On the (Fourier analytic) Sidon constant of $\{0,1,2,3\}$

Stefan Neuwirth

26 August 2013

Abstract

We study an elementary extremal problem on trigonometric polynomials of degree 3 . We discover a distinguished torus of extremal functions.

1 Introduction

Let $\Lambda=\left\{\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n-1}\right\}$ be a set of n frequencies and let $\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. We study the following extremal problem:
$(\ddagger) \quad$ To find n complex coefficients $c_{0}, c_{1}, \ldots, c_{n-1}$ with given moduli sum $\left|c_{0}\right|+\left|c_{1}\right|+\cdots+$ $\left|c_{n-1}\right|=1$ such that the maximum $\max _{z \in \mathbb{T}}\left|\sum c_{j} z^{\lambda_{j}}\right|$ is minimal.

Note that this maximum's inverse is the Sidon constant $S(\Lambda)$. D. J. Newman (see [4, Chapter 3]) obtained the upper bound $S(\{0,1, \ldots, N\}) \leq \sqrt{N}$ that is slightly better than the straightforward upper bound $\sqrt{N+1}$: by Parseval's theorem for the L^{2} space on the set \mathbb{U}_{N} of N th roots of unity, putting

$$
c_{0}+c_{1} z+\cdots+c_{N-1} z^{N-1}+c_{N} z^{N}=f(z)
$$

we have

$$
\begin{align*}
\max _{z \in \mathbb{T}}|f(z)|^{2} & =\max _{z \in \mathbb{T}} \max _{\omega \in \mathbb{U}_{N}}|f(z \omega)|^{2} \\
& \geq \max _{z \in \mathbb{T}} \frac{1}{N} \sum_{\omega \in \mathbb{U}_{N}}|f(z \omega)|^{2} \\
& =\max _{z \in \mathbb{T}}\left|c_{0}+c_{N} z^{N}\right|^{2}+\left|c_{1}\right|^{2}+\cdots+\left|c_{N-1}\right|^{2} \\
& =\left(\left|c_{0}\right|+\left|c_{N}\right|\right)^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\cdots+\left|c_{N-1}\right|^{2} \tag{1}\\
& \geq\left(\left|c_{0}\right|+\left|c_{1}\right|+\cdots+\left|c_{N}\right|\right)^{2} / N,
\end{align*}
$$

and H. S. Shapiro showed (ibid.) that equality can hold exactly if $N \in\{1,2,4\}$. If $N=3$, we shall show in the final section that the functions

$$
\frac{\mathrm{i} 2 \sqrt{2} \cos \tau-1-3 \sin \tau}{15}+\frac{3+\sin \tau}{10} z+\frac{3-\sin \tau}{10} z^{2}+\frac{\mathrm{i} 2 \sqrt{2} \cos \tau-1+3 \sin \tau}{15} z^{3}
$$

have their modulus bounded by $3 / 5$ for each τ, so that $5 / 3 \leq S(\{0,1,2,3\})<\sqrt{3}$.
A motivation for this problem is that we wish to know whether the real and complex unconditionality constants are distinct for basic sequences of characters z^{n}, but this remains undecided.

2 Hervé Queffélec's proof

When I showed Hervé Queffélec a proof that $S(\Lambda) \leq \sqrt{n-1}$ for all sets Λ with n elements, he showed me how to adapt D. J. Newman's argument to this more general case.

Let Λ be a set of n frequencies. We may suppose that $\min \Lambda=0=\lambda_{0}$; let $N=\max \Lambda=$ λ_{n-1}. Then

$$
\begin{aligned}
\max _{z \in \mathbb{T}}|f(z)|^{2} & =\max _{z \in \mathbb{T}} \max _{\omega \in \mathbb{U}_{N}}|f(z \omega)|^{2} \\
& \geq \max _{z \in \mathbb{T}} \frac{1}{N} \sum_{\omega \in \mathbb{U}_{N}}|f(z \omega)|^{2} \\
& =\max _{z \in \mathbb{T}}\left|c_{0}+c_{n-1} z^{\lambda_{n-1}}\right|^{2}+\left|c_{1}\right|^{2}+\cdots+\left|c_{n-2}\right|^{2} \\
& =\left(\left|c_{0}\right|+\left|c_{n-1}\right|\right)^{2}+\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\cdots+\left|c_{n-2}\right|^{2} \\
& \geq\left(\left|c_{0}\right|+\left|c_{1}\right|+\cdots+\left|c_{n-1}\right|\right)^{2} /(n-1) .
\end{aligned}
$$

Let us now try to understand what is behind D. J. Newman's argument.

3 Interpolating linear functionals on the space $\mathrm{C}_{\Lambda}(\mathbb{T})$

If L is a subspace of the space $\mathrm{C}(T)$ of complex continuous functions on a compact space T with n dimensions, then every functional l on L extends isometrically to a functional on $\mathrm{C}(T)$ by the Hahn-Banach theorem, that is, to a Radon measure by the Riesz representation theorem. But the unit ball of the space of measures is the weak*-closed convex hull of Dirac masses. By Carathéodory's theorem for the space L that has $2 n$ real dimensions, l extends isometrically to a linear combination of at most $2 n+1$ Dirac masses. Under additional hypotheses that are met in our situation where $T=\mathbb{T}$, one can gain one dimension: there are $m \leq 2 n$ points $z_{k} \in T$ and coefficients $b_{k} \in \mathbb{C}$ such that for every $f \in L$ one has $l(f)=\sum b_{k} f\left(z_{k}\right)$ and $\|l\|=\sum\left|b_{k}\right|$ (see [2, Exercice 6.8].) This implies in particular that there is a function $f \in L$ whose maximum modulus points contain the z_{k}.

Let us now specialise to the case $L=\mathrm{C}_{\Lambda}(\mathbb{T})$ with Λ a finite set. Let us make the ad hoc hypothesis that the z_{k} are the N th roots of unity, whose set forms the group \mathbb{U}_{N} : this obliges us to restrict our study to those functionals l such that $l\left(\mathrm{e}_{j}\right)=l\left(\mathrm{e}_{j^{\prime}}\right)$ if $j \equiv j^{\prime} \bmod N$, where we write $\mathrm{e}_{j}(z)=z^{j}$ for $z \in \mathbb{T}$ and $j \in \mathbb{Z}$. Then the condition $l(f)=\sum b_{k} f\left(z_{k}\right)$ reads

$$
l\left(\mathrm{e}_{j}\right)=\sum_{k=0}^{N-1} b_{k} \mathrm{e}^{\mathrm{i} 2 j k \pi / N} \text { for } j \in \Lambda
$$

which may be interpreted as telling that the $l\left(\mathrm{e}_{j}\right)$ are the Fourier coefficients of the measure μ on \mathbb{U}_{N} given by

$$
\mu=\sum_{k=0}^{N-1} b_{k} \delta_{\mathrm{e}^{\mathrm{i} 2 k \pi / N}}
$$

(where the Dirac measures act on \mathbb{U}_{N}). The set Λ might not be present in all classes modulo N : let us set $l\left(\mathrm{e}_{j}\right)=0$ if j is in a class in which Λ is absent. A "trivial" solution to these equations is then given by

$$
b_{k}=\frac{1}{N} \sum_{j=0}^{N-1} \mathrm{e}^{-\mathrm{i} 2 j k \pi / N} \begin{cases}l\left(\mathrm{e}_{j^{\prime}}\right) & \text { if there is } j^{\prime} \equiv j \bmod N \text { in } \Lambda \\ 0 & \text { otherwise }\end{cases}
$$

The norm of μ is bounded by

$$
\sum_{k=0}^{N-1}\left|b_{k}\right|
$$

and is attained at $u \in \mathrm{C}\left(\mathbb{U}_{N}\right)$ if and only if $u\left(\mathrm{e}^{\mathrm{i} 2 k \pi / N}\right) b_{k}=\left|b_{k}\right|$ for every k, up to a nonzero complex factor. This yields an upper bound for the norm of l that becomes an equality if there is an $f \in \mathrm{C}(\mathbb{T})$ of norm 1 such that $f\left(\mathrm{e}^{\mathrm{i} 2 k \pi / N}\right)=u\left(\mathrm{e}^{\mathrm{i} 2 k \pi / N}\right)$.

4 My proof

Here is a first application. The Sidon constant of a set Λ is also the supremum of the norm of the linear functionals l such that $l\left(e_{j}\right)$ is a unimodular complex number for all $j \in \Lambda$:

$$
\left|c_{0}\right|+\left|c_{1}\right|+\cdots+\left|c_{n-1}\right|=\sup _{\left|l\left(\mathrm{e}_{j}\right)\right|=1}\left|\sum_{j=0}^{n-1} c_{j} l\left(\mathrm{e}_{j}\right)\right| .
$$

Proposition 4.1. Let Λ be a finite subset of \mathbb{Z}. The Sidon constant of Λ is at most $(\# \Lambda-1)^{1 / 2}$.
Proof. One may suppose that $\min \Lambda=0$ and choose $N=\max \Lambda$. Let l be a linear functional with coefficients $l\left(\mathrm{e}_{j}\right)$ of modulus 1: one may suppose that $l\left(\mathrm{e}_{0}\right)=l\left(\mathrm{e}_{N}\right)$. Then

$$
\begin{align*}
\|l\| & \leq \frac{1}{N} \sum_{k=0}^{N-1}\left|\sum_{j \in \Lambda \backslash\{N\}} \mathrm{e}^{-\mathrm{i} 2 j k \pi / N} l\left(\mathrm{e}_{j}\right)\right| \\
& \leq\left(\frac{1}{N} \sum_{k=0}^{N-1}\left|\sum_{j \in \Lambda \backslash\{N\}} \mathrm{e}^{-\mathrm{i} 2 j k \pi / N} l\left(\mathrm{e}_{j}\right)\right|^{2}\right)^{1 / 2} \tag{2}\\
& =\left(\sum_{j \in \Lambda \backslash\{N\}}\left|l\left(\mathrm{e}_{j}\right)\right|^{2}\right)^{1 / 2}=(\# \Lambda-1)^{1 / 2}
\end{align*}
$$

Remark 4.2. If $\Lambda=\{0,1, \ldots, n\}$, then Inequality (2) is an equality if and only if $\left(l\left(\mathrm{e}_{j}\right)\right)_{j=0}^{n-1}$ is a biunimodular sequence, that is a unimodular function on \mathbb{U}_{n} whose Fourier transform is also unimodular. In other words, the matrix $H=\left(l\left(\mathrm{e}_{j-k}\right)\right)_{0 \leq j, k \leq n-1}$ is a circulant complex Hadamard matrix, where the indices $j-k$ are computed modulo n : it satisfies $H^{*} H=n$ Id. Such matrices always exist: see [1].

5 The real unconditional constant of $\{0,1,2,3\}$

Here is a second application. Recall that the real unconditional constant of a sequence of elements of a normed space is the maximal distortion caused by multiplying the coefficients of a linear combination of these elements by ± 1. By a slight abuse of language, the real unconditional constant of a set Λ in the space $\mathrm{C}(\mathbb{T})$ is thus the supremum of the norm of the linear functionals l such that $l\left(\mathrm{e}_{j}\right) \in\{-1,1\}$ for all $j \in \Lambda$.
Proposition 5.1. Let $\Lambda=\{0,1,2,3\}$. The real unconditional constant of Λ in $\mathrm{C}(\mathbb{T})$ is $5 / 3$.
Proof. The polynomial $-4 / 15+2 z / 5+z^{2} / 5+2 z^{3} / 15$ studied in the next section will show that the real unconditional constant of $\mathrm{C}_{\Lambda}(\mathbb{T})$ is at least $5 / 3$. As l has the same norm as $\tilde{l}: f \mapsto l(f(\cdot+\pi))$, for which $\tilde{l}\left(\mathrm{e}_{j}\right)=(-1)^{j} l\left(\mathrm{e}_{j}\right)$, and as $-l$, one may suppose that $l\left(\mathrm{e}_{0}\right)=l\left(\mathrm{e}_{3}\right)=1$. Let us now try to lift l to a sum of Dirac measures on the third roots of unity. Such a lifting is either the Dirac measure at 0 or

$$
\left(l\left(\mathrm{e}_{j}\right)_{0 \leq j \leq 2}\right) \in\{(1,-1,-1),(1,-1,1),(1,1,-1)\}
$$

and these three cases yield the same norm

$$
\frac{1}{3}\left(|1-1-1|+\left|1-\mathrm{e}^{\mathrm{i} 2 \pi / 3}-\mathrm{e}^{\mathrm{i} 4 \pi / 3}\right|+\left|1-\mathrm{e}^{\mathrm{i} 4 \pi / 3}-\mathrm{e}^{\mathrm{i} 2 \pi / 3}\right|\right)=5 / 3
$$

6 The case $\{0,1,2,3\}$: a distinguished family of polynomials

Let $f(z, \tau)$ be given by

$$
\frac{\mathrm{i} 2 \sqrt{2} \cos \tau-1-3 \sin \tau}{15}+\frac{3+\sin \tau}{10} z+\frac{3-\sin \tau}{10} z^{2}+\frac{\mathrm{i} 2 \sqrt{2} \cos \tau-1+3 \sin \tau}{15} z^{3}
$$

One computes that the moduli sum of the coefficients is 1 , independently of τ. Note that $f(z,-\tau)=z^{3} f\left(z^{-1}, \tau\right)$ and $f(z, \tau+\pi)=z^{3} \overline{f(z, \tau)}$, so that we shall restrict the parameter τ to $[0, \pi / 2]$. Let $\Phi(t, \tau)=\left|f\left(\mathrm{e}^{\mathrm{it}}, \tau\right)\right|^{2}$. We get

$$
\begin{aligned}
& \Phi(t, \tau)=\frac{2 \sqrt{2} \sin 2 \tau}{75}(\sin t-\sin 2 t+2 \sin 3 t)+\frac{247-13 \cos 2 \tau}{900} \\
& +(1+\cos 2 \tau)\left(\frac{\cos t}{20}-\frac{\cos 2 t}{25}\right)+\frac{1+17 \cos 2 \tau}{225} \cos 3 t .
\end{aligned}
$$

Let us put

$$
M=\left(\begin{array}{cc}
\frac{2 \sin 2 t}{25}-\frac{\sin t}{20}-\frac{17 \sin 3 t}{75} & \frac{2 \sqrt{2}}{75}(\cos t-2 \cos 2 t+6 \cos 3 t) \\
\frac{2 \sqrt{2}}{75}(\sin t-\sin 2 t+2 \sin 3 t) & \frac{13}{900}-\frac{\cos t}{20}+\frac{\cos 2 t}{25}-\frac{17 \cos 3 t}{225}
\end{array}\right)
$$

The critical points (t, τ) of Φ satisfy

$$
M\binom{\cos 2 \tau}{\sin 2 \tau}=\left(\frac{\sin t}{20}-\frac{2 \sin 2 t}{25}+\frac{\sin 3 t}{75}\right) .
$$

We have

$$
\operatorname{det} M=\frac{1}{6750} \sin t\left(\cos t-\frac{1}{4}\right)(4 \cos t-11)\left(16 \cos ^{3} t-72 \cos ^{2} t+33 \cos t-41\right)
$$

which vanishes exactly if $\cos t \in\{-1,1 / 4,1\}$. Otherwise we get

$$
\left\{\begin{array}{l}
\cos 2 \tau=-\frac{272 \cos ^{3} t-72 \cos ^{2} t-159 \cos t+23}{16 \cos ^{3} t-72 \cos ^{2} t+33 \cos t-41}=C(t) \tag{3}\\
\sin 2 \tau=-\frac{24 \sqrt{2} \sin t(4 \cos t+1)(2 \cos t-1)}{16 \cos ^{3} t-72 \cos ^{2} t+33 \cos t-41}=S(t)
\end{array}\right.
$$

Note that this solution is consistent, as $C^{2}+S^{2}=1$. For such $\tau, \Phi(t, \tau)=9 / 25$. Checking the special cases $\cos t \in\{-1,1 / 4,1\}$ yields that all local maxima are given by the above formulas, that Φ attains its global minimum, 0 , exactly for $\tau=0$ and $t=\pi$, and has exactly one other local minimum, of value $49 / 225$, for $\tau=\pi / 2$ and $t=0$. There is exactly one other critical point, of value $5 / 18$, that is a saddle point, given by $\tau=\arccos (17 / 37) / 2, t=\arccos 1 / 4$.

As $C(0)=1, C(\pm \pi / 3)=-1, C(\pm \arccos (-1 / 4))=1, C(\pi)=-1$, the intermediate values theorem shows that for a given τ, there are exactly three solutions t to system (3), for which $\Phi(t, \tau)$ achieves then its global maximum, $9 / 25$.

Further details are given in [3].

References

[1] Göran Björck and Bahman Saffari. New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries. C. R. Acad. Sci. Paris Sér. I Math., 320:319-324, 1995.
[2] Nicolas Bourbaki. Espaces vectoriels topologiques. Chapitres 1 à 5. Masson, Paris, new edition, 1981.
[3] Stefan Neuwirth. On the Sidon constant of $\{0,1,2,3\}$. In Aspects quantitatifs de l'inconditionnalité, pages 110-115. Université de Franche-Comté, Besançon, 2008. Habilitation thesis.
[4] Harold S. Shapiro. Extremal problems for polynomials and power series. Master's thesis, Massachusetts Institute of Technology, 1951.

