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Bolyai Institute, University of Szeged, Aradi vértanúk tere
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1. Statistical convergence of single sequences and se-

ries

The term ‘statistical convergence’ first appeared in 1951,

see [2] by Fast, where he attributed this concept to Hugo Stein-

haus. In fact, it was Zygmund who first proved theorems on

the statistical convergence of Fourier series in the first edition

of his book “Trigonometric Series” appeared in 1935, where

the term ‘almost convergence’ was used in place of ‘statistical

convergence’.

We recall that a sequence (sk) = (sk : k = 0, 1, 2, . . .) or a

series with partial sums sk, where the sk are real or complex

numbers, is said to converge statistically to limit (or sum) s, in

symbols:

(1.1) st− lim
k→∞

sk = s,
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if for every ε > 0,

(1.2) lim
n→∞

(n + 1)−1|{k ≤ n : |sk − s| > ε}| = 0,

where by k ≤ n we mean that k = 0, 1, 2, . . . , n; and by |S| we

mean the cardinality of the finite set S ⊂ N := {0, 1, 2, . . .}.

It is clear that the statistical limit s in (1.1) is uniquely

determined if it exists. The concept of statistical limit also

enjoys all the limit laws that are valid in the case of the or-

dinary limit in the sense of Cauchy: additivity, homogeneity,

etc. Clearly, the existence of the ordinary limit of a sequence

implies the existence of the statistical limit, and the two limits

coincide. The converse implication is not true in general. For

example, if the sequence (sk) is defined by

sk :=

{
k if k = 2`, ` = 0, 1, 2, . . .,
0 otherwise;

then (1.2) with s = 0 is satisfied for every ε > 0, while the

sequence (sk) is not bounded.

We recall that a sequence (sk) is said to be statistically

bounded if there exists some constant B > 0 such that

lim
n→∞

(n + 1)−1|{k ≤ n : |sk| > B}| = 0.
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If (1.2) holds for some ε > 0, then this inequality clearly holds

with B := |s| + ε. Consequently, every statistically convergent

sequence is statistically bounded.

The following concept was introduced by Fridy [3] in 1985.

A sequence (sk) is said to be statistically Cauchy if for every

ε > 0 there exists ν = ν(ε) ∈ N such that

lim
n→∞

(n + 1)−1|{k ≤ n : |sk − sν | > ε}| = 0.

Theorem 1.1 (Fridy [3]). A sequence (sk) converges statisti-

cally if and only if it is statistically Cauchy.

We recall (see, e.g., [17, p. 290]) that the natural (or

asymptotic) density of a set S ⊂ N is defined by

d(S) := lim
n→∞

(n + 1)−1|{k ≤ n : k ∈ S}|,

provided that this limit exists. Using this term, (1.2) can be

equivalently rewritten as follows: for every ε > 0,

d({k ∈ N : |sk − s| > ε}) = 0.

The following decomposition theorem was proved by Con-

nor [1].
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Theorem 1.2. A sequence (sk) converges statistically to limit

s if and only if there exist two sequences (uk) and (vk) such

that

(i) sk = uk + vk, k = 0, 1, 2, . . . ,

(ii) limk→∞ uk = s,

(ii) limn→∞(n + 1)−1|{k ≤ n : vk 6= 0}| = 0.

Moreover, if (sk) is bounded, then both (uk) and (vk) are also

bounded.

According to Zygmund’s definition (see [20, Vol. II, p.

[181], a sequence (sk) or a series with partial sums sk is said to

be ‘almost convergent’ to limit (sum) s if there exists a sequence

0 ≤ k1 < k2 < . . . < kn < . . . of integers such that

(1.3) lim
n→∞

n

kn

= 1 and lim
n→∞

skn
= s.

It is routine to check that the definition of statistical con-

vergence of a sequence (sk) defined in (1.2) is equivalent to the

definition (1.3) of almost convergence of (sk).

Furthermore, a sequence (sk) or a series with partial sums

sk is said to be summable Hq to limit (or sum) s for some real

q > 0 if

(1.4) lim
n→∞

(n + 1)−1
n∑

k=0

|sk − s|q = 0
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(see in [20, Vol. II, p. 180]). We note that this kind of summa-

bility, also called strong summability, was first considered by

Hardy and Littlewood [7].

Hölder’s inequality gives that if (1.4) holds for some q > 0,

then it also holds for every smaller exponent r, 0 < r < q.

Clearly, summability H1, also known as strong summability

(C, 1), implies summability by the first arithmetic means; that

is, we have

lim
n→∞

(n + 1)−1
n∑

k=0

sk = s.

Theorem 1.3 (Zygmund [20, Vol. II, p. 181]). (i) If a sequence

(sk) is summable Hq to limit s for some q > 0, then (sk) is

almost convergent to s.

(ii) Conversely, if (sk) is almost convergent to s, and it is

bounded, then for any q > 0, (sk) is summable Hq to s.

2. Application to single Fourier series

Let f : T → C be an integrable function in Lebesgue’s

sense on the torus T := [−π, π), in symbols: f ∈ L1(T). As is
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well known, the Fourier series of f is defined by

(2.1) f(x) ∼
∑

j∈Z

f̂(j)eijx, x ∈ T,

where the Fourier coefficients f̂(j) are defined by

(2.2)

f̂(j) :=
1

2π

∫

T

f(t)e−ijtdt, j ∈ Z := {. . . ,−2,−1, 0, 1, 2, . . .}.

The symmetric partial sums of the series in (2.1) are defined

by

(2.3) sk(f ; x) :=
∑

|j|≤k

f̂(j)eijx, k ∈ N and x ∈ T.

We recall (see, e.g., in [20, Vol. I, p. 49] that the conjugate

series to the Fourier series in (2.1) is defined by

(2.4)
∑

j∈Z

(−i signj)f̂(j)eijx,

where

signj :=

{
j
|j| if j 6= 0,

0 if j = 0.

Clearly, it follows from (2.1) and (2.4) that

∑

j∈Z

f̂(j)eijx + i
∑

j∈Z

(−i signj)f̂(j)eijx = 1 + 2

∞∑

j=1

f̂(j)eijx,
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and the power series

1 + 2
∞∑

j=1

f̂(j)zj , where z := reix, 0 ≤ r < 1,

is analytic on the open unit disk |z| < 1, due to the fact that

|f̂(j)| ≤
1

2π

∫

π

|f(t)|dt, j ∈ Z.

This justifies the term ‘conjugate series’ in the case of (2.4).

We also recall (see, e.g., in [20, Vol. I, p. 51] that the

conjugate function f̃ of a function f ∈ L1(T) is defined by

(2.5) f̃(x) := − lim
ε↓0

1

π

∫

ε≤|t|≤π

f(x + t)

2tan t
2

dt =

= lim
ε↓0

1

π

∫ π

ε

f(x − t) − f(x + t)

2tan t
2

dt

in the ‘principal value’ sense; and that f̃(x) exists at almost

every x ∈ T.

In the following Theorem 2.1, Part (i) was proved by Hardy

and Littlewood [7], while Part (ii) is due to Marcinkiewicz [10,

for q = 2] and Zygmund [19, for every q > 0].

Theorem 2.1. (i) If a periodic function f is continuous, in

symbols: f ∈ C(T), then for any q > 0 its Fourier series is

summable Hq to f(x) uniformly in x ∈ T.
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(ii) If f ∈ L1(T), then for any q > 0 its Fourier series

is summable Hq to f(x) at almost every x ∈ T. Furthermore,

its conjugate series (2.4) is summable Hq for any q > 0 to the

conjugate function f̃(x) defined in (2.5) at almost every x ∈ T.

The next Corollary 2.2. follows from Theorems 1.3 and

2.1.

Corollary 2.2. (i) If f ∈ C(T), then its Fourier series statis-

tically converges to f(x) uniformly in x ∈ T.

(ii) If f ∈ L1(T), then its Fourier series statistically con-

verges to f(x) at almost every x ∈ T. Furthermore, its con-

jugate series statistically converges to the conjugate function

f̃(x) at almost every x ∈ T.

By virtue of Corollary 2.2, the ordinary divergence (in the

sense of Cauchy) of the Fourier series of a function f ∈ C(T)

at a single point x ∈ T (see the example in [20, Vol. I, p.

299] given by L. Fejér) is due to the existence of a subsequence

0 < `1 < `2 < . . . < `p < . . . of integers with natural density

0 such that the subsequence (s`p
(f ; x)) of the partial sums of

the Fourier series of f diverges at the point x in question. An

analogous observation can be also made in the case when the

Fourier series of a function f ∈ L1(T) diverges everywhere (see
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the example in [20, Vol. I, p. 310] given by A. N. Kolmogorov).

3. Statistical convergence of multiple sequences and

series

The concepts and results of the preceeding two Sections

can be extended to m-multiple sequences and series, where m ≥

2 is a fixed integer. Denote by Nm the set of m-tuples k =

(k1, k2, . . . , km) with nonnegative integers for the coordinates

kj . Two tuples k and n = (n1, n2, . . . , nm) are distinct if and

only if k` 6= n` for at least one `, 1 ≤ ` ≤ m. As is known, Nm

is partially ordered by agreeing that k ≤ n if k` ≤ n` for each

` = 1, 2, . . . , m.

According to [11] (see also in [16] in the case m = 2), an

m-multiple sequence (sk) = (sk : k ∈ Nm) of real or complex

numbers is said to converge statistically to limit s, in symbols:

st− lim
k→∞

sk = s,

if for every ε > 0,

lim
n→∞

m∏

`=1

(n` + 1)−1|{k ≤ n : |sk − s| > ε}| = 0

(cf. (1.2)), where by n → ∞ we mean that

min{n1, n2, . . . , nm} → ∞.
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In the case of an m-multiple series

(3.1)
∞∑

j1=0

∞∑

j2=0

. . .
∞∑

jm=0

cj1,j2,...,jm

of real of complex numbers, we consider its rectangular partial

sums sk defined by

sk :=

k1∑

j1=0

k2∑

j2=0

. . .

km∑

jm=0

cj1,j2,...,jm
, k ∈ Nm.

The m-multiple series (3.1) is said to converge statistically to

sum s if the m-multiple sequence (sk) of its rectangular partial

sums statistically converges to s.

Furthermore, a multiple sequence (sk : k ∈ Nm) is said to

be statistically Cauchy if for every ε > 0 there exists ν ∈ Nm

such that

lim
n→∞

m∏

`=1

(n` + 1)−1|{k ≤ n : |sk − sν | > ε}| = 0.

Both Theorems 1.1 and 1.2 are valid for m-multiple se-

quences; see the proofs in [11] for double sequences. The natu-

ral (or asymptotic) density of a set S ⊂ Nm can be defined as

follows

d(S) := lim
n→∞

m∏

j=1

(nj + 1)−1|{k ≤ n : k ∈ S}|,
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provided this limit exists.

An m-multiple sequence (sk) or series with rectangular

partial sums sk is said to be summable Hq to limit (or sum) s

for some real q > 0 if

(3.2) lim
n→∞

m∏

j=1

(nj + 1)−1
n1∑

k1=0

n2∑

k2=0

. . .

nm∑

km=0

|sk − s|q = 0.

It is easy to check that Theorem 1.3 is also valid in the

case of m-multiple sequences or series.

Historical remark. The manuscript of [11] of the present

author was received by the Editors on November 5, 2001; while

the manuscripot of [16] of Mursaleen and Osama H.H. Edely

was received by the Editors on January 11, 2002; and in the

latter one only the case m = 2 is considered.

4. Application to m-multiple Fourier series

Let f : Tm → C be an integrable function in Lebesgue’s

sense on the m-dimensional torus Tm := [−π, π)m, where m ≥

2 is an integer. We recall (see, e.g., [20, Vol. II, Ch. 17]) that

the m-multiple Fourier series of f is defined by

(4.1) f(x) ∼
∑

j1∈Z

∑

j2∈Z

. . .
∑

jm∈Z

f̂(j)eij·x, x ∈ Tm,
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where the Fourier coefficients f̂(j) are defined (cf. (2.2)) by

f̂(j) :=
1

(2π)m

∫

T

∫

T

. . .

∫

T

f(t)eij·tdt1dt2 . . . dtm,

j · t :=
m∑

`=1

j`t`, j ∈ Zm and t ∈ Tm.

The symmetric rectangular partial sums of the m-multiple

series in (4.1) are defined (cf. (2.3)) by

(4.2) sk(f ; x) :=

∑

|j1|≤k1

∑

|j2|≤k2

. . .
∑

|jm|≤km

f̂(j)eij·x, k ∈ Nm and x ∈ Tm.

The convergence of these sk(f ; x) is meant in Pringsheim’s

sense, that is, when the finite limit

lim sk(f ; x) exists as min{k1, k2 . . . , km} → ∞.

For the sake of brevity in writing, first we define the conju-

gate series to the Fourier series in (4.1) in the case when m = 2

as follows (see, e.g., in [18]):

∑

j1∈Z

∑

j2∈Z

(−i signj1)f̂(j)eij·x,

∑

j1∈Z

∑

j2∈Z

(−i signj2)f̂(j)eij·x,
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∑

j1∈Z

∑

j2∈Z

(−i signj1)(−i signj2)f̂(j)enj·x, x ∈ T2.

Analogously to the one-dimensional case, the correspond-

ing conjugate functions f̃ (1,0)(x), f̃ (0,1)(x) and f̃ (1,1)(x) are

defined by

f̃ |(1,0)(x) := − lim
ε1↓0

1

π

∫

ε1≤|t1|≤π

f(x1 + t1, x2)

2tan t1
2

dt1,

f̃ (0,1)(x) := − lim
ε2↓0

1

π

∫

ε2≤|t2|≤π

f(x1, x2 + t2)

2tan t2
2

dt2,

f̃ (1,1)(x) :=

lim
ε1→0

lim
ε2→0

1

π2

∫

ε1≤|t1|≤π

∫

ε2≤|t2|≤π

f(x1 + t1, x2 + t2)

4tan t1
2 tan t2

2

dt1dt2,

each integral is meant in the ‘principal value’ sense. It is also

known (see, e.g., in [4] or one of the References given there),

each of these conjugate functions exists at almost every x ∈ T2

provided that

(4.3)

∫

T

∫

T

|f(t1, t2)| log+ |f(t1, t2)|dt1dt2 < ∞,

in symbols: f ∈ L1 log+ L(T2), where

log+ |u| := max{0, log |u|} u ∈ C.
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In the general case, where m ≥ 3, let

η = (η1, η2, . . . , ηm) ∈ {0, 1}m

be such that at least one of its components equals 1. More

precisely, let η`1 = . . . = η`s
= 1,

where 1 ≤ `1 < . . . < `s ≤ m and 1 ≤ s < m;

while η` = 0 for the remaning indices ` (if any) between 1 and

m. Then the m-multiple series

(4.4)
∑

j1∈Z

. . .
∑

js∈Z

(−i signj`1) . . . (−i signj`s
)f̂(j)eij·x

is the conjugate series to the Fourier series in (4.1) that corre-

sponds to η ∈ {0, 1}m indicated above. Altogether, there are

2m −1 conjugate series to the Fourier series in (4.1). The sym-

metric rectangular partial sums of the m-multiple series (4.4)

(analogously to the notation in (4.2)) are denoted by s̃
(η)
k (f ; x).

Analogously to the two-dimensional case, there are 2m −1

conjugate functions to the function f in (4.1), which we denote

by f̃ (η)(x), η ∈ {0, 1}m with at least one component η` = 1.

Each of these conjugate functions exists as a principal value

integral at almost every x ∈ Tm provided that
∫

T

∫

T

. . .

∫

T

|f(t1, t2 . . . , tm)|
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×(log+ |f(t1, t2 . . . , tm)|)m−1dt1dt2 . . . dtm < ∞

(cf. (4.3)), in symbols: f ∈ L1(log+ L)m−1(Tm).

The analogue of Theorem 2.1 reads as follows.

Theorem 4.1 (Gogoladze [4]). If f ∈ L1(log+ L)m−1(Tm),

then the m-multiple sequence (sk(f ; x)) of the symmetric rect-

angular partial sums of the Fourier series in (4.1) is summable

Hq to f(x) (see in definition (3.2)) at almost every point

x ∈ Tm for any 0 < q < ∞.

Furthermore, for each η ∈ {0, 1}m with at least one com-

ponent η` = 1, the m-multiple sequence (s
(η)
k (f ; x)) of the con-

jugate series (4.4) is also summable Hq at almost every point

x ∈ Tm to the conjugate function f̃ (η)(x) for any 0 < q < ∞.

The next Corollary 4.2 follows from Theorems 4.1 and the

m-multiple version of Theorem 1.3.

Corollary 4.2. If f ∈ L1(log+ L)m−1(Tm), then the m-

multiple Fourier series in (4.1) statistically converges to f(x)

at almost every x ∈ Tm. Furthermore, each of its conjugate se-

ries (4.4) statistically converges to the corresponding conjugate

function f̃ (η)(x) at almost every x ∈ Tm.

In a joint paper [15] with Xianliang Shi, we proved the

following
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Theorem 4.3. For any 0 < q < ∞, there exists a constant

Cq depending only on q such that if f ∈ C(T2), then for all

(n1, n2) ∈ N
2 and (x1, x2) ∈ T

2 we have

(4.4)

(n1 + 1)−1(n2 + 1)−1
n1∑

j1=0

n2∑

j2=0

|sj1,j2(f ; x1, x2) − f(x1, x2)|
q

≤ Cq(n1 + 1)−1(n2 + 1)−1
n1∑

j1=0

n2∑

j2=0

(Ej1,j2(f))q,

where Ej1,j2(f) is the best uniform approximation to the contin-

uous function f by two-dimensional trigonometric polynomials

T (t1, t2) of degree ≤ j1 with respect to the first variable, and of

degree ≤ j2 with respect to the second variable.

The proving method of (4.4) in [15] clearly indicates the

straightforward way of its extension to the m-multiple case for

any m ≥ 3. Taking into account this observation, we conclude

that if a function f ∈ C(Tm), then its Fourier series in (4.1) is

summable Hq to f(x) uniformly on Tm, for any 0 < q < ∞.

Now, applying the m-multiple version of Theorem 1.3 to-

gether with the extended version of Theorem 4.3 for functions

f ∈ C(Tm), m ∈ N, gives the following

Corollary 4.4. If f ∈ C(Tm), then the m-multiple Fourier
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series of f in (4.1) statistically converges to f(x) uniformly in

x ∈ Tm.

5. Tauberian theorems for statistical summability

We recall that a sequence (sk) or a series with partial sums

sk, where the sk are real or complex numbers, is said to be

summable (C, 1) to limit (or sum) s if

(5.1)

lim
n→∞

σn = s, where σn := (n + 1)−1
n∑

k=0

sk, n = 0, 1, 2, . . . .

is the first arithmetic mean, also called the Cesàro mean of first

order. Clearly, the existence of the ordinary limit of a sequence

(sk) implies the existence of the ordinary limit of (σn), and the

two limits coincide. The converse implication is not true in

general. However, under certain supplementary condition(s),

the implication

(5.2) lim
n→∞

σn = s ⇒ lim
n→∞

sk = s

does hold.

Such supplementary condition(s) under which the exis-

tence of ordinary limit follows from the existence of the limit
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by a summability method are called ‘Tauberian’ one(s) with

respect to the summability method in question. Likewise, such

theorems containing condition(s) of this kind are also called

‘Tauberian’ one(s), after A. Tauber (see, e.g., in [6, p. 149,

lines 17-19 from above]), who first proved one of the simplest

of them; namely, if the condition

lim
k→∞

ksk = 0

is satisfied, then the implication (5.2) holds.

By Theorem 1.2, it is easy to see that if a sequence (sk) is

bounded, then the following implication holds:

st− lim
k→∞

sk = s ⇒ st− lim
n→∞

σn = s.

Our goal in this Section is to present Tauberian conditions

under which the converse implication holds true even without

requiring the boundedness of the sequence (sk):

(5.3) st− lim
n→∞

σn = s ⇒ lim
k→∞

sk = s.

By Landau’s definition (see in [9] and also in [6, pp. 124-

126]), a sequence (sk) of real numbers is said to be slowly

decreasing (one may add to it: with respect to summability

(C, 1)) if

(5.4) lim inf
j→∞

(skj
− snj

) ≥ 0
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whenever

(5.5) nj → ∞ and 1 ≤ kj/nj → 1 as j → ∞.

It is routine to check that (5.4)-(5.5) is equivalent to the

following condition:

lim
λ↓1

lim inf
n→∞

min
n<k≤λn

(sk − sn) ≥ 0;

and this latter one is satisfied if and only if for every ε > 0

there exist n0 = n0(ε) and λ0 = λ0(ε) > 1 as close to 1 as we

want, such that

sk − sn ≥ −ε whenever n0 ≤ n < k ≤ λ0n.

By Hardy’s definition (see in [5] and also in [6, pp. 124-

125], a sequence (sk) of complex numbers is said to be slowly

oscillating (one may add to it: with respect to summability

(C, 1)) if

(5.6) lim
j→∞

(skj
− snj

) = 0

whenever the conditions in (5.5) are satisfied.

It is well known (see, e.g., in [6, p. 121]) that if a sequence

(sk) of real numbers satisfies Landau’s one-sided condition:

(5.7)

k(sk − sk−1) ≥ −H for some H > 0 and every k ≥ 1,
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then (sk) is slowly decreasing. Likewise, if a sequence (sk) of

complex numbers satisfies Hardy’s two-sided Tauberian condi-

tion:

(5.8) k|sk − sk−1| ≤ H for some H and every k,

then (sk) is slowly oscillating.

The next two theorems proved in [12] by the present author

give Tauberian conditions under which the implication (5.3)

holds true.

Theorem 5.1. If a sequence (sk) of real numbers is statis-

tically summable (C, 1) to some s and it is slowly decreasing,

then (sk) converges to s.

Theorem 5.2. If a sequence (sk) of complex numbers is sta-

tistically summable (C, 1) to some s and it is slowly oscillating,

then (sk) converges to s.

Next, we present analogous Tauberian theorems in the case

of the so-called logarithmic summability, briefly: summability

(L, 1), of sequences (see, e.g., in [13], where the term ‘harmonic

summability’ was used instead of ‘logarithmic summability’).

A sequence (sk) = (sk : k = 1, 2, . . .) of complex numbers

or a series with partial sums sk, is said to be summable (L, 1)
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to s if

lim
n→∞

τn = s,

where

τn :=
1

`n

n∑

k=1

sk

k
and `n :=

n∑

k=1

1

k
∼ log n, n = 1, 2, . . .

(cf. (5.1)), and the logarithm is to the natural base e. It is

easy to prove (see in [14]) that if a sequence (sk) is summable

(C, 1) to some s, then it is summable (L, 1) to the same s, but

the converse implication is not true in general.

Next, we present Tauberian conditions under which the

converse implication holds true even in the following more gen-

eral form:

(5.9) st− lim
n→∞

τn = s ⇒ lim
k→∞

sk = s.

To this effect, a sequence (sk) of real numbers is said to

be slowly decreasing with respect to summability (L, 1) (see in

[13]) if condition (5.4) is satisfied whenever

(5.10)

nj → ∞ and 1 < (log kj)/(log nj) → 1 as j → ∞

(cf. (5.5)).
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Furthermore, a sequence (sk) of complex numbers is said

to be slowly oscillating with respect to summability (L, 1) (see

in [8] and also in [13]) if condition (5.6) is satisfied whenever

condition (5.10) is satisfied.

It is easy to check that if a sequence (sk) of real numbers

satisfies the following one-sided Tauberian condition:

k(log k)(sk−sk−1) ≥ −H for some H > 0 and every k ≥ 2

(cf. (5.7)), then (sk) is slowly decreasing with respect to

summability (L, 1).

Likewise, if a sequence (sk) of complex numbers satisfies

the following two-sided Tauberian condition:

k(log k)|sk − sk−1| ≤ H for some H and every k ≥ 2

(cf. (5.8)), then (sk) is slowly oscillating with respect to

summability (L, 1).

The next two theorems give Tauberian conditions under

which the implication (5.9) holds true.

Theorem 5.3. (see in [13, Theorem 1]). If a sequence (sk)

of real numbers is statistically summable (L, 1) to some s and

it is slowly decreasing with respect to summability (L, 1), then

(sk) converges to s.
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Theorem 5.4. (see in [13, Theorem 2]). If a sequence (sk) of

complex numbers is statistically summable (L, 1) to some s and

it is slowly oscillating with respect to summability (L, 1), then

(sk) converges to s.
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