The Pyjama Problem

Freddie Manners

University of Oxford

August 30, 2013

The pyjama stripe

э

The pyjama stripe

For $\varepsilon > 0$, the "pyjama stripe" is:

$$\mathsf{E}=\mathsf{E}(arepsilon):=\{z\in\mathbb{C}\,:\,\Re(z)\,(\,\mathrm{mod}\,1)\in(-arepsilon,arepsilon)\}$$

Question (losevich, Kolountzakis, Matolcsi 2006)

Question (Iosevich, Kolountzakis, Matolcsi 2006)

Question (losevich, Kolountzakis, Matolcsi 2006)

Write ε_{\min} for the infimum of ε for which the answer is yes.

Write ε_{\min} for the infimum of ε for which the answer is yes.

Theorem

 $\varepsilon_{\min} \leq 1/2.$

Write ε_{\min} for the infimum of ε for which the answer is yes.

$\label{eq:scalar} \begin{array}{l} \mbox{Theorem} \\ \varepsilon_{\min} \leq 1/2. \end{array}$

Freddie Manners (University of Oxford)

Write ε_{\min} for the infimum of ε for which the answer is yes.

Theorem

 $\varepsilon_{\min} \leq 1/3.$

Write ε_{\min} for the infimum of ε for which the answer is yes.

Theorem

 $\varepsilon_{\min} \leq 1/3.$

Write ε_{\min} for the infimum of ε for which the answer is yes.

Theorem

 $\varepsilon_{min} \leq 1/3.$

Write ε_{\min} for the infimum of ε for which the answer is yes.

Theorem

 $\varepsilon_{\min} \leq 1/3.$

Improving on 1/3 is hard!

Freddie Manners (University of Oxford)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/48.$

3

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \le 1/3 - 1/48.$

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/5$ (non-constructive).

🗇 🕨 🔺 🖻 🕨 🔺 🖷

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/48.$

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/5$ (non-constructive).

Theorem (M, 2013)

 $\varepsilon_{\min} = 0.$

(本部)と 本語 と 本語を

For $\theta \in \mathbb{C}$, $|\theta| = 1$ write $E_{\theta} = \theta^{-1}E = \{z \in \mathbb{C} : \Re(\theta z) \mod 1 \in (-\varepsilon, \varepsilon)\}$.

< 4 **₽** ► <

3

For $\theta \in \mathbb{C}$, $|\theta| = 1$ write

 $E_{ heta} = heta^{-1}E = \{z \in \mathbb{C} \ : \ \Re(heta z) \mod 1 \in (-arepsilon, arepsilon)\} \;.$

The problem asks for Θ such that $\bigcup_{\theta \in \Theta} E_{\theta} = \mathbb{C}$.

For $\theta \in \mathbb{C}$, $|\theta| = 1$ write $E_{\theta} = \theta^{-1}E = \{z \in \mathbb{C} : \Re(\theta z) \mod 1 \in (-\varepsilon, \varepsilon)\}$.

The problem asks for Θ such that $\bigcup_{\theta \in \Theta} E_{\theta} = \mathbb{C}$.

Proposition (Malikiosis, Matolcsi, Ruzsa 2012)

Choosing Θ randomly doesn't work if $\varepsilon < 1/2$.

For $\theta \in \mathbb{C}$, $|\theta| = 1$ write $E_{\theta} = \theta^{-1}E = \{z \in \mathbb{C} : \Re(\theta z) \mod 1 \in (-\varepsilon, \varepsilon)\}$.

The problem asks for Θ such that $\bigcup_{\theta \in \Theta} E_{\theta} = \mathbb{C}$.

Proposition (Malikiosis, Matolcsi, Ruzsa 2012)

Choosing Θ randomly doesn't work if $\varepsilon < 1/2$.

A point $x \in \mathbb{R}$ is uncovered if and only if

 $x \cdot (\Re(heta_1), \dots, \Re(heta_k)) \mod 1 \in [arepsilon, 1 - arepsilon]^k$

A point $x \in \mathbb{R}$ is uncovered if and only if

$$x \cdot (\Re(heta_1), \dots, \Re(heta_k)) \; \; \mathsf{mod} \; 1 \in [arepsilon, 1 - arepsilon]^k$$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Lemma (Malikiosis, Matolcsi, Ruzsa 2012)

For k > 2, the construction $\Theta = \{1 = \theta_1, \dots, \theta_k\}$ is (doubly) periodic iff θ_i all lie in the same quadratic number field.

Lemma (Malikiosis, Matolcsi, Ruzsa 2012)

For k > 2, the construction $\Theta = \{1 = \theta_1, \dots, \theta_k\}$ is (doubly) periodic iff θ_i all lie in the same quadratic number field. Square lattices \leftrightarrow number field $\mathbb{Q}(i)$, i.e. rational coordinates.

The Pyjama Problem

Lemma (Malikiosis, Matolcsi, Ruzsa 2012)

For k > 2, the construction $\Theta = \{1 = \theta_1, \dots, \theta_k\}$ is (doubly) periodic iff θ_i all lie in the same quadratic number field. Square lattices \leftrightarrow number field $\mathbb{Q}(i)$, i.e. rational coordinates. $D\mathbb{Z}[i]$ -periodic $\iff \Theta \subseteq \frac{1}{D}\mathbb{Z}[i]$.

Freddie Manners (University of Oxford)

The Pyjama Problem

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

Periodic constructions don't work for $\varepsilon < 1/3$. For square lattices, the same holds for $\varepsilon < 1/2$.

August 30, 2013 8 / 12

Freddie Manners (University of Oxford)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

Periodic constructions don't work for $\varepsilon < 1/3$. For square lattices, the same holds for $\varepsilon < 1/2$.

Freddie Manners (University of Oxford)

August 30, 2013 8 / 12

$$\theta = \frac{a+bi}{c}$$
 where $a^2 + b^2 = c^2$;

Image: A mathematical states and a mathem

$$\theta = \frac{a+bi}{c}$$
 where $a^2 + b^2 = c^2$;
 E_{θ} is $(d \times d)$ -periodic as shown $\iff c|d$;

 $\theta = \frac{a+bi}{c}$ where $a^2 + b^2 = c^2$; E_{θ} is $(d \times d)$ -periodic as shown $\iff c|d$; necessarily, c and (a - b) are odd;

$$\begin{split} \theta &= \frac{a+bi}{c} \text{ where } a^2 + b^2 = c^2; \\ E_\theta \text{ is } (d \times d) \text{-periodic as shown } \iff c | d; \\ \text{necessarily, } c \text{ and } (a - b) \text{ are odd;} \\ \text{hence } \Re \left[\theta \cdot \frac{d(1+i)}{2} \right] \mod 1 = 1/2. \end{split}$$

$$\begin{split} \theta &= \frac{a+bi}{c} \text{ where } a^2 + b^2 = c^2; \\ E_{\theta} \text{ is } (d \times d) \text{-periodic as shown } \iff c | d; \\ \text{necessarily, } c \text{ and } (a - b) \text{ are odd;} \\ \text{hence } \Re \left[\theta \cdot \frac{d(1+i)}{2} \right] \mod 1 = 1/2. \end{split}$$
First in an infinite family of *rational obstructions*, and the second secon

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/48.$

æ

(日) (周) (三) (三)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/10000.$

æ

(日) (周) (三) (三)

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/10000.$

- 4 ⊒ →

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/10000.$

Freddie Manners (University of Oxford)

3

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/10000.$

Freddie Manners (University of Oxford)

3

Theorem (Malikiosis, Matolcsi, Ruzsa 2012)

 $\varepsilon_{\min} \leq 1/3 - 1/10000.$

Freddie Manners (University of Oxford)

3

A D A D A D A

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

-

Image: A matrix and a matrix

3

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$.

Image: A matrix and a matrix

3

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$. If $x, y \in \mathbb{C}$ are bad, then (for example) -(3x + 3y) is not.

э

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$. If $x, y \in \mathbb{C}$ are bad, then (for example) -(3x + 3y) is not. Choose $\zeta_1, \zeta_2, \zeta_3$ in the unit circle such that $3\zeta_1 + 3\zeta_2 + \zeta_3 = 0$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$. If $x, y \in \mathbb{C}$ are bad, then (for example) -(3x + 3y) is not. Choose $\zeta_1, \zeta_2, \zeta_3$ in the unit circle such that $3\zeta_1 + 3\zeta_2 + \zeta_3 = 0$.

Rotate the triangle configuration by each of $\zeta_1^{-1}, \zeta_2^{-1}, \zeta_3^{-1}$.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$. If $x, y \in \mathbb{C}$ are bad, then (for example) -(3x + 3y) is not. Choose $\zeta_1, \zeta_2, \zeta_3$ in the unit circle such that $3\zeta_1 + 3\zeta_2 + \zeta_3 = 0$.

Rotate the triangle configuration by each of $\zeta_1^{-1}, \zeta_2^{-1}, \zeta_3^{-1}$. $z \in \mathbb{C}$ is uncovered overall $\iff \zeta_1 z, \zeta_2 z, \zeta_3 z$ are all bad points.

Bad points are all near $(\frac{1}{3}\mathbf{u} + \frac{1}{3}\mathbf{v})$ or $(\frac{2}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}) \pmod{\Lambda}$. If $x, y \in \mathbb{C}$ are bad, then (for example) -(3x + 3y) is not. Choose $\zeta_1, \zeta_2, \zeta_3$ in the unit circle such that $3\zeta_1 + 3\zeta_2 + \zeta_3 = 0$.

Rotate the triangle configuration by each of $\zeta_1^{-1}, \zeta_2^{-1}, \zeta_3^{-1}$. $z \in \mathbb{C}$ is uncovered overall $\iff \zeta_1 z, \zeta_2 z, \zeta_3 z$ are all bad points. But, $\zeta_3 z = -(3\zeta_1 z + 3\zeta_2 z); \Rightarrow \Leftarrow$.

The strategy

Freddie Manners (University of Oxford)

э.

• • • • • • • •

æ

 Hope that "rational obstructions" are all that goes wrong with periodic constructions.

- Hope that "rational obstructions" are all that goes wrong with periodic constructions.
- Deal with the remaining bad points using a variant of the $3\zeta_1 + 3\zeta_2 + \zeta_3 = 0$ trick.