note that
f(z,—71)=23f(z71,7) and f(z,7 +7) = 23f(z,7), so that we shall restrict the parameter T to
[0,7/2]. Let ®(¢,7) = |f(e't,7)|%. We get

2v/2sin 2 247 — 13 2
Ot,7) = %(Smt — sin 2t + 2sin 3t) + %
cost  cos2t 14 17cos2T1
—|—(1+cos27)( 50~ 95 )—l— 995 cos 3t.
Let us put
2sin 2t int 17sin 3t 2v/2
smat st s \[(cost — 2cos 2t + 6 cos 3t)
M 25 20 75 75
Qﬁ(sint ~in2t 4 2sin30) 13 cost L oos 2t 1Tcos3t
75 900 20 25 225

The critical points (¢,7) of ® satisfy

cos 27 sint 2sin2t n sin 3t
M (sin27'> - ( 20 28 & ) ’
We have

1
6750

which vanishes exactly if cost € {—1,1/4,1}. Otherwise we get

det M =

1
sint(cost - Z)(4 cost — 11)(16 cos® t — 72 cos? t + 33 cost — 41),

272 cos® t — T2 cos?t — 159 cost + 23 — o)
16 cos3t — 72 cos?t + 33 cost — 41

B 24v/2sint(4cost + 1)(2cost —1) S()

16 cos3t — T2 cos? t + 33 cost — 41

CoS 2T = —

(3)

sin 27 =

Note that this solution is consistent, as C? + S = 1. For such 7, ®(t,7) = 9/25. Checking the
special cases cost € {—1,1/4,1} yields that all local maxima are given by the above formulas,
that ® attains its global minimum, 0, exactly for 7 = 0 and ¢ = 7, and has exactly one other
local minimum, of value 49/225, for 7 = /2 and t = 0. There is exactly one other critical point,
of value 5/18, that is a saddle point, given by 7 = arccos(17/37)/2, t = arccos 1/4.

As C(0) =1, C(£n/3) = —1, C(£arccos(—1/4)) = 1, C(n) = —1, the intermediate values
theorem shows that for a given 7, there are exactly three solutions ¢ to system (3), for which
®(t,7) achieves then its global maximum, 9/25.

Further details are given in [3].
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