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Standard Fourier Analysis

0 1

L2([0, 1]) has an orthogonal basis of complex exponentials

en(x) = e2πin·x , n ∈ Z.

Frequencies:

-3 -2 -1 0 1 2 3
· · · · · ·

Functions f ∈ L2([0, 1]) can be written

f (x) =
∑
n∈Z

fn en(x).
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In higher dimension as well

L2([0, 1]2) has an orthogonal basis of complex exponentials

e(m,n)(x , y) = e2πi(m,n)·(x ,y), m, n ∈ Z.

Frequencies: the lattice Z2

· · · · · ·

Functions f ∈ L2([0, 1]2) can be written

f (x , y) =
∑

(m,n)∈Z2

f(m,n) e(m,n)(x , y).
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Unusual Fourier Analysis

0 1
2

1 3
2

L2([0, 1
2 ] ∪ [1, 3

2 ]) also has an orthogonal basis of complex exponentials

e2πi(2n)·x , e2πi(2n− 1
2

)·x , n ∈ Z.

Frequencies:

0

−1
2

2
3
2

· · · · · ·

Functions f ∈ L2([0, 1
2 ] ∪ [1, 3

2 ]) can be written

f (x) =
∑
n∈Z

fn e
2πi(2n)·x + f ′n e

2πi(2n− 1
2

)·x .
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Unusual Fourier Analysis in higher dimension

These also have an orthogonal basis of exponentials (lattice frequencies).

But NOT these:

0 1
2

3
4

5
4

[0, 1
2 ] ∪ [ 3

4 ,
5
4 ] and the disk have no orthogonal basis of exponentials.
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Which domains are spectral

Domain Ω ⊆ Rd is spectral if it has an orthogonal basis of exponentials

e2πiλ·x , λ ∈ Λ.

The set of frequencies Λ ⊆ Rd is a spectrum of Ω.

A spectral set may have many different spectra.
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The Fuglede Conjecture (1974)

“Ω is spectral ⇐⇒ it can tile space by translations”

Ω tiles when translated at the locations T if∑
t∈T

1Ω(x − t) = 1, for a.e. x .

Its T translates cover Rd exactly (except for measure 0).
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Orhogonality and completeness via the Fourier Transform

Our Fourier Transform: f̂ (ξ) =
∫
Rd e

−2πiξ·x f (x) dx .

〈e2πiλ·x , e2πiµ·x〉L2(Ω) = 1̂Ω(λ− µ)

So λ ⊥ µ (i.e. e2πiλ·x ⊥ e2πiµ·x)⇐⇒ λ− µ ∈ Z
(
1̂Ω

)
=zeros of 1̂Ω.

Bessel’s inequality
∑

λ∈Λ

∣∣∣〈f , e2πiλ·x

|Ω|1/2 〉
∣∣∣2 ≤ ‖f ‖2

2.

Plugging in f (x) = e2πit·x we get

∀t ∈ Rd :
∑
λ∈Λ

∣∣∣1̂Ω

∣∣∣2(t − λ) ≤ |Ω|2 (packing condition).

By completeness of all exponentials in L2(Ω) (tiling condition)

Λ orthogonal & complete⇐⇒ ∀t ∈ Rd :
∑
λ∈Λ

∣∣∣1̂Ω

∣∣∣2(t − λ) = |Ω|2.

Fuglede’s Conjecture in geometric language makes more sense:

Ω tiles at level 1⇐⇒
∣∣∣1̂Ω

∣∣∣2 tiles at level |Ω|2.
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Tiling in Fourier space

Define the measure δT =
∑

t∈T δt (unit point masses at t ∈ T ).∑
t∈T f (x − t) = const. a.e. ⇐⇒ f ∗ δT = const.

⇐⇒ f̂ · δ̂T = const.δ0 (taking Fourier Transform).

Almost equivalent to:

supp δ̂T ⊆ {0} ∪
{
f̂ = 0

}
Lattice case: T = AZd , A ∈ GL(n,R).

Dual lattice: T ∗ = A−>Zd .

Poisson Summation Formula:

δ̂T =
1

|detA|δT∗

implies
f ∗ δT = const.⇐⇒ f̂ ≡ 0 on T ∗ \ 0.
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Lattice Fuglede is true

Fuglede 1974

Ω tiles Rd with a lattice T ⇐⇒ Ω has spectrum Λ = T ∗ (dual lattice)

May assume |Ω| = 1.

FT of
∣∣∣1̂Ω

∣∣∣2 is 1Ω ∗ 1−Ω whose support is Ω− Ω.

Having T ∗ as spectrum

⇐⇒
∣∣∣1̂Ω

∣∣∣2 tiles with T ∗

⇐⇒ T \ {0} ⊆ (Ω− Ω)c

⇐⇒ (T − T ) ∩ (Ω− Ω) = {0}
⇐⇒ Ω + T is a packing (i.e. no overlaps)
⇐⇒ Ω + T is a tiling (by volume-density matching & periodicity).
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Fuglede Conjecture: Positive results for convex bodies

Convex tiles are lattice tiles (Venkov, 1954, and McMullen, 1980)

=⇒ they are spectral.

Convex spectral bodies must be symmetric (K. 2000).

Same true for convex tiles (Minkowski).

“Curved” convex bodies are not spectral (Iosevich, Katz and Tao,
2001).

Conjecture true for convex bodies in R2 (Iosevich, Katz and Tao,
2003).

=⇒ only parellelograms and symmetric hexagons are spectral among
planar convex sets.
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Fuglede Conjecture: Positive results for general domains

For each normal direction of a spec-
tral polytope the same area measure
looks forward and backward.
(K. and Papadimitrakis, 2002)

Same is obviously true for poly-
topes that are tiles.

Asymmetry in surface area

A

BCannot be spectral

0 3/2Ω

If Ω ⊆ (0, 3
2 − ε) and |Ω| = 1

=⇒ conjecture true for Ω (K. and  Laba, 2001).
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Fuglede Conj.: Counterexamples for “spectral =⇒ tile”

Conjecture fails in direction “spectral =⇒ tile” for d ≥ 5 (Tao, 2003).

Also for d = 4 (Matolcsi, 2004).

Also for d = 3 (K. and Matolcsi, 2004).

First construct counterexamples in finite groups:
example in Zn1 × Zn2 × · · · × Znd lifts to Zd , then Rd .

In the group Zn
2 orthogonal exponentials (characters) on

Ω = {e1, e2, . . . , en}, ({ej} a “standard basis”),

are given by a n × n Hadamard matrix.

For example:

A 12× 12 Hadamard matrix gives a spectral set of size 12 in Z12
2 .

Not a tile for divisibility reasons.
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Fuglede Conj.: Counterexamples for “tile =⇒ spectral”

Also in finite groups first.

Harder than other direction:

no divisibility criterion for non-spectrality.

Conjecture fails in “tile =⇒ spectral” direction for d = 5
(K. and Matolcsi, 2004).

Also for d = 4 (Farkas and Révész, 2004).

Also for d = 3 (Farkas, Matolcsi and Mora, 2005).

Conjecture still open in both directions for d = 1, 2.

May be true for all convex bodies.
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Also for d = 3 (Farkas, Matolcsi and Mora, 2005).

Conjecture still open in both directions for d = 1, 2.

May be true for all convex bodies.

Mihalis Kolountzakis (U. of Crete) In which domains can one do Fourier Analysis?Renyi Institute, August 2013 14 / 22



Periodicity of tilings in dimension 1

Periodicity of tilings has strong connections to decidability questions
(Robinson, Berger, Wang, 1960s).

If A ⊆ Z is finite and tiles Z by translations at T
=⇒ T is periodic (Newman, 1977).

Combinatorial proof.

Implies decidability of the question: “Does A tile Z by translations?”

If A ⊆ R is compact, |∂A| = 0 and A tiles R translating at T
=⇒ T is periodic (Lagarias and Wang, 1994).

Combinatorial proof.

If f ∈ L1(R) has compact support and tiles R translating at T
=⇒ T is quasi-periodic
=⇒ T is periodic if f = 1A (K. and Lagarias, 1995).

Harmonic Analysis proof.

Question: Are one-dimensional spectra periodic?
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Periodicity of spectra in dimension 1

If Ω is a finite union of intervals and Λ is a spectrum of Ω
=⇒ Λ is periodic (Bose and Madan, 2010 and K. 2011).

If Ω is any bounded set and Λ is a spectrum of Ω
=⇒ Ω is periodic (Iosevich and K., 2011).

We describe the proof of the last result in some detail.
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Properties of the spectrum Λ

Normalizations: Suppose Ω ⊆ R is bounded, |Ω| = 1, and
0 ∈ Λ is a spectrum of Ω.

Λ− Λ ⊆ {0} ∪
{
1̂Ω = 0

}
Ω bounded =⇒ 1̂Ω is analytic,

{
1̂Ω = 0

}
is discrete.∑

λ∈Λ

∣∣∣1̂Ω

∣∣∣2(x − λ) ≡ 1 =⇒ Λ has density 1, bounded gaps.

Finite complexity: Fix window length w . The patterns of

Λ ∩ [λ, λ+ w ], λ ∈ Λ,

are finitely many.

We view Λ = {. . . , λ−1, λ0 = 0, λ1, . . .} as a double sequence of
symbols

(λj+1 − λj)j∈Z.

We identify Λ with an element of ΣZ,
Σ a finite alphabet of the Λ-gaps allowed.
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Symbolic sequences determined by half-lines

X ⊆ ΣZ closed, shift-invariant.

Say X is determined by right half-lines if for x = (xn) ∈ X

(xm, xm+1, xm+2, . . .) determines x (for any m).

Similarly by left half-lines.

Say X is determined by windows of size w ∈ N if

(xm, xm+1, . . . , xm+w−1) determines x (for any m).

Compactness (diagonal argument) =⇒

if X is determined by left half-lines and by right half-lines then X is
determined by a finite window size.
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Proof

Enough: ∃w <∞ s.t. if x , y ∈ X agree at a window of size w =⇒
they agree at first point to the right of window.

Suppose not. ∀n > 0 there is xn, yn ∈ X s.t. (shift-invariance):

xn−n = yn−n, x
n
−n+1 = yn−n+1, . . . , x

n
−1 = yn−1, but xn0 6= yn0 .

Passing to subsequence: ∃x , y ∈ X : xn → x , yn → y .

Then xn = yn for n < 0, x0 6= y0 (contradiction).

Pigeonhole principle =⇒

If X is determined by windows of size w then
each x ∈ X is periodic of period ≤ |Σ|w .
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Symbolic sequences with a spectral gap

Identify Λ with the double sequence (λn+1 − λn)n∈Z ∈ ΣZ.∑
λ∈Λ

∣∣∣1̂Ω

∣∣∣2(x − λ) ≡ 1 =⇒ supp δ̂Λ ⊆ {0} ∪ {1Ω ∗ 1−Ω = 0}

For some a > 0 we have a spectral gap: supp δ̂Λ ∩ (0, a) = ∅ (*).

Let X ⊆ ΣZ be all Λ satisfying (*). X is
(i) shift-invariant (obvious) and
(ii) closed.

Proof. Let X 3 Λn → Λ and φ ∈ C∞(0, a). Then δ̂Λn(φ) = 0.

δ̂Λ(φ) = δΛ(φ̂) =
∑
λ∈Λ

φ̂(λ) = lim
n

∑
λ∈Λn

φ̂(λ)

= lim
n
δΛn(φ̂) = lim

n
δ̂Λn(φ) = 0.
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Determined by half-lines

Suppose Λ1,Λ2 ∈ X (with Λ1
0 = Λ2

0 = 0) are identical to the left of 0:

Λ1
n = Λ2

n, (n ≤ 0).

Define µ = δΛ1 − δΛ2 . Then
(i) suppµ ⊆ [0,∞) and
(ii) supp µ̂ ∩ (0, a) = ∅.

Take ψ ∈ C∞(− a
10 ,

a
10 ) with ψ̂ > 0, define bounded measure ν = ψ̂µ.

Then supp ν̂ = supp (ψ ∗ µ̂) and

supp ν̂ ∩
(

1

10
a,

9

10
a

)
= ∅ and supp ν ⊆ [0,∞).

By the F. & M. Riesz Theorem (Uncertainty Principle): ν̂ vanishes on
set of 0 measure. This contradicts the spectral gap of ν, so ν ≡ 0
and µ ≡ 0 and Λ1 = Λ2.

Mihalis Kolountzakis (U. of Crete) In which domains can one do Fourier Analysis?Renyi Institute, August 2013 21 / 22



Determined by half-lines

Suppose Λ1,Λ2 ∈ X (with Λ1
0 = Λ2

0 = 0) are identical to the left of 0:

Λ1
n = Λ2

n, (n ≤ 0).

Define µ = δΛ1 − δΛ2 . Then
(i) suppµ ⊆ [0,∞) and
(ii) supp µ̂ ∩ (0, a) = ∅.

Take ψ ∈ C∞(− a
10 ,

a
10 ) with ψ̂ > 0, define bounded measure ν = ψ̂µ.

Then supp ν̂ = supp (ψ ∗ µ̂) and

supp ν̂ ∩
(

1

10
a,

9

10
a

)
= ∅ and supp ν ⊆ [0,∞).

By the F. & M. Riesz Theorem (Uncertainty Principle): ν̂ vanishes on
set of 0 measure. This contradicts the spectral gap of ν, so ν ≡ 0
and µ ≡ 0 and Λ1 = Λ2.

Mihalis Kolountzakis (U. of Crete) In which domains can one do Fourier Analysis?Renyi Institute, August 2013 21 / 22



Determined by half-lines

Suppose Λ1,Λ2 ∈ X (with Λ1
0 = Λ2

0 = 0) are identical to the left of 0:

Λ1
n = Λ2

n, (n ≤ 0).

Define µ = δΛ1 − δΛ2 . Then
(i) suppµ ⊆ [0,∞) and
(ii) supp µ̂ ∩ (0, a) = ∅.

Take ψ ∈ C∞(− a
10 ,

a
10 ) with ψ̂ > 0, define bounded measure ν = ψ̂µ.

Then supp ν̂ = supp (ψ ∗ µ̂) and

supp ν̂ ∩
(

1

10
a,

9

10
a

)
= ∅ and supp ν ⊆ [0,∞).

By the F. & M. Riesz Theorem (Uncertainty Principle): ν̂ vanishes on
set of 0 measure. This contradicts the spectral gap of ν, so ν ≡ 0
and µ ≡ 0 and Λ1 = Λ2.

Mihalis Kolountzakis (U. of Crete) In which domains can one do Fourier Analysis?Renyi Institute, August 2013 21 / 22



Determined by half-lines

Suppose Λ1,Λ2 ∈ X (with Λ1
0 = Λ2

0 = 0) are identical to the left of 0:

Λ1
n = Λ2

n, (n ≤ 0).

Define µ = δΛ1 − δΛ2 . Then
(i) suppµ ⊆ [0,∞) and
(ii) supp µ̂ ∩ (0, a) = ∅.

Take ψ ∈ C∞(− a
10 ,

a
10 ) with ψ̂ > 0, define bounded measure ν = ψ̂µ.

Then supp ν̂ = supp (ψ ∗ µ̂) and

supp ν̂ ∩
(

1

10
a,

9

10
a

)
= ∅ and supp ν ⊆ [0,∞).

By the F. & M. Riesz Theorem (Uncertainty Principle): ν̂ vanishes on
set of 0 measure. This contradicts the spectral gap of ν, so ν ≡ 0
and µ ≡ 0 and Λ1 = Λ2.

Mihalis Kolountzakis (U. of Crete) In which domains can one do Fourier Analysis?Renyi Institute, August 2013 21 / 22



Periodicity. Conclusion of the argument.

X is determined by half-lines
=⇒ X is determined by some finite window size w .

Therefore any Λ ∈ X is periodic with period ≤ |Σ|w .
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