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Internal observability of plates

We consider the small transversal vibrations of a hinged plate:

U+ N%u=0 in RxQ,
u=Au=0 on RxT,
u(0)=uy, U(0)=us in Q,

where Q ¢ R? is some given bounded domain.
We observe the vibrations on some subset S C Q during some time T.

Is the linear map (up, u1) — Ul (o, T)xs One-to-one? If yes, we say that
(0, T) x S'is an observability set.
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Square plates

We consider henceforth a square plate Q = (0, ) x (0, 7). Then the
solutions have the form

u(t,x,y) = Z <aknei(k2+”2)’ + bkne‘i(k2+”2)t> sin kx sin ny,
k,n=1

and the observability is equivalent to

u=0 on (0,T)xS= akn=bky =0 forall k,n.
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An elementary result

Proposition
(0,27) x Q is an observability set.

Proof.
The series

ut,x.y) =Y (ak,,ei(kZJr”z)t + bkne"(k2+”2)t> sin kx sin ny
k,n:1

is orthogonal in L2((0,27) x Q), so that

3 oo
| qutxy)P axay ot =" " (1aul® + bl?)
(0,2m)xQ K.n=1

L]

v
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An improvement

Proposition
(0,27) x (a, b) x (0, ) is an observability set forany0 < a< b < . J
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Proof of the improvement

/ lu(t,x, y)|? dx dy df
(0,2m)x S

[T

ak gi(ke+m?)t | bkne—i(k2+n2)t>
2
X sin kx‘ df dx

b
<|akn|2 + \bkn|2> / sin® kx dx
a

o0
n=1

)

= (\3kn|2+ !bkn\2>-

k,n=1

=2
k
00

We have used the relations 0 < f: sin® kx — (b—a)/2 > 0.
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Ingham—-Beurling type theorems

Haraux’s theorem

Theorem

(0, T) x (a,b) x (0,7) is an observability set for any T > 0 and
0<a<b<m.

0 a b 77
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Proof of Haraux’s theorem
/ u(t.x, y)P dx dy dt
(0,T)xS

R L[ e
n=1va 0 k—1

2
x Sin kx‘ dt dx

i b

= Z <|akn!2+\bkn|2>/ sin® kx dx
k,n=1 a
oo
= 3 (1wl +150f%).
k,n=1

We have used a generalization of Parseval’s equality:
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Crucial inequality of the proof

We have used the following estimate for each fixed n and x:
T . . 2
/ ‘Z (akne’(k2+”2)t + bk,,e"(kz”z)t) x sin kx‘ at
0 k=1
=y (yak,,\z + \bk,,]z) sin2 kx

k=1

or equivalently

TISS () J0R+m) L b i) |2 (1 2L (o |2
/0 ‘Z (akne + b€ )‘ dtxZ(}akn| + | B )
k=1 k=1

They are not obvious for T < 27.
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Ingham’s inequality, 1936

Theorem
If a family {wy : k € K} of real numbers satisfies the gap condition

v =~(K) :=inf{Jjwx —wn| : k#n} >0,

then we have

? dt = > Il

keK kek

R
/ ‘Z Xkt

R

forevery R > x /7.

Remark
For {wx} = Z this follows from Parseval’s equality (even for R = x /7).
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Beurling’s improvement (equivalent form), 1958

Theorem
Let {wk : k € K} C R satisfy the gap condition

v =7(K) = jof |wx = wn| > 0.

If

R> k)t K

for some finite partition K = Ky U --- U Ky of K, then

/ ‘Zx gnt|” ot = > xl?

kek kek
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Example

Let {wi} = {£k? : k=0,1,...} ={0,4+1,+4,+9,...}. For each
fixed m=1,2,..., the partition

{wk}:{ikQ : k:m,m+1,...}u n[j {k}

k=—m+1
satisfies
s 7'(' T 7'[' T
) T ey T 2md T T T 70
as m — oo.
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A theorem of Jaffard

Proposition
(0, T) x S is an observability set for any open subset S and T > 0. J
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Multidimensional Ingham type theorem

Theorem

(Baiocchi, K., Loreti) If a family {wyx : k € K} of vectors in RN satisfies
the gap condition

7 =7(K) = Inf |wk —wnl >0,

then we have

Z Xic elwkl‘

k=—o00

dt = Z X4 |?

I,

for every R > VE where Bg denotes the open ball of radius R in RN
and . denotes the first Dirichlet eigenvalue of —A in the unit ball By of
RN,
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Comments on the theorem

@ In the one-dimensional case N = 1 we recover Ingham’s theorem:
in By = (—1, 1) the first eigenfunction is

H(x) = cos(mx).

Since
—H" = 7*H
we have
Vi =T
@ In case N > 1 the optimality of the condition R > % is an open
question.
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Kahane type improvement

Theorem

Let {wy : k € K} c RN satisfy the gap condition
v =9(K) = k'Qmwk —wp| > 0.

If

Vi Vi
R > +-- 4
v(Ki1) V(Km)
for some finite partiton K = Ky U --- U K, of K, then

/B Z sxet|” at = Z 2.
R

k=—
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Sparse sets

A set {wy : k € K} c RN is called sparse if for each ¢ > 0 there exists
a finite cover K C Ky U --- U K, of K satisfying

1
YK T K

<e.

Example
The set {wy} = {k? : ke Z} ={0,1,4,9,...} C Zis sparse.

Remark
The union of finitely many sparse sets is also sparse.
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Jaffard’s main lemma

Corollary
If {wx : k € K} c RN is a sparse set having a uniform gap, then

/ > oxee Rt dt < Y xf
Br

k=—00 k=—00

for every R > 0.

Theorem
(Jaffard) The set

X = {(k1,k2,k12+k22) ki ko € Z} - {(k,|k|2) ke Zz} c z8

is sparse.
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Proof of Jaffard’s theorem |

Lemma
If k € 7?2 is a non-zero vector and | a bounded interval, then

X(k, 1) == {(m,|m|2) : meZQ,m-kel}

is sparse.

Proof.

We may assume by a finite partition that |/| < 1. Fix an arbitrary
(m,|m|?) € Z(k, I). If (m+ n,|m + n|?) is another element, then n L k
because n- k € Z and |n- k| < 1. Hence

X(k,/):{(m+in',\m+in'\2) : iez}

for some 7, and we may argue as for {k? : k € Z}. O
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Proof of Jaffard’s theorem Il

Fix a large number ¢ > 1. Set

K::{keZ2 : 0<\k\<c}

and
X(c) = {(m, m?)e X : |m-k|>c® forall ke K}.
Observe that
X\ X(e)= | X(k c?))
keK

is sparse. The theorem will follow from the relation

lim ~(X(c)) = oc.

C—00
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Proof of Jaffard’s theorem llI

Lemma
Ifc>1,K:={kez? : 0< |k| <c} and

X(c) := {(m,\m|2)eX: |m-k| > c? forall keK},

thenv(X(c)) > c.

Proof.

If (m, |m|?) and (m + k, |m + k|?) are two distinct elements, then either
|k| > ¢, or

Im+kl2—|m?| >2|m-k|— |k >2c? —c>=c? > c.

O

4
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Observability by segments

Theorem

(K.—Loreti, 2013) (0, T) x S is an observability set for any small

horizontal segment S = (a,b) x {a} and T > 0, where0 < o/ < 1 is
irrational.
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Main tool

We use the following improvement of Jaffard’s estimates:

Theorem
(Tenenbaum—Tucsnak, 2009) The set

X = {(k1,k12+k22):k1,kgeZ} c 72

is sparse.

Remark
It would be interesting to find an elementary proof.
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Observability by segments. Proof if o/ is irrational.

We have

//]utXa)| dx dt
RS

RINAp>

, , 2
akellklzf + bke"‘“zf) sin kyx sin kgOé} dt dx

a ei|k\2t+bke—i|k|2t>

kq,ko=1
, ] 2
x (e — = #iX) gin kgoa‘ ot dx
(o]
=¥ (]ak\2+|bk|2>sin2k2a.
Ky ko=1

We conclude by observing that sin? kxa > 0 for all k.
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When a/7 is a quadratic irrational number

If /7 is a quadratic irrational number, then we have a better estimate:

T rb
/ / u(t, x, ) dx at
0 a

oo
> (]ak]2+\bk\2> sin? ko
ki kp=1

=4 Z (|ak|2 + |bk|2> dist (koo /7, Z)?
ki ko=1

o0
o Y (lan? +1be?) k2
Ky ko =1

[ee]
c > (lanP + 1biP) k172
ki, ko=1

v

v
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Observation on several segments |

We observe simultaneously on several segments (a;, bj) x {o;},
j=1,...,M.
™
g —
(0%} —
QA —
0 ™
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Ingham—Kahane type theorems

Observation on several segments |l

Assume that ay,..., ay, 7 are linearly independent over the field of

rational numbers, and that they belong to a real algebraic field of
degree M + 1. Then we have

M T b 00 M
S [ uttxaf acdt= S (al® o+ [b?) Y sin? keoy
j=170 78 ki kp=1 j=1

oo M
>4 Y (yak,er\bk\ )det keoj/, Z)°

ki, ko=1 =1

—.

>0 > (laf +1bd?) k2" =0 DT (Jal + |bul?) 1kI72M

ki ,ko=1 ki, kp=1
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