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A SOLUTION TO THE PYJAMA PROBLEM

FREDDIE MANNERS

Abstract. The “pyjama stripe” is the subset of R2 consisting of a vertical strip of width 2ε around

every integer x-coordinate. The “pyjama problem” asks whether finitely many rotations of the pyjama

stripe around the origin can cover the plane.

The purpose of this paper is to answer this question in the affirmative, for all positive ε. The

problem is reduced to a statement closely related to Furstenberg’s ×2, ×3 Theorem from topological

dynamics, and is proved by analogy with that result.
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1. Introduction

Fix some ε > 0. Let E = E(ε) denote a “pyjama stripe” viewed as a subset of C:

E := {z ∈ C : ℜ(z) (mod 1) ∈ (−ε, ε)}

i.e. a vertical strip of width 2ε around each integral x-coordinate. (The term “pyjama stripe” is a

reference to the resemblance of E to the pattern on a pair of stripy pyjamas.) For θ a unit complex

number, write Eθ := θ−1E for the corresponding rotated pyjama stripe, i.e. the set obtained by rotating

E by θ−1 about the origin.

Problem 1.1 (Pyjama problem). Do finitely many rotations of E cover the plane? I.e., does there

exist a finite collection {φ1, . . . , φk} of unit complex numbers such that
⋃

iEφi
= C?
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The goal of this paper is to answer this in the affirmative, for all positive ε.

The problem was first stated in [IKM06], and was the subject of the more recent note [MMR12],

which inspired many of the ideas of this paper. For a brief history and background of the problem, the

reader is referred to [MMR12][Section 1].

Our proof proceeds by reducing the pyjama problem to a statement (Lemma 5.3) that resembles

Furstenberg’s ×2, ×3 Theorem [Fur67][Part IV], but which – as far as the author is aware – does not

appear in the literature. The proof of this result follows that of the ×2, ×3 Theorem very closely, but

faces significant technical complications, which bring into play a certain amount of p-adic analysis.

Where possible, we have tried to ensure the paper is nonetheless readable by someone without an

extensive background in that field.

1.1. Acknowledgements. The author is particularly grateful to Jonathan Lee for extensive discus-

sions of these ideas; and also to Ben Green, Sean Eberhard, Przemys law Mazur and Rudi Mrazović for

their comments and scrutiny.

2. Overview of the proof

2.1. Statement. For concreteness, we will work from the outset with an explicit finite set of rotations.

At this stage, this choice is completely unmotivated; the motivation is spread over the next few sections.

We fix some notation. Take P5 = 1 + 2i, P13 = 2 + 3i; these are primes of Z[i] dividing 5 and 13

respectively. Write θ5 = P5/P5 and θ13 = P13/P13, which in particular are unit complex numbers with

rational coefficients (i.e. elements of Q(i)).

We restate the result in this setting.

Theorem 2.1. Let ε > 0 be arbitrary. Define

ΘN = {θ5rθ13s : r, s ∈ Z, 0 ≤ r, s ≤ N} .

Also, for n ≥ 1 define ζ
(n)
1 , ζ

(n)
2 , ζ

(n)
3 to be any triple of unit complex numbers satisfying

n
(
ζ
(n)
1 + ζ

(n)
2

)
= ζ

(n)
3

and let Θ′ = Θ′(n,N) = ζ
(n)
1 ΘN ∪ ζ(n)2 ΘN ∪ ζ(n)3 ΘN .

Then there exist n, N (depending on ε) such that
⋃

θ∈Θ′ Eθ = C.

Remark 2.2.

(i) Finding a triple ζ
(n)
1 , ζ

(n)
2 , ζ

(n)
3 as above is equivalent to finding a triangle (in C) with side

lengths (n, n, 1); indeed, ζ
(n)
i correspond to the unit vectors in the direction of the edges of

such a triangle. By the converse to the triangle inequality, such a triangle exists, and it is

straightforward to find one explicitly.

(ii) Due to the infinitary nature of some of the methods used, the dependence of n and N (and

thereby of |Θ′| = 3(N + 1)2) on ε given by our proof is completely ineffective.
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(iii) The significance of the numbers 5 and 13 is merely that they are primes of the form 4k + 1.

Any pair of such numbers would work, but again we fix these for concreteness.

2.2. Rational obstructions and periodic coverings. It is noted in [MMR12][Section 2] that pe-

riodic coverings – that is, choices of rotations φ1, . . . , φk such that all the sets Eφi
have a common

period lattice Λ (of rank 2) – are attractive when approaching the pyjama problem. Indeed, to check

that
⋃

iEφi
= C for such a covering, it would suffice to check that some fundamental domain of Λ were

covered, which is essentially a finite task.

In particular, in the special case that all the rotations φi have rational coefficients – i.e. are elements

of Q(i) – we can choose some D ∈ Z[i] such that Dφi ∈ Z[i] for all i, and then deduce that DZ[i] is

a period lattice. Indeed, for any z ∈ Eφi
and r ∈ Z[i] we have that φi z ∈ E (by definition), hence

φi(z +D r) ∈ E (as E is Z[i]-periodic) and so we deduce z +D r ∈ Eφi
. Note the sets ΘN of rotations

appearing in the statement of Theorem 2.1 fall within this special case.

However, it is also shown in [MMR12][Theorem 2.3] that these periodic coverings cannot possibly

cover all of C when ε is small (specifically, when ε < 1/3). The authors locate certain “rational

obstructions”, i.e. points with a specific rational form which are guaranteed not to be covered by⋃
i Eφi

. For example, if the φi are in Q(i) and D is as above, then the point 1+i
2 D is not covered (for

ε < 1/2); this follows from the fact that if r+s i
t is a unit vector (where r, s, t are integers and the ratio

is in its lowest terms) then necessarily t is odd.

More generally, for any fixed ε > 0 one can identify a finite set of tuples (a, b,m) of integers such

that, for any choice of φi ∈ Q(i) and D defined as above, the points a+b i
m D are not covered. (Translates

of these by DZ[i] are therefore also not covered.) We term all of these “rational obstructions”. Their

number increases without bound as ε→ 0.

An example of a toy rational covering with rotations {1, θ5} is given in Figure 1, with the period

square and the rational obstruction corresponding to 1+i
2 D indicated.

Our strategy to overcome these obstructions is as follows.

• We show that this is in some sense all that can go wrong. That is, for suitably chosen φi ∈ Q(i),

the only points in C \⋃iEφi
are rational obstructions of the above form, or points reasonably

close to them. This result is termed the “rationality lemma” and is stated formally in Lemma

3.1. Its proof will occupy the majority of the paper. The rational rotations used correspond

to the ΘN in the statement of Theorem 2.1.

• We then use a trick to deal with the missing points. As this trick necessarily involves adding

some irrational rotations to the set, we term it the “irrational trick”; it corresponds to the

ζ
(n)
i in the statement of Theorem 2.1. We note that this trick is essentially a variation of a

technique used in [MMR12][Theorem 3.1] to construct a covering with ε = 1/3− 1/48. Section

3 describes this part of the argument.
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Figure 1. The toy periodic covering {1, θ5} showing the rational obstructions 1+i
2 D.

The proof of the rationality lemma is by far the lengthier and harder part of the argument; we now

turn to the strategy for proving that.

2.3. The rationality lemma and topological dynamics. The first stage in the proof of the ratio-

nality lemma is to deduce it from an analogous infinitary statement. This process is very similar to

(and inspired by) the infinitary reformulation of the pyjama problem itself in [MMR12][Theorem 4.1],

with a few notable differences – most significantly that we are reformulating the rationality lemma

rather than the pyjama problem. The new version is Lemma 5.3, the “infinitary irrationality lemma”.

Our main reason for making this reformulation is that the new version bears a striking resemblance

to Furstenberg’s×2, ×3 Theorem [Fur67][Section IV]. The results of Berend, generalizing Furstenberg’s

result to arbitrary finite-dimensional connected compact abelian groups, are even closer to Lemma 5.3,

both formally and in spirit. An orthogonal but equally relevant generalization of Furstenberg’s result

appears in [Muc05]. Lemma 5.3 does not follow from any of these results, or (as far as the author is

aware) from any others in the published literature; rather, we adapt Furstenberg’s original proof – or

more accurately, a variant of his proof due to Boshernitzan [Bos94] – to our context.

2.4. Layout of the paper. Section 3 states the rationality lemma and deduces Theorem 2.1 from it,

using the irrational trick.

Section 4 reproduces (for reference) a sketch proof of Furstenberg’s ×2, ×3 Theorem, that will be

used as a model for the proof of Lemma 5.3.

Section 5 deals with the jump to the infinitary setting, and proves the relevant reductions.

Section 6 provides some background on the limit object Â appearing in the infinitary rationality

lemma, and states some standard properties of it. We then state a number of less standard but

essentially straightforward auxilliary results that we will need to run the proof of the ×2, ×3 Theorem;

the lengthier and more technical proofs are consigned to Appendix A.
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Finally, Section 7 reruns the proof from Section 4 in the new context, thereby proving the infinitary

rationality lemma.

2.5. Notation. We use ℜ(z) to denote the real part of a complex number. In a metric space, BR(x)

will denote the open ball of radius R about x, and BR(x) the closed ball. The notation x≪ y means

there exists an absolute constant C such that x ≤ Cy, and x ≪a1,...,ak
y means that x ≤ Cy where

C = C(a1, . . . , ak) can be a function of the variables ai only.

3. The irrational trick

We state the rationality lemma formally.

Lemma 3.1 (Rationality lemma). Let ΘN = {θ5rθ13s : 0 ≤ r, s ≤ N} be as above, and let ε > 0

be fixed. There exists a sequence of elements D ∈ Z[i] with |D| tending to infinity, and parameters

n ≪ε 1, N ≪ε,D 1 such that the following holds: any point of C not contained in
⋃

θ∈ΘN
Eθ is at

distance at most 20 from a “very rational point” r ∈ C, in the sense that r ∈ 1
nDZ[i] \DZ[i].

Phrased another way, let W = C \⋃θ∈ΘN
Eθ be the set of missing points; then W is contained in

the set

W ′ =
⋃{

B20(r) : r ∈ 1

n
DZ[i], r /∈ DZ[i]

}
⊆ C .

Remark 3.2.

(i) We see that W ′ is doubly periodic with period DZ[i], as expected.

(ii) It will be important that n = n(ε) is bounded independently of D. This implies that the set

W ′ becomes very sparse as D becomes large.

(iii) In fact, D will be some large power of P5P13.

Once that we know the set of missing points is both very sparse and very structured, it is possible

to combine several copies of ΘN in such a way as to cover the plane. There are likely to be many ways

to do this; we give one below.

Proof of Theorem 2.1 given Lemma 3.1. Take n≪ε 1 as in Lemma 3.1. We choose |D| in that lemma

to be sufficiently large that the ball B40n(0), and its translates by DZ[i], are contained in
⋃

θ∈ΘN
Eθ.

Explicitly we can take any |D| > 40n2 + 20n, as the nearest point of W ′ to 0 is at least a distance

|D|/n− 20 away.

Write Θ′ = Θ′(n,N) as in the statement, and abbreviate ζ
(n)
i to ζi. Suppose z ∈ C does not lie in⋃

θ∈Θ′ Eθ. Equivalently, none of ζ1z, ζ2z, ζ3z lie in
⋃

θ∈ΘN
Eθ. By Lemma 3.1, we have:

ζiz ∈ B20(ri)

for i ∈ {1, 2, 3}, for some ri ∈ 1
nDZ[i] (but ri /∈ DZ[i]).
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In particular, n (r1 + r2) lies in DZ[i], so n(ζ1z + ζ2z) lies in some ball of radius 40n around a

point of DZ[i]. By the choice of D, this point lies in ∪θ∈ΘN
Eθ. But this point is also precisely ζ3z, a

contradiction. �

4. Furstenberg’s ×2, ×3 Theorem

Since it will be so central to our proof of the rationality lemma, we briefly review Furstenberg’s

×2, ×3 Theorem and its proof here.

Recall that, for a topological dynamical system (Φ, X) (i.e. Φ is a semigroup acting continuously on

a compact metric space X) we say Y ⊆ X is invariant if Φ(Y ) ⊆ Y .

So, let Φ = {2r3s : r, s ∈ Z≥0} ⊆ N be a semigroup under multiplication, acting on T = R/Z by

multiplication. The theorem states:

Theorem 4.1 ([Fur67][Section IV]). The only closed, invariant subsets Y ⊆ T with respect to this

action are T itself, and certain finite sets of rationals in T.

This in fact holds whenever Φ is a multiplicative subsemigroup of N that is not “lacunary” in the

sense that Φ ⊆ {ar : r ∈ Z≥0} for some a. However, the case when Φ is the semigroup generated by 2

and 3 is essentially as hard as the general case.

Both Furstenberg’s proof and Boshernitzan’s make use of the following lemma and its corollaries.

This is the point in the argument where the “non-lacunary” nature of Φ is used.

Lemma 4.2 (Related to [Fur67][Lemma IV.1]). Fix δ > 0. For sufficiently small η > 0 we have that

ηΦ ∩ [0, 1) is δ-dense in [0, 1).

Proof. It suffices to show that ηΦ is δ/2-dense on [δ/2, 1). Taking logarithms, it is then also sufficient

to show that log(ηΦ) ∩ [log(δ/2), 0] is δ′-dense on [log(δ/2), 0], for some δ′ sufficiently small in terms

of δ (in fact δ′ can be taken to be δ/2).

Equivalently, this states that log Φ = {r log 2 + s log 3 : r, s ∈ Z≥0} is δ′-dense on [log(δ/2) + C,C]

for C = − log η large enough. Crucially, log 3/ log 2 is irrational, so we can choose N such that

{s log 3/ log 2 (mod 1) : s ∈ Z, 0 ≤ s ≤ N} is (δ′/ log 2)-dense on R/Z. Then {r+s log 3/ log 2 : r, s ∈
Z≥0} is (δ′/ log 2)-dense on [N log 3/ log 2,∞) and so log Φ is δ′-dense on [N log 3,∞), which gives the

result. �

Corollary 4.3 ([Fur67][Lemma IV.2]). Suppose Y ⊆ T is a closed invariant subset which has 0 as a

limit point. Then Y = T. The same conclusion holds if Y has just a rational limit point.

Proof sketch. For any δ > 0, we can choose a non-zero t ∈ Y small enough that |t|Φ ∩ [0, 1) is δ-dense

in [0, 1), so a fortiori the orbit Φ(t) ⊆ Y is δ-dense in T. But δ was arbitrary and Y was closed, so

Y = T. The case of a rational limit point is similar, or can be deduced from this. �
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The arguments in Furstenberg [Fur67] and Boshernitzan [Bos94] now diverge; we broadly follow

Boshernitzan.

Sketch proof of Theorem 4.1. Define Φ(m) = {2mr3ms : r, s ∈ Z≥0} ⊆ Φ, i.e. the subsemigroup gen-

erated by 2m, 3m. The above results hold also for Φ(m) for any positive integer m (as it is still

“non-lacunary”).

If Y is finite it is straightforward to see it consists of rationals. Suppose Y is infinite. Let Y ′ be

the set of limit points of Y ; it is another closed invariant subset, and non-empty as Y is infinite. If Y ′

contains any rationals then Y = T by Corollary 4.3, so assume it doesn’t.

Fix δ > 0. Choose a finite, δ-dense set of rationals in T whose denominators are coprime to 2 and 3;

call them {a0, . . . , aℓ−1}. For ease of notation assume a0 = 0. Then for some m, Φ(m) fixes all the ai.

For 0 ≤ k < ℓ, let Xk = (Y ′− a0)∩ · · · ∩ (Y ′− ak). We claim each such Xk is closed, Φ(m)-invariant

and non-empty. This suffices: if we know that Xℓ−1 is non-empty, then there exists some x ∈ T such

that {x+ a0, x+ a1, . . . , x+ aℓ−1} ⊆ Y ′. In particular, Y ′ is δ-dense in T, and hence so is Y ; but

δ > 0 was arbitrary so Y = T (as it is closed).

The proof is by induction on k; since X0 = Y ′ the case k = 0 is clear. Suppose Xk is closed,

invariant and non-empty. We have Xk+1 = Xk ∩ (Y ′− ak+1) so this is certainly closed; and since ak+1

fixed by Φ(m), it is also Φ(m)-invariant.

Since Xk ⊆ Y ′ it contains only irrational points; so for any x ∈ Xk, the orbit Φ(m)(x) is infinite

and contained in Xk. So Xk is infinite. Hence (Xk − Xk) has 0 as a limit point, and is closed and

Φ(m)-invariant. So Xk −Xk = T (by the corollary), and in particular there exist x, y ∈ Xk such that

y − x = ak+1. So x = y − ak+1 ∈ Y ′ − ak+1 and x ∈ Xk, so x ∈ Xk+1 as required. �

5. An infinitary reformulation of the rationality lemma

5.1. Introductory remarks. We have two main motivations for considering infinitary versions of the

rationality lemma.

• The statement of Lemma 3.1 involves four interdependent parameters (ε, D, n, N), all of

which can be successfully eliminated by passing to a suitable limit structure. As is typical, this

makes the statements and proofs significantly cleaner at the expense of sacrificing quantitative

control.

• More importantly, passing to the limit exposes the connection with topological dynamics and

Furstenberg’s proof of the ×2, ×3 Theorem. This link is much more obscure in the finitary

setting.

We are not aware of any reason in principle preventing the whole argument from being finitized to

obtain effective bounds on N and n in terms of ε. However, the bounds obtained in this way would

likely be of very poor quality (i.e. at least of tower-type).
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5.2. Dual groups and a limit space. In [MMR12], the authors observe that the sets Eθ have a

natural interpretation in terms of characters on C.

The continuous characters on C all have the form:

χz : C→ T

w 7→ ℜ (z w) (mod1)

where z ∈ C is some complex number. So, simply by unravelling the definitions we can equivalently

characterize the pyjama stripe Eθ by the formula:

Eθ = {z ∈ C : χz(θ) ∈ (−ε, ε)} .

The interesting feature of this definition is that it makes sense for any character on C, continuous

or not. Writing Ĉ for the group of all characters (not necessarily continuous) on C – i.e. the Bohr

compactification – we can similarly define:

E∗
θ = {χ ∈ Ĉ : χ(θ) ∈ (−ε, ε)} ⊆ Ĉ .

The notable properties of this situation are that Ĉ – being the Pontryagin dual of C endowed with

the discrete topology – is compact with respect to its natural topology (the topology of pointwise

evaluation); and moreover E∗
θ is an open set in this topology. So, in [MMR12] the authors conclude

that the pyjama problem is equivalent to the following infinitary question:

Problem 5.1 (Infinitary pyjama problem; [MMR12][Lemma 4.1]). Let ε > 0. Is there a set Φ of unit

complex numbers – which need not be finite and without loss of generality may be taken to be the whole

unit circle – such that
⋃

φ∈ΦE
∗
φ is all of Ĉ?

Deducing the pyjama problem from this is straightforward. If such a set Φ exists, then by compact-

ness there is actually a finite set Φ = {φ1, . . . , φk} with the same property, i.e.:
⋃

i

E∗
φi

= Ĉ .

Now, intersecting both sides of this equation with the set {χz : z ∈ C} of continuous characters gives
⋃

i

Eφi
= C

as required. The converse direction is less straightforward, and essentially follows from the fact that

the continuous characters are dense in Ĉ.

We refer to the space Ĉ as the limit space being used in the arguments of [MMR12].

5.3. The smaller limit space Â. One downside of this approach, in our opinion, is that this limit

space Ĉ is very large (for instance, non-metrizable) and generally difficult to work with.

However, we observe that we only ever need to know the value of a given χ ∈ Ĉ at points of Φ. So,

the infinitary pyjama problem is well-defined on the quotient of Ĉ obtained by restricting to Φ. If Φ is
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very large, this doesn’t help us very much; but if Φ is chosen very conservatively, this quotient might

be comparatively manageable.

Specifically, suppose we work with the set of rotations

Θ = Θ∞ = {θ5rθ13s : r, s ∈ Z≥0} =
⋃

N≥1

ΘN .

We write A for the subring of Q(i) generated by Z[i], 1/P5 and 1/P13, denoted A = Z[i][1/P5, 1/P13].

To put it another way, A consists of those elements of Q(i) whose denominators are of the form P5
rP13

s
.

In particular Θ ⊆ A and so it suffices to consider the quotient of Ĉ obtained by restricting the

characters to A. Equivalently, that space is precisely the Pontryagin dual Â, where A is given the

discrete topology.

By contrast to Ĉ, the space Â (again with the topology of pointwise evaluation) is reasonably

tame.1 In general terms, it is metrizable and second-countable; but more importantly its structure can

be understood entirely concretely as a certain quotient of a finite product of C and some p-adic fields.

We will return to this viewpoint in Section 6.

Of course, since we know that rotations in Q(i) cannot cover C, the analogue of Problem 5.1 for Â

is false. Our aim is instead to transfer the rationality lemma (Lemma 3.1) to a statement on Â. A

first attempt is given below.

Note that continuous characters on C are certainly characters of A; that is, there is a map

C : C→ Â

z 7→ χz|A .

We write B
C

R(0) ⊆ Â for the image C(BR(0)) of the closed ball of radius R about 0 in C, under C.

For x ∈ Â, similarly define B
C

R(x) = x+B
C

R(0).

Lemma 5.2 (Infinitary rationality lemma, first formulation). Pick ε > 0, and let Θ, A be defined as

above. Treat

E∗
θ = {x ∈ Â : x(θ) ∈ (−ε, ε)}

now as a subset of Â. Define W ∗ = Â \⋃θ∈ΘE
∗
θ (the missing points). Then there exists n≪ε 1 such

that W ∗ is contained in the set:

W ′∗ =
{
w ∈ Â : nw ∈ BC

10n(0)
}

In other words, every point w of W ∗ is “close to” an n-torsion point of Â in the sense that they differ

by the image under C of a small complex number.

Note that, in this first pass reformulation, the parameters N and D have been eliminated but ε and

n have not.

1It is perhaps worth noting that the heuristic statements “we work with rational rotations so that the state space

(i.e. fundamental domain in C) is finite” and “we work with rotations in A so that the state space (i.e. Â) is reasonably
tame”, are very closely related.
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The deduction of Lemma 3.1 from this is somewhat less straightforward than in the case of Problem

5.1, but is nonetheless essentially formal.

Deduction of Lemma 3.1 from Lemma 5.2. Let m ∈ N and δ > 0 be parameters to be specified later.

Then the set

U0 =
{
x ∈ Â : x(iℓθ5

rθ13
s) ∈ (−δ, δ) ∀ 0 ≤ r, s ≤ m, ℓ ∈ {0, 1}

}

is a standard open neighbourhood of 0 in Â, as the latter has the topology of pointwise evaluation.

Define

U =
⋃

w∈W ′∗

(w + U0) ⊆ Â

which is therefore an open neighbourhood of W ′∗. Assuming Lemma 5.2, we have that

U ∪
⋃

θ∈Θ

E∗
θ = Â .

By compactness, and since all these sets are open, there exists an N such that

U ∪
⋃

θ∈ΘN

E∗
θ = Â .

Taking the preimage of both sides under C, we obtain

−1
C (U) ∪

⋃

θ∈ΘN

Eθ = C

and rearranging this we get

C \
⋃

θ∈ΘN

Eθ ⊆ −1
C (U) .

Hence it suffices to verify that this mysterious set −1
C (U) is contained in the set W ′ from the statement

of Lemma 3.1, for appropriate values of the parameters. This is essentially just a case of unravelling

the definitions.

Suppose z ∈ −1
C (U). That means there exists w ∈ W ′∗ and u ∈ U0 such that χz = w + u. So,

nχz = nw + nu; but we know that nw = χnt for some t ∈ C with |t| ≤ 10. So, nu = χnz−nt.

By the definition of U0, we have u(iℓθ5
rθ13

s) ∈ (−δ, δ) for all 0 ≤ r, s ≤ m and ℓ ∈ {0, 1}. So,

nu(iℓθ5
rθ13

s) ∈ (−nδ, nδ) for all such r, s, ℓ and hence

ℜ
(
n(z − t) iℓθ5rθ13s

)
(mod 1) ∈ (−nδ, nδ)

for all such r, s, ℓ, which implies that n(z− t) θ5rθ13s is within 2nδ of a point of Z[i] for all 0 ≤ r, s ≤ m.

We isolate the following elementary claim.

Claim. Write D = P5
aP13

b
for some a, b ≥ 0. Fix some x ∈ C, η ≤ 1/100 and suppose for all integers

r, s with 0 ≤ r ≤ a, 0 ≤ s ≤ b we have that θ5
rθ13

sx is within η of a point of Z[i]. Then x is within η

of a point of DZ[i].
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Proof of claim. We proceed by induction on a and b. The base case a = 0, b = 0 is by assumption. If

a > 0, we deduce by inductive hypothesis that x and θ5 x both lie within η of points of P5
a−1P13

b
Z[i];

call these points y1, y2 respectively. Now, |θ5y1−y2| ≤ 1/50 and both θ5y1 and y2 lie in P5
a−2P13

b
Z[i],

so y2 = θ5y1 (as distinct points of P5
−1

Z[i] are a distance at least 1/
√

5 apart). Hence y1 = θ5
−1y2 ∈

P5
aP13

b
Z[i] as required.

The induction step on b is analogous. �

Applying the claim to n(z − t) and setting δ = 1/(200n), we deduce that n(z − t) is within 1/100

of a point of DZ[i] where D = P5
mP13

m
; so z is certainly within 20 of a point k ∈ 1

nDZ[i] (recalling

|t| ≤ 10). This means z lies in W ′ – unless the point k lies in DZ[i] itself, which was specifically

prohibited in the definition of W ′.

We check directly that this last case doesn’t happen. Indeed, suppose z = k + t′ for k ∈ DZ[i] and

|t′| ≤ 20. Since the rotation θ5 is “irrational” in the more usual sense that θ5
r 6= 1 for all r ≥ 0, we

have that {θ5r t′ : 0 ≤ r ≤ M} is ε/2-dense on the circle {z ∈ C : |z| = |t′|} for some M ≪ε 1. In

particular there is some 0 ≤ r ≤ M such that θ5
r t′ ∈ E. Assuming m ≥ M (which we can), we get

θ5
r k ∈ Z[i] and hence θ5

r z ∈ E.

Noting that m was allowed to be arbitrarily large, we get |D| arbitrarily large (independently of n

and ε), thereby completing the proof. �

5.4. A dynamical reformulation. Although Lemma 5.2 puts the rationality lemma in a compact

setting, the link with topological dynamics and the ×2, ×3 Theorem is not yet clear. Our second (and

final!) reformulation requires a simple but important shift in perspective.

Rather than rotating the pyjama stripe E∗ to E∗
θ and asking whether the rotated copies cover most

of Â, we keep the stripe fixed and rotate the points of Â itself. We then ask which points have rotations

landing in the standard stripe E∗.

Formally, we define an action of Θ on Â by

ρ : Θ× Â→ Â

(θ, χ) 7→ (a 7→ χ(θa)) .

(We normally omit the ρ and write θ(χ) to refer to this action.)

This is a continuous, multiplicative semigroup action; i.e. (Θ, Â) can be viewed as a topological

dynamical system. We can therefore use the terminology of invariant subsets etc. in this context.

Note that

E∗
θ =

{
χ ∈ Â : θ(χ) ∈ E∗

}

= ρ(θ)−1(E∗)

where this once we use ρ(θ)−1 explicitly to denote the preimage, thereby avoiding confusion of θ−1 and

1/θ. (Since 1/θ /∈ A, its action on Â is not well-defined.)
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We are now in a position to state the full infinitary rationality lemma. Recall that χ ∈ Â is a map

A→ T, so for Y ⊆ Â and r ∈ A, Y (r) = {χ(r) : χ ∈ Y } denotes a subset of T, the image of Y under

the evaluation map at r.

Lemma 5.3 (Infinitary rationality lemma). As above, treat (Θ, Â) as a topological dynamical system.

If Y ⊆ Â is a closed, Θ-invariant set such that the image of the evaluation map Y (1) = {χ(1) : χ ∈ Y }
is not all of T, then Y is contained in a set of the form

U =
k⋃

i=1

B
C

1/2(ui)

where u1, . . . , uk is a finite collection of torsion points of Â.

Remark 5.4.

(i) The approximate dictionary with the ×2, ×3 Theorem is then:

Â←→ T

{θ5rθ13s : r, s ∈ Z≥0} = Θ←→ Φ = {2r3s : r, s ∈ Z≥0}
Y (1) = T←→ Y = T

Y is contained in some U ←→ Y is a finite set of rationals

We note that the latter two are weaker than the “obvious” analogues, namely “Y = Â” and “Y

is a finite set of torsion points”. We know of no reason why the result could not be strengthened

to give Y = Â as one part of the dichotomy; but we do not need this strengthening, and our

proof does not provide it. By contrast, the form of U cannot be strengthened to “U is a finite

set of torsion points”, as can be seen by taking, say, Y = B
C

1/10(0) ⊆ Â.

(ii) For all this to make sense, it was crucial that Θ was a multiplicative semigroup. This forms

part of the motivation for the choice of Θ and by extension of the ΘN .

(iii) While the constants 10 and 20 appearing in B
C

10n and B
C

20 in Lemmas 5.2 and 3.1 respectively

were chosen fairly arbitrarily, the constant 1/2 appearing here is best possible. However, the

value of this constant is never important, so the reader can mentally substitute a worse value

if they wish.

(iv) Notice that all the parameters (i.e. n, ε etc.) appearing in Lemma 3.1 have now been eliminated.

Having seen how Lemma 5.3 relates to the ×2, ×3 Theorem, we now see how it relates to Lemma

5.2 by deducing the latter from it. This is very straightforward.



A SOLUTION TO THE PYJAMA PROBLEM 13

Deduction of Lemma 5.2 from Lemma 5.3. Consider the closed, invariant subset of Â given by

W ∗ =
⋂

θ∈Θ

ρ(θ)−1
(
Â \ E∗

)

= Â \
⋃

θ∈Θ

ρ(θ)−1E∗

= Â \
⋃

θ∈Θ

E∗
θ

(closed because E∗ is open). Then W ∗(1) 6= T since W ∗ ∩ E∗ = ∅, i.e. W ∗(1) ⊆ [ε, 1 − ε]. Hence

W ∗ ⊆ U for some U of the specified form, and taking n such that nui = 0 ∀i, this implies the conclusion

of Lemma 5.2. �

To recap: in order to prove Theorem 2.1 (the pyjama problem) it now suffices to prove Lemma 5.3

using the analogy with the proof of Theorem 4.1.

Remark 5.5. Dynamical systems of the form (Θ, Â) are by no means new. Such objects are referred to

as “S-integer dynamical systems” in [CEW97], and similar spaces are studied in [Ber84], as mentioned

in the introduction.

5.5. Remarks on the choice of Θ. The motivation for the choice of the rotations Θ, ΘN and

ultimately Θ′(n,N) (see Theorem 2.1) should now be complete, and we offer a few remarks.

We noted above that Θ needs to be a semigroup. All we really needed about the sets ΘN was

that their union was Θ; but taking ΘN to be a long multidimensional progression on the generators is

the most natural choice. Once we have chosen ΘN , the choice of Θ′(n,N) is fixed by the use of the

irrational trick (see Section 3).

We could in principle have used a larger semigroup in place of Θ, such as the set of all unit norm

elements of Q(i), which clearly contains Θ. Although this cannot hurt in some sense – adding more

rotations doesn’t make the problem harder – we would be forced to pass to a larger limit structure,

e.g. Q̂(i). This is problematic for two reasons.

(i) Working with this larger, more complicated space introduces yet more technical hurdles than

already exist in Section 6.

(ii) Trying to get any benefit out of the extra rotations brings into play non-trivial questions about

the distribution of rational points on the unit circle, or about the distribution of primes.

In the other direction, we could not have used a much smaller semigroup. Indeed, the appropriate

results are false for the smaller set {θ5r : r ≥ 0}; by analogy with Theorem 4.1, we might say this set

is “lacunary” in some sense.

In other words, Θ is the simplest example that works, in much the same way that {2r3s : r, s ∈ Z≥0}
is the simplest case that works in the ×2, ×3 Theorem.
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6. Technical results about Â

6.1. Introductory remarks. The remainder of the paper is dedicated to the proof of Lemma 5.3 by

analogy with the ×2, ×3 Theorem. However, there are two sources of technical complication.

• The proof of the ×2, ×3 Theorem required a certain amount of detailed knowledge of the

compact group T: e.g. what its torsion points are; what its finite orbits under Φ are, and so

forth. Transferring the proof to Â requires a similar degree of knowledge of Â. Mostly these

facts are not hard, but require slightly more justification in this less familiar setting.

This is most pronounced when it comes to proving an analogue of the “density estimate”

of Lemma 4.2. Recall this was fairly straightforward after taking logarithms. Essentially the

same proof works; but the act of “taking logarithms” on Â requires a very detailed knowledge

of the structure of that space in terms of p-adic fields.

Similar difficulties are overcome in [Ber84], although we have not followed that author’s

approach very closely.

• The statement of Lemma 5.3 necessarily involves the “small complex balls” B
C

1/2 that appear

in the definition of U . This means that “small complex errors” have to be carried through the

entire argument, making some of the statements much less transparent.

In this section, we quote a number of facts about the detailed structure of Â, and go on to state

some auxilliary results that address these technical difficulties. These are typically translations of

trivial results on T, and where possible we will make the connection explicit.

6.2. A description of Â. Recall that A is the subring of Q(i) generated by Z[i], 1/P5 and 1/P13.

That is, it consists of all elements of Q(i) whose denominators are of the form P5
rP13

s
.

So far we have used nothing about Â other than its definition and topology. We now describe the

characters on A explicitly.

This material is fairly standard and can be found in many places in the literature. The application

of harmonic analysis to number fields is perhaps most famously associated with [Tat67], and much

of what follows can be extracted from that paper. The exact form of the results we need appears in

[CEW97][Section 3]. The author has found [Con] to be a very good introduction to these ideas.

However, to keep things as approachable as possible to those unfamiliar with this material, this

subsection takes on an expository flavour, while leaving rigorous details to the references.

6.2.1. A model case: Ẑ[1/2]. A slightly simpler case to consider is the dual group of Z[1/2], the ring of

diadic rationals treated as a discrete additive group. The dual Ẑ[1/2] is often referred to as a solenoid

or the 2-solenoid.
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Clearly any continuous character on R restricts to one on Z[1/2]. The continuous characters on R

can be written

χx : R→ T

y 7→ {x y}

where {·} denotes the fractional part; so, analogously to C : C→ Â above, we get a map

R : R→ Ẑ[1/2]

x 7→ χx|Z[1/2] .

(It is not hard to verify that in fact R is injective.)

As well as being contained in the reals, Z[1/2] is also contained in the 2-adic rationals Q2; indeed, Q2

is the completion of Z[1/2] with respect to the 2-adic metric. So analogously, any continuous character

of Q2 restricts to a character of Z[1/2]. The continuous characters of Q2 are all of the form:

χa : Q2 → T

b 7→ {a b}2

where a ∈ Q2 and {x}2 is the “2-adic fractional part”, defined as the unique dyadic rational in [0, 1)

such that x− {x}2 ∈ Z2 (the 2-adic integers). Hence we get another map

Q2
: Q2 → Ẑ[1/2]

a 7→ χa|Z[1/2] .

which is also injective. By combining the real and 2-adic characters on Z[1/2], we get a map

 : R×Q2 → Ẑ[1/2]

(x, a) 7→ −R(x) + Q2
(x) .

Now,  is not injective, and it is not too difficult to see that ker  consists of pairs (r, r), where r ∈ Z[1/2]

is treated as a real number and a 2-adic number respectively. Less straightforward is the fact that  is

actually surjective. Assuming that fact, we get the following conclusion.

Proposition 6.1 (Structure of Ẑ[1/2]).

(i) Consider the diagonal embedding

ı∆ : Z[1/2]→ R×Q2

r 7→ (r, r) .

Then ı∆(Z[1/2]) is a discrete and co-compact subgroup of R × Q2, and  (as defined above)

gives rise to an isomorphism of topological groups

̃ : (R×Q2)/ı∆(Z[1/2])→ Ẑ[1/2]
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where the left hand side is given the natural (product, quotient) topology coming from the usual

topologies on R and Q2. In particular, Ẑ[1/2] is naturally a compact metric space.

(ii) A fundamental domain for ı∆(Z[1/2]) is given by [0, 1) × Z2. This does not give a rise to a

topological isomorphism or an isomorphism of groups. It is, however, possible to simplify the

above quotient to (R× Z2)/ı∆(Z).

6.2.2. Applying to Â. Much the same analysis carries over to Â. (We will overload notation from the

Z[1/2] case – since we will never need to refer to Z[1/2] in the argument this should not cause too

much confusion.)

We have already seen the complex characters in Â given by C. To define the appropriate non-

Archimedean characters, we have to consider the non-Archimedean fields obtained by completing Q(i)

with respect to the P5- and P13-adic metrics.

In fact, these completions are canonically (and topologically) isomorphic to the more usual non-

Archimedean fields Q5 and Q13 respectively. The reason is that Q5 and Q13 already contain square

roots of −1; sending i to one of these gives the isomorphism, and which root to choose is specified by

the choice of e.g. P5 rather than P5. In the sequel, we will talk in terms of Q5 and Q13 rather than

the completions of Q(i) by P5 and P13; though we will continue to refer to the absolute values | · |P5

and | · |P13
on Q(i) from time to time.

Running the analysis as before gives the following result.

Proposition 6.2 (The structure of Â).

(i) There are canonically specified roots of −1, denoted i5 ∈ Q5 and i13 ∈ Q13, such that the

following holds. The field Q(i) embeds in Q5 and Q13 by the unique field homomorphisms

ıQ5
: Q(i)→ Q5

ıQ13
: Q(i)→ Q13

given by taking i to ip in each case. Under these embeddings, the absolute values | · |
Pp

on Q(i)

and | · |p on Qp agree (for p ∈ {5, 13}); e.g. |ıQ5
(q)|5 = |q|P5

for q ∈ Q(i), and similarly for

p = 13.2

Also, Q(i) embeds in C in the usual way, which we denote ıC for consistency.

(ii) Under the diagonal embedding

ı∆ : Q(i)→ C×Q5 ×Q13

q 7→ (ıC(q), ıQ5
(q), ıQ13

(q))

the image ı∆(A) of A is discrete and co-compact with respect to the usual metric.

2These absolute values certainly agree up to an arbitrary exponent, and we choose normalizations to make them agree
exactly.
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(iii) In addition to C : C→ Â defined above, we define

Q5
: Q5 → Â

a 7→ (r 7→ {a · ıQ5
(r)}5)

where {·}5 is the 5-adic fractional part as above, and similarly

Q13
: Q13 → Â

a 7→ (r 7→ {a · ıQ13
(r)}13) .

Combining these, we get a map

 : C×Q5 ×Q13 → Â

(z, a, b) 7→ −C(z) + Q5
(a) + Q13

(b)

(iv) The kernel of  is precisely ı∆(A), and  is surjective, so  gives rise to a natural isomorphism

of topological groups

̃ : (C×Q5 ×Q13)/ı∆(A)→ Â

(v) Consequently, Â is naturally a connected compact metric space, where the metric

dÂ(x, y) = inf {|z|C + |a|5 + |b|13 : (z, a, b) ∈ C×Q5 ×Q13, (z, a, b) = x− y}

is also translation-invariant.

(vi) A fundamental domain for ı∆(A) is give by [0, 1)2 × Z5 × Z13. This does not give rise to a

topological isomorphism or an isomorphism of groups. However, it is possible to simplify the

above quotient to (C× Z5 × Z13)/ı∆(Z[i]), though we shall not use this fact.

(vii) The action ρ of Θ on Â defined above, is equivalent (under ) to

ρ(θ)(z, a, b) = (ıC(θ)z, ıQ5
(θ)a, ıQ13

(θ)b)

i.e. to multiplying by θ on each factor, combined with the appropriate embeddings. This action

in fact makes sense on the whole of A, not just Θ.

Remarks on the proof. We have given an overview of the approach to proving this, but refer the reader

to [CEW97][Theorem 3.1] for a discussion of the rigorous details.

With this as background, we move on to some auxilliary results.

6.3. Torsion points and periodic points.

Definition 6.3. For a positive integer m, we define Θ(m) = {θ5rmθ13sm : r, s ∈ Z≥0}, a subsemigroup

of Θ.

We say a point x ∈ Â is periodic if Θ(m) fixes x for some m.
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Recall that, in the proof of the ×2, ×3 Theorem, we made an analogous definition of Φ(m), and

points fixed by Φ(m) played an important role in the argument. We implicitly used the fact that the

periodic points in the context of T are precisely rationals whose denominator is coprime to 2 and 3.

A related – and completely trivial – fact is that the torsion points of T are precisely the rationals.

So, if x ∈ T is a torsion point then 2r3sx is periodic for some r, s ≥ 0.

In this subsection we transfer some of these results to Â. First we classify the periodic and torsion

points. Those proofs not given here can be found in Appendix A.

Proposition 6.4. Let x ∈ Â, and take (z, a, b) ∈ C×Q5×Q13 any representative (i.e. (z, a, b) = x).

(i) The following are equivalent:

(a) x is torsion;

(b) there exists q ∈ Q(i) such that z = ıC(q), a = ıQ5
(q) and b = ıQ13

(q); equivalently,

(z, a, b) ∈ ı∆(Q(i));

(c) the orbit Θ(x) is finite.

(ii) The following are equivalent:

(a) x is periodic;

(b) there is some q ∈ Q(i) such that z = ıC(q), a = ıQ5
(q), b = ıQ13

(q), and additionally

|q|P5
, |q|P13

≤ 1.

Note the appearance of | · |P5
and | · |P13

in (ii) (b); not | · |
P5

and | · |
P13

.

One useful application is the following corollary.

Corollary 6.5. If x ∈ Â is torsion then for some θ ∈ Θ, θ(x) is periodic.

Proof. Given a q ∈ Q(i) satisfying (i)(b), we can pick a θ ∈ Θ to remove powers of P5 and P13 from

the denominator. Then θ q satisfies (ii)(b). �

6.4. Unions of complex balls. By a “complex ball’ in Â we mean a set of the form B
C

R(x), where

we recall B
C

R(0) is the image of the ball of radius R about 0 in the complex plane under the map C,

and B
C

R(x) is its translate by x ∈ Â.

The proof of the ×2, ×3 Theorem made use of the following trivial facts.

(i) If Y ⊆ T is a finite Φ(m)-invariant set, then Y consists entirely of rationals.

(ii) If x ∈ T is irrational then its orbit Φ(m)(x) is infinite.

In adapting these to our context, we not only need to talk about torsion points of Â in place of rationals,

but also introduce “complex errors” of the type discussed above. Here is the analogous result.

Proposition 6.6.

(i) Suppose Y ⊆ Â is closed, Θ-invariant, and contained in a finite union of complex balls (equiv-

alently, of unit complex balls). Then it is contained in a finite union of complex balls with

centers at torsion points of Â.
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(ii) Let x ∈ Â. Then the orbit closure Θ(x) is contained in a finite union of complex balls, if and

only if x has the form x = y + C(z) where y is torsion and z ∈ C.

Moreover, the above hold replacing Θ by Θ(m).

6.5. Non-Archimedean limits. Recall the crucial result for proof of the ×2, ×3 Theorem (Corollary

4.3): if Y ⊆ T is closed, invariant and has 0 as a limit point then Y = T.

The naive generalization to Â – i.e. that if Y ⊆ Â is closed, invariant and has 0 as a limit point

then Y = Â – is false, as again can be seen by taking Y = B
C

1/10(0).

However, this counterexample is in some sense the only one. The view taken is as follows: in the

same way that the singleton {0} ⊆ T does not have 0 as a limit point – the constant 0 sequence not

being a valid way to approach 0 – similarly, B
C

1/10(0) should not have 0 as a “proper” limit point,

because sequences approaching 0 along a complex ball around 0 should be likewise invalid.

This is formalized in the following definition.

Definition 6.7. We say x is a non-Archimedean limit point of Y ⊆ Â if x is a limit point of Y \BC
1/10(x);

equivalently, if there is a sequence xn → x of points of Y such that xn − x /∈ BC
1/10(0) (in which case

we say x is a non-Archimedean limit of xn). Denote by Y ′ the set of non-Archimedean limit points of

Y .

Remark 6.8. The constant 1/10 appearing in this definition is completely unimportant, and altering

it does not affect the definition.

The analogue of the above-mentioned result will have to wait (see Lemma 7.1); for now we record

some basic facts about these non-Archimedean limits.

Proposition 6.9. For any Y ⊆ Â, Y ′ is closed. If Y is Θ(m)-invariant, then so is Y ′.

This is, of course, analogous to the corresponding properties of the set of usual limit points of a set.

Proof. We can write Y ′ as:

Y ′ =
⋂

x∈Â

(
Y \BC

1/10(x)
)

which is clearly closed. Invariance is clear. �

Also recall that we used the fact that an infinite set in a compact space has a limit point. Below is

an analogue for non-Archimedean limits.

Proposition 6.10. Suppose Y ⊆ Â is closed and not contained in a finite union of complex balls.

Then Y ′ is non-empty, and 0 ∈ (Y − Y )′.
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6.6. Density of C, Q5 and Q13 in Â. It is a standard fact that the embedded copies C(C), Q5
(Q5)

and Q13
(Q13) of C, Q5 and Q13 respectively in Â, are all dense; equivalently, any x ∈ Â can be

arbitrarily well approximated by complex characters, or by 5-adic or 13-adic characters.

We will only need this fact in the case of Q5 and Q13, and there we will actually need the following

slight strengthening.

Proposition 6.11. Suppose J ≤ Q×
5 is a finite index multiplicative subgroup, and H is some coset of

J . Then Q5
(H) = (0, H, 0) is dense in Â. The same holds symmetrically for Q13.

The proof is, as usual, in Appendix A, and on this occasion is slightly lengthy. We mention one key

step, namely the following related result about simultaneously approximating elements of C, Q5 and

Q13 by elements of A.

Proposition 6.12. Let z ∈ C and b ∈ Q5 be given. For any δ > 0, we can find an element q ∈ A such

that |ıC(q)− z|C, |ıQ5
(q)− b|5 ≤ δ.

The same holds swapping 5 and 13.

Proof. This is a special case of what is sometimes called the Strong Approximation Theorem (which is

no more than the natural generalization of this statement); see [Cas86][Chapter 10, Theorem 4.1]. �

6.7. Density of periodic points of Â. In the ×2, ×3 Theorem, we noted that for all δ > 0 there

exists an m and a finite, δ-dense subset of T consisting of points fixed by Φ(m). We now turn to the

(completely unaltered) statement for Â.

Proposition 6.13. For all δ > 0 there exists an m ∈ Z>0 and a finite set S ⊆ Â which is pointwise

fixed by Θ(m), such that S is δ-dense in Â.

We need the following result, very similar in flavour to Proposition 6.12 above. The number 7 is

essentially arbitrary here.

Proposition 6.14. Let z ∈ C, a ∈ Q5 and b ∈ Q13 be given. For any δ > 0 we can find q ∈ A[1/7]

(say) such that |ıC(q) − z|C, |ıQ5
(q) − a|5, |ıQ13

(q) − b|13 ≤ δ. Equivalently, ı∆(A[1/7]) is dense in

C×Q5 ×Q13, or if you prefer (ı∆(A[1/7])) is dense in Â.

Proof. This is also a special case of Strong Approximation; again see [Cas86][Chapter 10, Theorem

4.1]. �

Proof of Proposition 6.13. We consider the sets Rn = 7−nA ⊆ Q(i), and their images Sn = 
(
ı∆(Rn)

)
⊆

Â under the diagonal map. We note Sn
∼= A/7nA and so is finite. By Proposition 6.14, we have that⋃

n Sn is dense in Â.

The fact that some Sn is δ-dense in Â follows from this and a routine compactness argument. �



A SOLUTION TO THE PYJAMA PROBLEM 21

7. Proof of the rationality lemma

7.1. The growth estimate, i.e. Lemma 4.2. Most of the hard work in running the proof of the

×2, ×3 Theorem is in proving the analogue of Lemma 4.2, which was used to show Corollary 4.3 which

in turn was crucial for the inductive step of the main argument.

This proof is still highly technical. However, as we regard it as the core of the argument, we will

place it here rather than in an appendix.

In fact we split into two results, the former corresponding to the assumption “0 is a limit point of

Y ”, the latter to “Y has a rational limit point”.

Lemma 7.1. Suppose Y ⊆ Â is a closed, Θ-invariant set with 0 as a non-Archimedean limit point.

Then Y = Â.

The same holds replacing Θ by Θ(m) for any m > 0.

Lemma 7.2. Let Y ⊆ Â be a closed, Θ-invariant set, and y = C(w) + t ∈ Â, where w ∈ C and t is a

torsion point. Suppose y is a non-Archimedean limit point of Y . Then the image Y (1) of Y under the

evaluation map, is all of T.

Again, the same holds replacing Θ by Θ(m).

Remark 7.3. As mentioned above, we know of no reason why the weaker conclusion of Lemma 7.2

could not in principle be strengthened to Y = Â, and this is the sole cause of the correspondingly

weaker conclusion to Lemma 5.3.

A similarly weak conclusion to Lemma 7.1 would not suffice for the argument.

We need one more standard fact, the proof of which is again in Appending A.

Proposition 7.4. Suppose p > 2 and u ∈ Z×
p is not a root of unity. Then J0 = {ur : r ≥ 0} is a finite

index subgroup of Z×
p .

Before embarking on the proof of Lemma 7.1, we introduce an abuse of notation: for the sake

of visual clarity, where it is unambiguous to do so, we suppress the explicit use of ıC, ıQ5
and ıQ13

,

implicitly treating Q(i) as a subset of C,Q5,Q13 respectively.

Proof of Lemma 7.1. If 0 ∈ Y ′, we can choose a sequence xn in Y such that xn → 0 is a non-

Archimedean limit. We may identify xn with points (zn, an, bn) of the fundamental domain [−1/2,−1/2)2×
Z5 × Z13 of Â. Then, zn, an, bn converge individually to 0.

Since the limit is non-Archimedean, we know not both of an and bn can be eventually zero. Suppose

an is not eventually zero – the other case is symmetric. Passing to an appropriate subsequence we may

assume an 6= 0 for all n.

Let J0 denote the closure of {θ13mr : r ∈ Z≥0} ⊆ Z×
5 . Since θ13 is not a root of unity in Z×

5 , we

have that J0 is a (closed) finite index subgroup of Z×
5 , by Proposition 7.4. Let J denote the subgroup
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of Q×
5 spanned by J0 and θ5

m; so J has finite index in Q×
5 (this can be seen directly). Finally, pick

H to be some coset of J such that an ∈ H infinitely often; passing to an appropriate subsequence,

assume an ∈ H for all n. Set H0 = H ∩ Z×
5 (a coset of J0).

By Proposition 6.11, it suffices to show (0, H, 0) ⊆ Y , as (0, H, 0) is dense in Â. So, fix any α ∈ H ;

we will show that Q5
(α) ∈ Y .

Fix a δ > 0. Our aim is to find an n and integers r, s ≥ 0 such that dÂ(θ13
mrθ5

ms(xn), (0, α, 0)) ≤ δ.
Since θ13

mrθ5
ms(xn) lies in Y (by Θ(m)-invariance) and since Y is closed and δ arbitrary, this again

suffices.

The distance dÂ(θ13
mrθ5

ms(xn), (0, α, 0)) is (at most) the sum of the three terms |θ5msθ13
mrzn|C,

|θ5msθ13
mran − α|Q5

and |θ5msθ13
mrbn|. The hard work is approximating α by θ5

msθ13
mran to make

the Q5 contribution small; but we need to guarantee that the C and Q13 terms stay small as we do so.

Of course, by choosing n large we can make zn and bn as small as we like; but some consideration is

needed of the fact that r and s may themselves depend on n.

First we control the contribution from the C term. This is straightforward: for n sufficiently large,

we may insist that |zn| ≤ δ/3, and we observe that |θzn|C = |zn|C for any θ ∈ Θ.

Now we consider the Q13 term. Since this becomes large as r increases, we will need some bound

on r that is independent of n. Specifically, we choose N such that the set {θ13mr : 0 ≤ r ≤ N}
is |α|−1

5 δ/3-dense in J0 (again we have invoked compactness, this time of J0, to get the appropriate

uniformity in this statement) and commit to only considering r in the range 0 ≤ r ≤ N . Now – again

taking n sufficiently large – we can assume that |bn|13 ≤ 13−Nm δ/3; equivalently, that |θ13mrbn| ≤ δ/3
for all 0 ≤ r ≤ N .

Finally, we consider the Q5 term, which is the heart of the matter. Again taking n large enough, we

may assume |an|5 ≤ |α|5. At this stage we fix some particular n, large enough in all the ways described

above. It remains only to fix r and s.

For θ5
msθ13

mran to approximate α, it should have the same valuation, which is controlled by s. So,

we are forced to take s = (v5(an)− v5(α)) /m ≥ 0 (recalling an is non-zero). As an and α lie in the

same coset of J by assumption, we have that s is an integer and u := α/(θ5
msan) ∈ J0.

Now we must choose r so that θ13
mr approximates u. Indeed, by our choice of N there is an r in

the range 0 ≤ r ≤ N such that |θ13mr − u|5 ≤ |α|−1
5 δ/3, whence

|θ13mrθ5
msan − α|5 = |θ13mr − u|5 |α|5 ≤ δ/3 .

Putting everything together, we finally get:

dÂ (θ13
mrθ5

ms(xn), (0, α, 0)) = |zn|C + |θ13mrθ5
msan − α|5 + |θ13mrθ5

msbn|13
≤ δ/3 + δ/3 + δ/3 = δ

as required. �
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We deduce a simple corollary.

Corollary 7.5. Suppose Y is closed, Θ(m)-invariant and has a point x as a non-Archimedean limit

point. Let V = Θ(m)(x) be the orbit closure of x. Then Y − V = Â.

Proof. Note Y − V is closed and Θ(m)-invariant. If xn → x is a non-Archimedean limit in Y then

xn − x→ 0 is a non-Archimedean limit in V − Y , so we apply Lemma 7.1 to V − Y . �

Clearly as V becomes larger this conclusion becomes weaker. In the case of Lemma 7.2, V is fairly

small by virtue of Proposition 6.6 (ii), and the conclusion of the corollary is strong enough. The

following lemma shows why.

Lemma 7.6. Suppose y = C(w) + t ∈ Â where w ∈ C and t is torsion. Pick any m > 0, and let V be

the orbit closure of y under Θ(m). If |w|C ≥ 1/2 then V (1) = T.

Proof. By Corollary 6.5 we can choose θ0 ∈ Θ such that θ0(t) is periodic. Since x periodic implies θ(x)

periodic for any θ ∈ Θ, we can adjust θ0 to lie in Θ(m). Choose m′ > 0 such that m|m′ and Θ(m′) fixes

θ0(t).

We have Θ(m)(y) ⊇ Θ(m′)(θ0(y)) = θ0(t) + Θ(m′)(C(θ0 w)). Since Θ(m′) contains all the powers of

some irrational rotation (such as θ5
m′

) and θ0 w is just some complex number, {θ θ0 w : θ ∈ Θ(m′)} is

dense on the circle {z ∈ C : |z| = |w|}. So, V contains S = θ0(t) + C ({z ∈ C : |z| = |w|}).
So, V (1) contains S(1) = t(θ0)+{ℜ(z) : z ∈ C, |z| = |w|}. The latter is all of T provided |w| ≥ 1/2,

as required. �

Proof of Lemma 7.2. Let V denote the orbit closure of y; clearly all points of V are of the form

C(w′)+t′ where |w′| = |w| and t′ is torsion. By Corollary 7.5 we can find z ∈ Y and v = C(w′)+t′ ∈ V
such that z − v = C(100 + |w|). So z = C(w′ + 100 + |w|) + t′ has the form required by Lemma 7.6,

and clearly |w′ + 100 + |w|| ≥ 100 ≥ 1/2 as |w′| = |w|. Since Y contains the orbit closure Θ(m)(z) ,

the conclusion of Lemma 7.6 applied to z gives the result. �

7.2. The main argument. Finally, we finish the proof of the infinitary rationality lemma (Lemma

5.3). This part of the argument follows the proof of Theorem 4.1 almost line for line, which is possible

only by repeatedly invoking results from Section 6.

Proof of Lemma 5.3. Let Y ⊆ Â be a closed invariant subset, and assume Y is not a finite union of

complex balls with centers at torsion points. Indeed, if it were, then either Lemma 7.6 gives Y (1) = T

or Y is contained in a set of the form U =
⋃k

i=1 B
C

1/2(ui) as required.

By Proposition 6.6 (i) and Proposition 6.10, Y ′ is non-empty, and it is closed and invariant by

Proposition 6.9. Also, we may assume Y ′ does not contain any points of the form x = C(w) + t with

w ∈ C and t torsion, as this would imply Y (1) = T by Lemma 7.2.

Fix an arbitrary δ > 0 and choose m and S ⊆ Â according to Proposition 6.13; that is, S consists

of fixed points of Θ(m) and is δ-dense in Â. Assume for convenience that 0 ∈ S, and write S =
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{a0, a1, . . . , aℓ−1} where a0 = 0. For 0 ≤ k < ℓ, define Xk := (Y ′ − a0) ∩ · · · ∩ (Y ′ − ak). Note that

X0 = Y ′, Xk are nested, and furthermore Xk+1 = Xk ∩ (Y ′ − ak+1) which implies (inductively) that

Xk is closed and Θ(m)-invariant for all k (recalling that Θ(m) fixes the ai).

We claim inductively that Xk is non-empty; since Xk ⊆ Y ′ and Y ′ contains no points x = C(w) + t

where w ∈ C and t is torsion, this immediately implies Xk is not contained in a finite union of complex

balls (Proposition 6.6(ii)). The base case k = 0 is by assumption; suppose this holds for Xk. By

Proposition 6.10, Xk −Xk has 0 as a non-Archimedean limit point, and hence so does Y ′ −Xk. By

Lemma 7.1, Y ′ − Xk = Â and in particular we can find x ∈ Xk, y ∈ Y ′ such that y − x = ak+1.

I.e. x ∈ (Y ′ − ak+1) and as x ∈ Xk we deduce x ∈ Xk+1, completing the induction.

Hence for any x ∈ Xℓ−1, we have {x+a0, x+a1, . . . , x+aℓ−1} ⊆ Y ′ ⊆ Y . So Y contains a translate

of S and hence is δ-dense in Â. But δ > 0 was arbitrary and Y is closed; hence Y = Â and a fortiori

Y (1) = T. �

Appendix A. Proofs of auxilliary results

Here we provide proofs of some of the less standard and more technical results of Section 6.

A.1. Torsion points and periodic points.

Proof of Proposition 6.4. Consider (i). Unwrapping the definitions, we have that nx = 0 for n ∈ Z if

and only if there is some r ∈ A such that n z = ıC(r), n a = ıQ5
(r), n b = ıQ13

(r). Setting q = r/n gives

(a ⇒ b) and choosing n ∈ Z such that n q ∈ A gives (b ⇒ a).

For (c ⇒ a), observe that by pigeonhole there exist φ 6= ψ ∈ Θ such that φ(x) = ψ(x), whence

(φ− ψ)(x) = 0 and so, multiplying by a ∈ Z[i] such that a(φ− ψ) ∈ Z, we deduce x is torsion.

Finally, for (a, b ⇒ c) we note that nx = 0⇒ nθ(x) = 0 for θ ∈ Θ, so it suffices to check that, for

given n, the set {x ∈ Â : nx = 0} is finite. This is actually a group, and by (b) is isomorphic under ı∆

to the quotient {q ∈ Q(i) : n q ∈ A}/A, which in turn is isomorphic (under q 7→ nq) to A/nA. That

this last group is finite is a standard fact.

We now turn to (ii). For (a ⇒ b), we write φ = (θ5 θ13)m and suppose φ(x) = x. That means there

exists r ∈ A such that ıC(φ − 1)z = ıC(r), ıQ5
(φ − 1)a = ıQ5

(r), ıQ13
(φ − 1)b = ıQ13

(r), so taking

q = r/(φ − 1) it suffices to check that |q|P5
, |q|P13

≤ 1. Note |r|P5
, |r|P13

≤ 1 (since r ∈ A) and

|φ|P5
, |φ|P13

< 1 since m > 0, so |φ− 1|P5
, |φ− 1|P13

= 1.

For (b ⇒ a), we observe as above that the orbit Θ(x) is contained in

{x ∈ Â : nx = 0} ∼= A/nA

for some n ∈ Z, which crucially can now be taken to be coprime to 65. It follows that the corresponding

multiplicative action of Θ on the ring A/nA is now invertible, i.e. the image of Θ lies in (A/nA)×.

Hence we can choose m to be |(A/nA)×|. �
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A.2. Unions of complex balls.

Proof of Proposition 6.6. We prove (i). Let x1, . . . , xk ∈ Y be such that
⋃

iB
C

1 (xi) covers Y . It suffices

to show each xi has the form xi = yi + C(zi) where yi is torsion and zi ∈ C.

By pigeonhole, there exist distinct θ1, θ2 ∈ Θ(m) such that θ1(xi) and θ2(xi) lie in the same ball

B
C

1 (xj). Hence θ1(xi) − θ2(xi) ∈ C(C). Choosing r ∈ Z[i] such that r(θ1 − θ2) = n ∈ Z we obtain

nxi ∈ C as required.

Now consider (ii). ⇒ follows trivially from (i): Θ(m)(x) is contained in a finite union of complex balls,

is closed and invariant, and hence is contained in a finite union of complex balls with torsion centers,

which a fortiori implies x itself has the specified form.

For ⇐, we invoke Proposition 6.4 (i)(a ⇒ c) and note the trivial fact that the orbit closure of a

point C(w), w ∈ C is contained in (in fact, is equal to) C ({z ∈ C : |z| = |w|}), which is certainly

contained in some B
C

R(0). �

A.3. Non-Archimedean limits.

Proof of Proposition 6.10. By the hypothesis on Y , we can pick a sequence xi ∈ Y such that xi−xj /∈
B

C

1 (0) for all i 6= j. Since Y is compact metric, passing to some subsequence we have xi → x for some

x ∈ Y .

It would suffice to show that xi − x /∈ BC

1/2(0) for all i, as then xi → x and xi − x → 0 would be

non-Archimedean limits in Y and Y − Y respectively.

In fact this holds for all i with at most one exception: if xi − x ∈ B
C

1/2(0) and xj − x ∈ B
C

1/2(0) for

i 6= j then xi − xj ∈ B
C

1 (0), contradicting the choice of the xi. Deleting the exceptional index (if there

is one) gives the result. �

A.4. Density of C, Q5 and Q13 in Â. We need a standard fact for the proof of Proposition 6.11.

Proposition A.1. Any finite index multiplicative subgroup of Z×
p contains a subgroup (1 + pnZp,×)

for some n.

Proof. There is an isomorphism (1 + pZp,×) ←→ (Zp,+) given by the p-adic log and exp maps (for

p > 2); see e.g. [Ser73][Chapter II, Section 3, Proposition 8].

So if J ≤ Z×
p has finite index then J ∩ (1 + pZp) has finite index in 1 + pZp, which corresponds to

a finite index subgroup of (Zp,+) under the isomorphism; those are all (pnZp,+) for some n, which

correspond to (1 + pn+1Zp,×) under the isomorphism the other way. �

Corollary A.2. Let J be a finite index subgroup of Q×
p . There exists some η > 0 depending only on

J , such that if x, y ∈ Q×
p and |x− y|p/|x|p ≤ η then x and y are in the same coset of J .
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Proof. We require y/x ∈ J . By Proposition A.1 applied to the finite index subgroup J0 = J∩Z×
p ≤ Z×

p ,

there is some η > 0 such that if a ∈ Z×
p and |1 − a|p ≤ η then a ∈ J0. So – provided η ≤ 1 – we have

|1− a|p ≤ η ⇒ a ∈ J0 for all a ∈ Q×
p . But |1− y/x|p = |x− y|p/|x|p and the result follows. �

We isolate one further result from the proof of Proposition 6.11.

Lemma A.3. Let J, H be as in the statement of Proposition 6.11. For any µ, ν > 0 we can find an

r ∈ A such that |r|C, |r|P13
≤ µ, |r|P5

≥ ν and ıQ5
(r) ∈ H. The same holds with 5 and 13 exchanged.

Proof. Let x1, . . . , xk ∈ A be coset representatives for J ; i.e.
⋃

i xi J = Q5. (This is possible by

Corollary A.2 and the fact that A is dense in Q×
p .) Let C = max

{
|xi|C, |xi|P13

, 1/|xi|P5

}
. Pick any

y ∈ A such that |y|C, |y|P13
< 1 and |y|

P5
> 1 (say, y = P13/P5

10
). Then choose n large enough that

|yn|C, |yn|P13
≤ µ/C and |yn|P5

≥ C ν. Now take i such that xi y
n ∈ H , and observe r = xi y

n has

the desired properties. �

Proof of Proposition 6.11. Let x = (z, a, b) ∈ Â, with (z, a, b) in the fundamental domain (say). We

take δ > 0 arbitrary, and choose q ∈ A such that |ıC(q) − z|C, |ıQ13
(q) − b|13 ≤ δ/4 (by Proposition

6.12).

If a− ıQ5
(q) ∈ H we are happy, as then

dÂ((z, a, b), (0, a− ıQ5
(q), 0)) = dÂ((z, a, b), (ıC(q), a, ıQ13

(q)) ≤ δ/2 .

If not, the above results allow us to perturb q to some q− r so that this holds (i.e. a− ıQ5
(q− r) ∈ H),

without affecting the other properties of q too much.

Specifically, take η > 0 as in Corollary A.2, and r as in Lemma A.3 with parameters µ = δ/4 and

ν = 10|a − ıQ5
(q)|5/η. We claim a − ıQ5

(q − r) ∈ H . Indeed, as ıQ5
(r) ∈ H by construction and

|a− ıQ5
(q)|5/|ıQ5

(r)|5 ≤ η/10, this follows by Corollary A.2. Finally,

dÂ((z, a, b), (0, a− ıQ5
(q − r), 0)) = dÂ((z, a, b), (ıC(q − r), a, ıQ13

(q − r))
≤ |z − ıC(q)|C + |r|C + |q − r|

P13
+ |r|

P13
≤ δ

which, as δ was arbitrary, completes the proof. �

A.5. Proof of Proposition 7.4.

Proof of Proposition 7.4. Using [Ser73][Chapter II, Section 3, Proposition 7], we write u = ξ v where ξ

is a (p−1)st root of unity and v ∈ 1+pZp. By assumption v 6= 1. It suffices to show {v(p−1)r : r ≥ 0} is a

finite index subgroup of (1+pZp,×). Using the p-adic log/exp isomorphism ([Ser73][Chapter II, Section

3, Proposition 8]) this reduces to showing that for x ∈ Zp non-zero, the closure {(p− 1)r x : r ≥ 0} is

a finite index subgroup of (Zp,+); and in fact it is precisely pvp(x)Zp. �
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