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Let G be a topological Abelian group.

C(G) = {f : G→ C continuous}
p : G→ C is a polynomial if p belongs to the algebra generated by the

continuous additive functions : p = P (a1, . . . , an), where
P ∈ C[x1, . . . , xn] and a1, . . . , an : G→ C are continuous and additive.

m ∈ C(G) is an exponential if m 6= 0 and m is multiplicative:

m(x+ y) = m(x) ·m(y).

Theorem

Let G be a top. Abelian group, and let f ∈ C(G). The translates of f
generate a �nite dimensional linear space if and only if f is an

exponential polynomial: f =
∑n

i=1 pi ·mi, where pi is a polynomial and

mi is an exponential (i = 1, . . . , n).

Loewner 1959: G = Rn. J.J. Stone 1960: in general.

Anselone, Korevar 1964: G = R.
M. Engert 1970: for loc. compact, σ-compact G.

L. Székelyhidi 1982: in general.
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V ⊂ C(R) is a variety if V is a closed linear subspace of C(G) and is

closed under translations.

Spectral synthesis holds on G if every variety on G is spanned by exp.

polynomials.

Theorem (L. Schwartz 1948)

Spectral synthesis holds on R.

Theorem (D.I. Gurevi£ 1975)

Spectral synthesis does not hold on R2.

What can we say if G is a discrete Abelian group?

M. Lefranc 1958: True for Zn.

R.J. Elliot 1965: True for every discrete Abelian group.

Z. Gajda ∼1980: ???

L. Székelyhidi 2004: False!
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Székelyhidi's example 2004:

Let Fω be the free Abelian group of rank ω :

Fω = {(x1, x2, . . .) : xi ∈ Z, xi = 0 (i ≥ i0)}.

P (x) =
∑∞

i=1 x
2
i (x = (x1, x2, . . .) ∈ Fω)

c ∈ Fω, c = (c1, . . . , cn, 0, 0 . . .),

P (x+ c) = P (x) +
n∑
i=1

2cixi + d

V = {αP + a+ d : α ∈ C, a is add., d ∈ C}.

m ∈ V =⇒ m ≡ 1. p ∈ V is a polynomial =⇒ p = a+ d.

{a+ d} is not dense in V : P 6= a+ d.

De�nition

r0(G) = the cardinality of a maximal independent system of elements

of in�nite order (the torsion free rank of G).
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Theorem (L. Székelyhidi, M.L. 2007)

Spectral synthesis holds on a discrete Abelian group G if and only if

r0(G) is �nite.

∆hf(x) = f(x+ h)− f(x) (f : G→ C, h ∈ G)

P (x) =
∑∞

i=1 x
2
i ; ∆h1P = a+ c; ∆h1∆h2P ≡ c.

∆h1∆h2∆h2P ≡ 0.

f is a generalized polynomial if ∃ n, ∆h1 . . .∆hnf ≡ 0 ∀ h1, . . . , hn ∈ G.

Generalized exponential polynomial: f =
∑n

i=1 pi ·mi, where pi is a
gen. polynomial and mi is an exponential (i = 1, . . . , n).

Generalized spectral synthesis holds on G if every variety on G is

spanned by gen. exp. polynomials.

Theorem (G. Kiss, M.L. 2012)

Generalized spectral synthesis does not hold on Fω.
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Q(x) =
∑∞

n=1 x
n
n (x ∈ Fω).

Let V be the set of functions c+
∑∞

n=1 pn(xn) such that

pn ∈ C[x], deg pn ≤ n, pn(0) = 0, and either

(∀ n) deg pn = n and the leading coe�cients of pn are the same, or

(∀ n) deg pn < n.

Then V is a variety and Q ∈ V. If m ∈ V, then m ≡ 1.

Lemma

If f is a generalized polynomial on Fω then ∃ n,

f(x) =
∑

ci1...ik · x
i1
1 · · ·x

ik
k ,

where ci1...ik = 0 if i1 + . . .+ ik > n.

The set of gen'd polynomials is not dense in V ; Q is not in the closure.
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Q(x) =
∑∞

n=1 x
n
n has the property that Q|H is a polynomial for every

�nitely generated subgroup H of G.

De�nition

p : G→ C is a local polynomial if f |H is a polynomial for every �nitely

generated subgroup H of G.

Theorem

For every f : G→ C,

f is a polynomial =⇒ f is a generalized polynomial =⇒ f is a local

polynomial.

If G is �nitely generated, then

f is a polynomial ⇐⇒ f is a generalized polynomial ⇐⇒ f is a

local polynomial.

Local exponential polynomial: f =
∑n

i=1 pi ·mi, where pi is a local

polynomial and mi is an exponential (i = 1, . . . , n).
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Theorem (ML 2012)

There exists a cardinal ℵ1 ≤ κ ≤ 2ω such that, for every Abelian group,

local spectral synthesis holds on G if and only if r0(G) < κ.

Lemma

If local spectral synthesis holds on G, then the same is true for every

subgroup of G and for every homomorphic image of G.

Lemma

If local spectral synthesis holds on G, and if T is torsion, then local

spectral synthesis holds on G× T .

Let Fλ denote the free Abelian group of rank λ. Let κ denote the

smallest cardinal such that local spectral synthesis does not hold on Fκ.
Then κ ≤ 2ω, and local spectral synthesis holds on G if and only if

r0(G) < κ.

We need: κ ≥ ℵ1. That is, we need:
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Theorem

Local spectral synthesis holds on Fω.

Lefranc's approach for G = Zn : duality between varieties on Zn and

ideals of measures µ =
∑
ci1...in · δi1...in .

V ⊥ = {µ :
∫
p dµ = 0 for every p ∈ V }.

p ∈ V ⇐⇒
∫
p dµ = 0 for every µ ∈ V ⊥.∑

ci1...in · δi1...ik 7→
∑
ci1...in · x

i1
1 . . . x

in
n maps V ⊥ into an ideal of

C[x1, . . . , xn].

Di�erential operators on C[x1, . . . , xn] ↔ exponential polynomials on

Zn.

Equivalent reformulation of the spectral synthesis on Zn :

If p ∈ C[x1, . . . , xn] \ I, then there is a root c = (c1, . . . , cn) of I and

there is a di�erential operator D such that Df(c) = 0 for every f ∈ I,
and Dp(c) 6= 0. (This is Krull's theorem.)
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Reformulation of the spectral synthesis on Fω :

For i = (i1, i2, . . .) ∈ Fω (in = 0 (n > m))

Di =
∂i1+...+im

(∂x1)i1 · · · (∂xm)im

Example. R = C[x1, x2, . . .], J = (x2
1, x1 − x2, x1 − x3, x1 − x4, . . .).

x1 /∈ J . The only root of J is (0, 0, . . .).

There is no di�erential operator D s.t. Df(0) = 0 for every f ∈ J , and
Dx1(0) 6= 0.

D =
∞∑
i=1

∂

∂xi

Df(0) = 0 for every f ∈ J , and Dx1(0) 6= 0!

De�nition

Generalized di�erential operator:
∑

i∈Fω
aiDi, where, for every m, the

set {i ∈ Fω : ai 6= 0 and in > 0 ∀ n > m} is �nite.
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x1 /∈ J . The only root of J is (0, 0, . . .).

There is no di�erential operator D s.t. Df(0) = 0 for every f ∈ J , and
Dx1(0) 6= 0.

D =
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i=1

∂

∂xi

Df(0) = 0 for every f ∈ J , and Dx1(0) 6= 0!
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aiDi, where, for every m, the
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Theorem

Let I be an ideal of C[x1, x2, . . .], and let p ∈ C[x1, x2, . . .] \ I. Then
there is a root c = (c1, c2, . . .) of I and there is a generalized di�erential

operator D such that Df(c) = 0 for every f ∈ I, and Dp(c) 6= 0.

The theorem is true for every uncountable and algebraically closed �eld

in place of C.

Question

Let X be an in�nite set of indeterminates, and let Ω be an algebraically

closed �eld with |X| < |Ω|. Is it true that for every ideal I of the

polynomial ring Ω[X] and for every polynomial p ∈ Ω[X] there is a root

c of I and there is a generalized di�erential operator D such that

Df(c) = 0 for every f ∈ I, and Dp(c) 6= 0?

Question

What is the �real� value of κ? Is it true that κ = ℵ1 independently of

the vaue of 2ω?
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Lemma

If r0(G) <∞, then every local polynomial on G is a polynomial.

Corollary

Spectral synthesis holds on every countable Abelian group with

r0(G) <∞. In particular, spectral synthesis holds on Qn × T if n ∈ N
and T is torsion. Spectral synthesis holds on every G with r0(G) <∞.
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n∑
i=1

aif(x+ biy) = 0 (f : C→ C, ai, bi ∈ C). (1)

Q(b1) . . . (bn) = K, K∗ = K \ {0} is a countable group under

multiplication.

K∗ is not �nitely generated; r0(K∗) =∞ for every K. Thus spectral

synthesis does not hold on K∗.

Since K∗ is countable, local spectral synthesis holds on K∗.

The additive solutions of (1) restricted to K∗ constitute a variety Va.

Theorem (G. Kiss, ML 2012)

In Va every local exponential polynomial is an exponential polynomial.

Consequently, spectral synthesis holds on Va.

The exponential polynomial solutions of (1) are easy to desribe. This

gives a complete description of the set of additive solutions of (1).
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