Local spectral synthesis on Abelian groups

Miklós Laczkovich

Eötvös University, Budapest

4th Workshop on Fourier Analysis Budapest, Aug. 29, 2013

Let G be a topological Abelian group. $C(G) = \{f: G \to \mathbb{C} \text{ continuous}\}$

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p:G\to\mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions :

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive.

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive.

 $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y) = m(x) \cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial:

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y) = m(x) \cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial:

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y) = m(x) \cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

Loewner 1959: $G = \mathbb{R}^n$.

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

Loewner 1959: $G = \mathbb{R}^n$. J.J. Stone 1960: in general.

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

Loewner 1959: $G = \mathbb{R}^n$. J.J. Stone 1960: in general. Anselone, Korevar 1964: $G = \mathbb{R}$.

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

Loewner 1959: $G = \mathbb{R}^n$. J.J. Stone 1960: in general.

Anselone, Korevar 1964: $G = \mathbb{R}$.

M. Engert 1970: for loc. compact, σ -compact G.

 $C(G) = \{ f : G \to \mathbb{C} \text{ continuous} \}$

 $p: G \to \mathbb{C}$ is a polynomial if p belongs to the algebra generated by the continuous additive functions : $p = P(a_1, \ldots, a_n)$, where $P \in \mathbb{C}[x_1, \ldots, x_n]$ and $a_1, \ldots, a_n : G \to \mathbb{C}$ are continuous and additive. $m \in C(G)$ is an exponential if $m \neq 0$ and m is multiplicative:

 $m(x+y)=m(x)\cdot m(y).$

Theorem

Let G be a top. Abelian group, and let $f \in C(G)$. The translates of f generate a finite dimensional linear space if and only if f is an exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a polynomial and m_i is an exponential (i = 1, ..., n).

Loewner 1959: $G = \mathbb{R}^n$. J.J. Stone 1960: in general.

Anselone, Korevar 1964: $G = \mathbb{R}$.

M. Engert 1970: for loc. compact, σ -compact G.

L. Székelyhidi 1982: in general.

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)Spectral synthesis holds on \mathbb{R} .

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)Spectral synthesis holds on \mathbb{R} .

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)
Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)
Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

What can we say if G is a discrete Abelian group?

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)

Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

What can we say if G is a discrete Abelian group?

M. Lefranc 1958: True for \mathbb{Z}^n .

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)

Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

What can we say if G is a discrete Abelian group?

M. Lefranc 1958: True for \mathbb{Z}^n .

R.J. Elliot 1965: True for every discrete Abelian group.

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)

Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

What can we say if G is a discrete Abelian group?

M. Lefranc 1958: True for \mathbb{Z}^n .

R.J. Elliot 1965: True for every discrete Abelian group.

Z. Gajda ~1980: ???

Spectral synthesis holds on G if every variety on G is spanned by exp. polynomials.

Theorem (L. Schwartz 1948)

Spectral synthesis holds on \mathbb{R} .

Theorem (D.I. Gurevič 1975)

Spectral synthesis does not hold on \mathbb{R}^2 .

What can we say if G is a discrete Abelian group?

M. Lefranc 1958: True for \mathbb{Z}^n .

R.J. Elliot 1965: True for every discrete Abelian group.

Z. Gajda ~1980: ???

L. Székelyhidi 2004: False!

Let F_{ω} be the free Abelian group of rank ω :

 $F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$V = \{ \alpha P + a + d : \alpha \in \mathbb{C}, a \text{ is add.}, d \in \mathbb{C} \}.$$

Let F_{ω} be the free Abelian group of rank ω :

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$V = \{ \alpha P + a + d : \alpha \in \mathbb{C}, a \text{ is add.}, d \in \mathbb{C} \}.$$

 $m \in V \Longrightarrow m \equiv 1.$

Let F_{ω} be the free Abelian group of rank ω :

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$V = \{ \alpha P + a + d : \alpha \in \mathbb{C}, a \text{ is add.}, d \in \mathbb{C} \}.$$

 $m \in V \Longrightarrow m \equiv 1.$ $p \in V$ is a polynomial $\Longrightarrow p = a + d.$

Let F_{ω} be the free Abelian group of rank ω :

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$V = \{ \alpha P + a + d : \alpha \in \mathbb{C}, \ a \text{ is add.}, \ d \in \mathbb{C} \}.$$

 $m \in V \Longrightarrow m \equiv 1$. $p \in V$ is a polynomial $\Longrightarrow p = a + d$. $\{a + d\}$ is not dense in $V : P \neq a + d$.
Székelyhidi's example 2004:

Let F_{ω} be the free Abelian group of rank ω :

$$F_{\omega} = \{ (x_1, x_2, \ldots) : x_i \in \mathbb{Z}, \ x_i = 0 \ (i \ge i_0) \}.$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2 \qquad (x = (x_1, x_2, \ldots) \in F_{\omega})$$
$$c \in F_{\omega}, \quad c = (c_1, \ldots, c_n, 0, 0 \ldots),$$

$$P(x+c) = P(x) + \sum_{i=1}^{n} 2c_i x_i + d$$

$$V = \{ \alpha P + a + d : \alpha \in \mathbb{C}, a \text{ is add.}, d \in \mathbb{C} \}.$$

 $m \in V \Longrightarrow m \equiv 1. \qquad p \in V \text{ is a polynomial} \Longrightarrow p = a + d.$

 $\{a+d\}$ is not dense in $V: P \neq a+d$.

Definition

 $r_0(G)$ = the cardinality of a maximal independent system of elements of infinite order (the torsion free rank of G).

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

 $\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, \ h \in G)$

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, \ h \in G)$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, \ h \in G)$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$
$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, h \in G)$$

$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$

$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

f is a generalized polynomial if $\exists n, \Delta_{h_1} \dots \Delta_{h_n} f \equiv 0 \ \forall h_1, \dots, h_n \in G$.

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, \ h \in G)$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$
$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

f is a generalized polynomial if $\exists n, \Delta_{h_1} \dots \Delta_{h_n} f \equiv 0 \forall h_1, \dots, h_n \in G$. Generalized exponential polynomial:

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, h \in G)$$

$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$

$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

f is a generalized polynomial if $\exists n, \Delta_{h_1} \dots \Delta_{h_n} f \equiv 0 \forall h_1, \dots, h_n \in G$. Generalized exponential polynomial: $f = \sum_{i=1}^n p_i \cdot m_i$, where p_i is a gen. polynomial and m_i is an exponential $(i = 1, \dots, n)$.

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, \ h \in G)$$
$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$
$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

f is a generalized polynomial if $\exists n, \Delta_{h_1} \dots \Delta_{h_n} f \equiv 0 \forall h_1, \dots, h_n \in G$. Generalized exponential polynomial: $f = \sum_{i=1}^n p_i \cdot m_i$, where p_i is a gen. polynomial and m_i is an exponential $(i = 1, \dots, n)$.

Generalized spectral synthesis holds on G if every variety on G is spanned by gen. exp. polynomials.

Spectral synthesis holds on a discrete Abelian group G if and only if $r_0(G)$ is finite.

$$\Delta_h f(x) = f(x+h) - f(x) \qquad (f: G \to \mathbb{C}, h \in G)$$

$$P(x) = \sum_{i=1}^{\infty} x_i^2; \qquad \Delta_{h_1} P = a + c; \qquad \Delta_{h_1} \Delta_{h_2} P \equiv c.$$

$$\Delta_{h_1} \Delta_{h_2} \Delta_{h_2} P \equiv 0.$$

f is a generalized polynomial if $\exists n, \Delta_{h_1} \dots \Delta_{h_n} f \equiv 0 \forall h_1, \dots, h_n \in G$. Generalized exponential polynomial: $f = \sum_{i=1}^n p_i \cdot m_i$, where p_i is a gen. polynomial and m_i is an exponential $(i = 1, \dots, n)$.

Generalized spectral synthesis holds on G if every variety on G is spanned by gen. exp. polynomials.

Theorem (G. Kiss, M.L. 2012)

Generalized spectral synthesis does not hold on F_{ω} .

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x], \ \deg p_n \leq n, \ p_n(0) = 0$, and either

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x], \ \deg p_n \leq n, \ p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x], \deg p_n \leq n, p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or $(\forall n) \deg p_n < n.$

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x], \deg p_n \leq n, p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or $(\forall n) \deg p_n < n$.

Then V is a variety and $Q \in V$.

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x]$, deg $p_n \leq n$, $p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or $(\forall n) \deg p_n < n$.

Then V is a variety and $Q \in V$. If $m \in V$, then $m \equiv 1$.

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x]$, deg $p_n \leq n$, $p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or $(\forall n) \deg p_n < n$.

Then V is a variety and $Q \in V$. If $m \in V$, then $m \equiv 1$.

Lemma

If f is a generalized polynomial on F_{ω} then $\exists n$,

$$f(x) = \sum c_{i_1 \dots i_k} \cdot x_1^{i_1} \cdots x_k^{i_k},$$

where $c_{i_1...i_k} = 0$ if $i_1 + ... + i_k > n$.

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that $p_n \in \mathbb{C}[x]$, deg $p_n \leq n$, $p_n(0) = 0$, and either

 $(\forall n) \deg p_n = n$ and the leading coefficients of p_n are the same, or $(\forall n) \deg p_n < n$.

Then V is a variety and $Q \in V$. If $m \in V$, then $m \equiv 1$.

Lemma

If f is a generalized polynomial on F_{ω} then $\exists n$,

$$f(x) = \sum c_{i_1 \dots i_k} \cdot x_1^{i_1} \cdots x_k^{i_k},$$

where $c_{i_1...i_k} = 0$ if $i_1 + ... + i_k > n$.

$$Q(x) = \sum_{n=1}^{\infty} x_n^n \qquad (x \in F_{\omega}).$$

Let V be the set of functions $c + \sum_{n=1}^{\infty} p_n(x_n)$ such that
 $p_n \in \mathbb{C}[x], \ \deg p_n \le n, \ p_n(0) = 0$, and either
 $(\forall n) \ \deg p_n = n$ and the leading coefficients of p_n are the same, or

 $(\forall n) \deg p_n < n.$

Then V is a variety and $Q \in V$. If $m \in V$, then $m \equiv 1$.

Lemma

If f is a generalized polynomial on F_{ω} then $\exists n$,

$$f(x) = \sum c_{i_1 \dots i_k} \cdot x_1^{i_1} \cdots x_k^{i_k},$$

where $c_{i_1...i_k} = 0$ if $i_1 + ... + i_k > n$.

The set of gen'd polynomials is not dense in V; Q is not in the closure.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Theorem

For every $f: G \to \mathbb{C}$, f is a polynomial \implies f is a generalized polynomial \implies f is a local polynomial.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Theorem

For every $f: G \to \mathbb{C}$, f is a polynomial \implies f is a generalized polynomial \implies f is a local polynomial.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Theorem

For every $f: G \to \mathbb{C}$, f is a polynomial \implies f is a generalized polynomial \implies f is a local polynomial.

If G is finitely generated, then f is a polynomial \iff f is a generalized polynomial \iff f is a local polynomial.

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Theorem

For every $f: G \to \mathbb{C}$, f is a polynomial \implies f is a generalized polynomial \implies f is a local polynomial.

If G is finitely generated, then f is a polynomial \iff f is a generalized polynomial \iff f is a local polynomial.

Local exponential polynomial:

Definition

 $p: G \to \mathbb{C}$ is a local polynomial if $f|_H$ is a polynomial for every finitely generated subgroup H of G.

Theorem

For every $f: G \to \mathbb{C}$, f is a polynomial \implies f is a generalized polynomial \implies f is a local polynomial.

If G is finitely generated, then f is a polynomial \iff f is a generalized polynomial \iff f is a local polynomial.

Local exponential polynomial: $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a local polynomial and m_i is an exponential (i = 1, ..., n).

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Theorem (G. Székelyhidi, M.L. 2004)

Spectral analysis holds on G; that is, every variety $V \neq \{0\}$ contains an exponential, if and only if $r_0(G) < 2^{\omega}$.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Theorem (G. Székelyhidi, M.L. 2004)

Spectral analysis holds on G; that is, every variety $V \neq \{0\}$ contains an exponential, if and only if $r_0(G) < 2^{\omega}$.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Theorem (G. Székelyhidi, M.L. 2004)

Spectral analysis holds on G; that is, every variety $V \neq \{0\}$ contains an exponential, if and only if $r_0(G) < 2^{\omega}$.

Lemma

If V is a variety, $f \in V$, $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a local polynomial and m_i is an exponential (i = 1, ..., n), then $p_i \cdot m_i \in V$ and $m_i \in V$ for every i = 1, ..., n.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Theorem (G. Székelyhidi, M.L. 2004)

Spectral analysis holds on G; that is, every variety $V \neq \{0\}$ contains an exponential, if and only if $r_0(G) < 2^{\omega}$.

Lemma

If V is a variety, $f \in V$, $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a local polynomial and m_i is an exponential (i = 1, ..., n), then $p_i \cdot m_i \in V$ and $m_i \in V$ for every i = 1, ..., n.

Local spectral synthesis holds on G if every variety on G is spanned by local exp. polynomials.

Theorem (G. Székelyhidi, M.L. 2004)

Spectral analysis holds on G; that is, every variety $V \neq \{0\}$ contains an exponential, if and only if $r_0(G) < 2^{\omega}$.

Lemma

If V is a variety, $f \in V$, $f = \sum_{i=1}^{n} p_i \cdot m_i$, where p_i is a local polynomial and m_i is an exponential (i = 1, ..., n), then $p_i \cdot m_i \in V$ and $m_i \in V$ for every i = 1, ..., n.

Corollary

If $r_0(G) \ge 2^{\omega}$ (e.g. if G is torsion free and $|G| \ge 2^{\omega}$), then local spectral synthesis fails on G.
There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

Lemma

If local spectral synthesis holds on G, and if T is torsion, then local spectral synthesis holds on $G \times T$.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

Lemma

If local spectral synthesis holds on G, and if T is torsion, then local spectral synthesis holds on $G \times T$.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

Lemma

If local spectral synthesis holds on G, and if T is torsion, then local spectral synthesis holds on $G \times T$.

Let F_{λ} denote the free Abelian group of rank λ . Let κ denote the smallest cardinal such that local spectral synthesis does not hold on F_{κ} . Then $\kappa \leq 2^{\omega}$, and local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

There exists a cardinal $\aleph_1 \leq \kappa \leq 2^{\omega}$ such that, for every Abelian group, local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

Lemma

If local spectral synthesis holds on G, then the same is true for every subgroup of G and for every homomorphic image of G.

Lemma

If local spectral synthesis holds on G, and if T is torsion, then local spectral synthesis holds on $G \times T$.

Let F_{λ} denote the free Abelian group of rank λ . Let κ denote the smallest cardinal such that local spectral synthesis does not hold on F_{κ} . Then $\kappa \leq 2^{\omega}$, and local spectral synthesis holds on G if and only if $r_0(G) < \kappa$.

We need: $\kappa \geq \aleph_1$. That is, we need:

Local spectral synthesis holds on F_{ω} .

Local spectral synthesis holds on F_{ω} .

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$.

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$.

 $V^{\perp} = \{ \mu : \int p \, d\mu = 0 \text{ for every } p \in V \}.$

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$.

$$\begin{split} V^{\perp} &= \{ \mu : \int p \, d\mu = 0 \text{ for every } p \in V \}. \\ p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}. \end{split}$$

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$. $V^{\perp} = \{\mu : \int p \, d\mu = 0 \text{ for every } p \in V\}.$ $p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}.$ $\sum c_{i_1...i_n} \cdot \delta_{i_1...i_k} \mapsto \sum c_{i_1...i_n} \cdot x_1^{i_1} \dots x_n^{i_n} \text{ maps } V^{\perp} \text{ into an ideal of}$ $\mathbb{C}[x_1, \dots, x_n].$

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$. $V^{\perp} = \{\mu : \int p \, d\mu = 0 \text{ for every } p \in V\}.$ $p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}.$ $\sum c_{i_1...i_n} \cdot \delta_{i_1...i_k} \mapsto \sum c_{i_1...i_n} \cdot x_1^{i_1} \dots x_n^{i_n} \text{ maps } V^{\perp} \text{ into an ideal of}$ $\mathbb{C}[x_1, \dots, x_n].$

Differential operators on $\mathbb{C}[x_1, \ldots, x_n] \leftrightarrow$ exponential polynomials on \mathbb{Z}^n .

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$. $V^{\perp} = \{\mu : \int p \, d\mu = 0 \text{ for every } p \in V\}.$ $p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}.$ $\sum c_{i_1...i_n} \cdot \delta_{i_1...i_k} \mapsto \sum c_{i_1...i_n} \cdot x_1^{i_1} \dots x_n^{i_n} \text{ maps } V^{\perp} \text{ into an ideal of}$ $\mathbb{C}[x_1, \dots, x_n].$

Differential operators on $\mathbb{C}[x_1, \ldots, x_n] \leftrightarrow$ exponential polynomials on \mathbb{Z}^n .

Equivalent reformulation of the spectral synthesis on \mathbb{Z}^n :

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$. $V^{\perp} = \{\mu : \int p \, d\mu = 0 \text{ for every } p \in V\}.$ $p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}.$ $\sum c_{i_1...i_n} \cdot \delta_{i_1...i_k} \mapsto \sum c_{i_1...i_n} \cdot x_1^{i_1} \dots x_n^{i_n} \text{ maps } V^{\perp} \text{ into an ideal of}$ $\mathbb{C}[x_1, \dots, x_n].$

Differential operators on $\mathbb{C}[x_1, \ldots, x_n] \leftrightarrow$ exponential polynomials on \mathbb{Z}^n .

Equivalent reformulation of the spectral synthesis on \mathbb{Z}^n :

If $p \in \mathbb{C}[x_1, \ldots, x_n] \setminus I$, then there is a root $c = (c_1, \ldots, c_n)$ of I and there is a differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

Local spectral synthesis holds on F_{ω} .

Lefranc's approach for $G = \mathbb{Z}^n$: duality between varieties on \mathbb{Z}^n and ideals of measures $\mu = \sum c_{i_1...i_n} \cdot \delta_{i_1...i_n}$. $V^{\perp} = \{\mu : \int p \, d\mu = 0 \text{ for every } p \in V\}.$ $p \in V \iff \int p \, d\mu = 0 \text{ for every } \mu \in V^{\perp}.$ $\sum c_{i_1...i_n} \cdot \delta_{i_1...i_k} \mapsto \sum c_{i_1...i_n} \cdot x_1^{i_1} \dots x_n^{i_n} \text{ maps } V^{\perp} \text{ into an ideal of}$ $\mathbb{C}[x_1, \dots, x_n].$

Differential operators on $\mathbb{C}[x_1, \ldots, x_n] \leftrightarrow$ exponential polynomials on \mathbb{Z}^n .

Equivalent reformulation of the spectral synthesis on \mathbb{Z}^n :

If $p \in \mathbb{C}[x_1, \ldots, x_n] \setminus I$, then there is a root $c = (c_1, \ldots, c_n)$ of I and there is a differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$. (This is Krull's theorem.) Reformulation of the spectral synthesis on F_{ω} :

Reformulation of the spectral synthesis on F_{ω} : For $i = (i_1, i_2, \ldots) \in F_{\omega}$ $(i_n = 0 \ (n > m))$

$$D_i = \frac{\partial^{i_1 + \dots + i_m}}{(\partial x_1)^{i_1} \cdots (\partial x_m)^{i_m}}$$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$

Reformulation of the spectral synthesis on F_{ω} : For $i = (i_1, i_2, \ldots) \in F_{\omega}$ $(i_n = 0 \ (n > m))$ $\partial^{i_1 + \ldots + i_m}$

$$D_i = \frac{\partial^{1} \cdots \partial^{n}}{(\partial x_1)^{i_1} \cdots (\partial x_m)^{i_m}}$$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$ The only root of J is $(0, 0, \ldots).$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$ The only root of J is $(0, 0, \ldots).$

There is no differential operator D s.t. Df(0) = 0 for every $f \in J$, and $Dx_1(0) \neq 0$.

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$ The only root of J is $(0, 0, \ldots)$.

There is no differential operator D s.t. Df(0) = 0 for every $f \in J$, and $Dx_1(0) \neq 0$.

$$D = \sum_{i=1}^{\infty} \frac{\partial}{\partial x_i}$$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$ The only root of J is $(0, 0, \ldots).$ There is no differential operator D s.t. Df(0) = 0 for every $f \in J$, and

There is no dimension operator D s.t. Df(0) = 0 for every $f \in J$, and $Dx_1(0) \neq 0$.

$$D = \sum_{i=1}^{\infty} \frac{\partial}{\partial x_i}$$

Df(0) = 0 for every $f \in J$, and $Dx_1(0) \neq 0!$

Example. $R = \mathbb{C}[x_1, x_2, \ldots], J = (x_1^2, x_1 - x_2, x_1 - x_3, x_1 - x_4, \ldots).$ $x_1 \notin J.$ The only root of J is $(0, 0, \ldots)$. There is no differential operator D s.t. Df(0) = 0 for every $f \in J$, and

There is no dimerential operator D s.t. Df(0) = 0 for every $f \in S$, and $Dx_1(0) \neq 0$.

$$D = \sum_{i=1}^{\infty} \frac{\partial}{\partial x_i}$$

Df(0) = 0 for every $f \in J$, and $Dx_1(0) \neq 0!$

Definition

Generalized differential operator: $\sum_{i \in F_{\omega}} a_i D_i$, where, for every m, the set $\{i \in F_{\omega} : a_i \neq 0 \text{ and } i_n > 0 \forall n > m\}$ is finite.

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Question

Let X be an infinite set of indeterminates, and let Ω be an algebraically closed field with $|X| < |\Omega|$. Is it true that for every ideal I of the polynomial ring $\Omega[X]$ and for every polynomial $p \in \Omega[X]$ there is a root c of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$?

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Question

Let X be an infinite set of indeterminates, and let Ω be an algebraically closed field with $|X| < |\Omega|$. Is it true that for every ideal I of the polynomial ring $\Omega[X]$ and for every polynomial $p \in \Omega[X]$ there is a root c of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$?

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Question

Let X be an infinite set of indeterminates, and let Ω be an algebraically closed field with $|X| < |\Omega|$. Is it true that for every ideal I of the polynomial ring $\Omega[X]$ and for every polynomial $p \in \Omega[X]$ there is a root c of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$?

Question

What is the "real" value of κ ?

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Question

Let X be an infinite set of indeterminates, and let Ω be an algebraically closed field with $|X| < |\Omega|$. Is it true that for every ideal I of the polynomial ring $\Omega[X]$ and for every polynomial $p \in \Omega[X]$ there is a root c of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$?

Question

What is the "real" value of κ ?

Let I be an ideal of $\mathbb{C}[x_1, x_2, \ldots]$, and let $p \in \mathbb{C}[x_1, x_2, \ldots] \setminus I$. Then there is a root $c = (c_1, c_2, \ldots)$ of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$.

The theorem is true for every uncountable and algebraically closed field in place of \mathbb{C} .

Question

Let X be an infinite set of indeterminates, and let Ω be an algebraically closed field with $|X| < |\Omega|$. Is it true that for every ideal I of the polynomial ring $\Omega[X]$ and for every polynomial $p \in \Omega[X]$ there is a root c of I and there is a generalized differential operator D such that Df(c) = 0 for every $f \in I$, and $Dp(c) \neq 0$?

Question

What is the "real" value of κ ? Is it true that $\kappa = \aleph_1$ independently of the value of 2^{ω} ?

Lemma

If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.
If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.

If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.

Corollary

Spectral synthesis holds on every countable Abelian group with $r_0(G) < \infty$.

If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.

Corollary

Spectral synthesis holds on every countable Abelian group with $r_0(G) < \infty$.

If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.

Corollary

Spectral synthesis holds on every countable Abelian group with $r_0(G) < \infty$. In particular, spectral synthesis holds on $\mathbb{Q}^n \times T$ if $n \in \mathbb{N}$ and T is torsion.

If $r_0(G) < \infty$, then every local polynomial on G is a polynomial.

Corollary

Spectral synthesis holds on every countable Abelian group with $r_0(G) < \infty$. In particular, spectral synthesis holds on $\mathbb{Q}^n \times T$ if $n \in \mathbb{N}$ and T is torsion. Spectral synthesis holds on every G with $r_0(G) < \infty$.

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

The additive solutions of (1) restricted to K^* constitute a variety V_a .

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

The additive solutions of (1) restricted to K^* constitute a variety V_a .

Theorem (G. Kiss, ML 2012)

In V_a every local exponential polynomial is an exponential polynomial.

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

The additive solutions of (1) restricted to K^* constitute a variety V_a .

Theorem (G. Kiss, ML 2012)

In V_a every local exponential polynomial is an exponential polynomial.

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

The additive solutions of (1) restricted to K^* constitute a variety V_a .

Theorem (G. Kiss, ML 2012)

In V_a every local exponential polynomial is an exponential polynomial. Consequently, spectral synthesis holds on V_a .

$$\sum_{i=1}^{n} a_i f(x+b_i y) = 0 \qquad (f: \mathbb{C} \to \mathbb{C}, \ a_i, b_i \in \mathbb{C}).$$
(1)

 K^* is not finitely generated; $r_0(K^*) = \infty$ for every K. Thus spectral synthesis does not hold on K^* .

Since K^* is countable, local spectral synthesis holds on K^* .

The additive solutions of (1) restricted to K^* constitute a variety V_a .

Theorem (G. Kiss, ML 2012)

In V_a every local exponential polynomial is an exponential polynomial. Consequently, spectral synthesis holds on V_a .

The exponential polynomial solutions of (1) are easy to desribe. This gives a complete description of the set of additive solutions of (1).