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Definition of Chebyshev-type design

Let Sd ∈ Rd+1 be a unit sphere.

X = {xν}Nν=1 ⊂ Sd .

If the following quadrature formula

1

mes (Sd)

∫
Sd

f (x) dx =
1

N

N∑
ν=1

f (xν)

holds for all algebraic polynomials f (x1, . . . , xd+1) of degree at
most τ then X is called spherical τ -design.
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Main problem

For d and τ to construct a spherical design with minimal number
of points. This minimal number of points is denoted by N(d , τ).

Examples for d = 2:

N(2, 0) = 1 (point);

N(2, 1) = 2 (two poles);

N(2, 2) = 4 (tetrahedron);

N(2, 3) = 6 (octahedron);

N(2, 5) = 12 (icosahedron);

N(2, 7) = 24? (improved snub cube, open problem).

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Main problem

For d and τ to construct a spherical design with minimal number
of points. This minimal number of points is denoted by N(d , τ).

Examples for d = 2:

N(2, 0) = 1 (point);

N(2, 1) = 2 (two poles);

N(2, 2) = 4 (tetrahedron);

N(2, 3) = 6 (octahedron);

N(2, 5) = 12 (icosahedron);

N(2, 7) = 24? (improved snub cube, open problem).

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Lower bounds of N(d , τ)

Delsarte, Goethals and Seidel (1977) proved LP-bound for N(d , τ)
and obtained the well-known tight bound

N(d , τ) ≥
(

d +
[

τ+1
2

]
− 1

d

)
+

(
d +

[
τ
2

]
d

)
.

Thus for fixed d and τ →∞ we have the following asymptotic
result

N(d , τ) ≥ CDGS(d) τd (1 + o(1)) .
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LP-bound of N(d , τ)

Let πk(t) =
P

(d/2−1,d/2−1)
k (t)

P
(d/2−1,d/2−1)
k (1)

be Gegenbauer polynomials;

f (t) = f0︸︷︷︸
=1

+
τ∑

k=1

fk︸︷︷︸
any

πk(t) +
∞∑

k=τ+1

fk︸︷︷︸
≤0

πk(t) ≥ 0, t ∈ [−1, 1].

Theorem:

N(d , τ) ≥ B(d , τ), where B(d , τ) = max
f

f (1).

Examples: B(2, 3) = 6, B(2, 5) = 12, B(2, 7) =? (≈ 21).

From the odd bound (Boyvalenkov and Nikova, 1994) or SDP-bound
(G., 2010) we have N(2, 7) ≥ 22. On the other hand, improved snub cube
implies that N(2, 7) ≤ 24.
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Proof of LP-bound

Let I =
N∑

µ,ν=1

f (xµxν) =
∑
µ=ν︸︷︷︸
Nf (1)

+
∑
µ 6=ν︸︷︷︸
≥0

≥ Nf (1).

On the other hand: I =
∞∑

k=0

fk

N∑
µ,ν=1

πk(xµxν)︸ ︷︷ ︸
=Ik

= f0︸︷︷︸
=1

I0︸︷︷︸
=N2

+
τ∑

k=1

fk Ik︸︷︷︸
=0

+
∞∑

k=τ+1

fk︸︷︷︸
≤0

Ik︸︷︷︸
≥0

≤ N2.

Thus Nf (1) ≤ I ≤ N2 ⇒ N ≥ f (1).
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DGS approach

Let f =
τ∑

k=0

fkπk be a polynomial (fk = 0 for k ≥ τ + 1).

Usage Lukach theorem on the representation of nonnegative
polynomials (e.g. f = a2 + (1− t2)b2 for τ = 2s) and Schwarz
inequality.

Usage Gauss–Markov quadrature formulae (alternative
approach), e.g.

f0︸︷︷︸
=1

=

∫ 1
−1 f (t)(1− t2)d/2−1 dt∫ 1
−1(1− t2)d/2−1 dt

= γ0f (1) +
s∑

i=1

γi f (ri )︸ ︷︷ ︸
≥0

≥ γ0f (1).
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Yudin lower bound

Using an LP-bound, Yudin (1997) obtained the following
inequality

N(d , τ) ≥
∫ 1
−1(1− t2)d/2−1 dt∫ 1
tτ

(1− t2)d/2−1 dt
= CY (d) τd (1 + o(1)) .

Here tτ is the last zero of the Jacobi polynomial P(d/2,d/2)
τ .

Yudin approach: construction of an admissible convolution

function fY =
∞∑

k=0

fYkπk with small support on [−1, 1].

Conjecture: extremal function for B(d , τ) is a polynomial
of degree τ (tight case) or greater than τ (general case).
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Existent bounds for Chebychev-type designs

Seymour and Zaslavsky (1984) proved that spherical designs
exist for all parameters d and τ .

Korevaar and Meyers (1994) obtained the inequality

N(d , τ) ≤ Cdτd(d+1)/2.

Bondarenko, Radchenko and Viazovska (2010) proved
the bound

N(d , τ) ≤ Cdτd

(Korevaar and Meyers conjecture).

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Existent bounds for Chebychev-type designs

Seymour and Zaslavsky (1984) proved that spherical designs
exist for all parameters d and τ .

Korevaar and Meyers (1994) obtained the inequality

N(d , τ) ≤ Cdτd(d+1)/2.

Bondarenko, Radchenko and Viazovska (2010) proved
the bound

N(d , τ) ≤ Cdτd

(Korevaar and Meyers conjecture).

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Existent bounds for Chebychev-type designs

Seymour and Zaslavsky (1984) proved that spherical designs
exist for all parameters d and τ .

Korevaar and Meyers (1994) obtained the inequality

N(d , τ) ≤ Cdτd(d+1)/2.

Bondarenko, Radchenko and Viazovska (2010) proved
the bound

N(d , τ) ≤ Cdτd

(Korevaar and Meyers conjecture).

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Conjecture for the Chebychev-type designs

From DGS and BRV we have estimate N(d , τ) � C (d)τd .

Conjecture:
For each d there exists the following limit

lim
τ→∞

N(d , τ)

τd
= C (d).

Let C (d) be a “mystery” limit constant.
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Comparison of DGS and Y asymptotic results

DGS: C (d) ≥ 21−d

Γ(d + 1)
.

Y: C (d) ≥ Γ(d/2 + 1)Γ(d/2)

Γ(d)

(
2

qd/2

)d

where qd/2 is first zero of Bessel function Jd/2.

Examples:
1. For d = 2: CY (2) = 0.2724 . . . > CDGS(2) = 0.25.
Conjecture: C (2) ≤ 0.5.
2. For fixed τ and d →∞:

CDGS(d)

CY (d)
∼ (e/4)d

πd
. (0.68)d � 1.

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Comparison of DGS and Y asymptotic results

DGS: C (d) ≥ 21−d

Γ(d + 1)
.

Y: C (d) ≥ Γ(d/2 + 1)Γ(d/2)

Γ(d)

(
2

qd/2

)d

where qd/2 is first zero of Bessel function Jd/2.

Examples:
1. For d = 2: CY (2) = 0.2724 . . . > CDGS(2) = 0.25.
Conjecture: C (2) ≤ 0.5.
2. For fixed τ and d →∞:

CDGS(d)

CY (d)
∼ (e/4)d

πd
. (0.68)d � 1.

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Comparison of DGS and Y asymptotic results

DGS: C (d) ≥ 21−d

Γ(d + 1)
.

Y: C (d) ≥ Γ(d/2 + 1)Γ(d/2)

Γ(d)

(
2

qd/2

)d

where qd/2 is first zero of Bessel function Jd/2.

Examples:
1. For d = 2: CY (2) = 0.2724 . . . > CDGS(2) = 0.25.

Conjecture: C (2) ≤ 0.5.
2. For fixed τ and d →∞:

CDGS(d)

CY (d)
∼ (e/4)d

πd
. (0.68)d � 1.

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Comparison of DGS and Y asymptotic results

DGS: C (d) ≥ 21−d

Γ(d + 1)
.

Y: C (d) ≥ Γ(d/2 + 1)Γ(d/2)

Γ(d)

(
2

qd/2

)d

where qd/2 is first zero of Bessel function Jd/2.

Examples:
1. For d = 2: CY (2) = 0.2724 . . . > CDGS(2) = 0.25.
Conjecture: C (2) ≤ 0.5.

2. For fixed τ and d →∞:

CDGS(d)

CY (d)
∼ (e/4)d

πd
. (0.68)d � 1.

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

Comparison of DGS and Y asymptotic results

DGS: C (d) ≥ 21−d

Γ(d + 1)
.

Y: C (d) ≥ Γ(d/2 + 1)Γ(d/2)

Γ(d)

(
2

qd/2

)d

where qd/2 is first zero of Bessel function Jd/2.

Examples:
1. For d = 2: CY (2) = 0.2724 . . . > CDGS(2) = 0.25.
Conjecture: C (2) ≤ 0.5.
2. For fixed τ and d →∞:

CDGS(d)

CY (d)
∼ (e/4)d

πd
. (0.68)d � 1.

D. Gorbachev Asymptotic lower bound for cardinality of designs



Known bounds for Chebyshev-type designs
Main results

Estimates for weighted designs

LP-bound of sphere packing density

Let ∆d be the sphere packing density of Rd and let

A(d) =
vol (Bd)

2d
min

f
f (0).

Here f is a radial positive defined function with mean value
f̂ (0) = 1, f |Rd\Bd ≤ 0, Bd is the unit ball.

LP-bound of ∆d :
G. (2000), Cohn and Elkies (2001): ∆d ≤ A(d).

Yudin (1989) constructed good admissible function for A(d)
problem.
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LP-bounds of ∆d

Cohn and Elkies (2001), G. and Filippov (2004):

d
Central density

of known packing Upper bound for
A(d)

vol (Bd)
2 0.28868 0.28868
8 0.0625 0.06250
24 1 1.00000
36 4.4394 258.54994
72 68719476736 31734457390376
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Main result

Theorem (G.):

We obtain the following new lower bound for

B(d , τ) ≥ 1

2dΓ(d)A(d)︸ ︷︷ ︸
Cnew (d)

τd (1 + o(1))

where A(d) is LP-bound of sphere packing density ∆d .
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Examples

For d = 2
C (2) ≥ 0.2756︸ ︷︷ ︸

new

> 0.2724︸ ︷︷ ︸
Y

> 0.25︸︷︷︸
DGS

.

Comparison of Y and new asymptotic results:

d Lower bound for
Cnew (d)

CY (d)
2 1.011
8 4.591
24 20.841
36 40.684
72 274.38
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Idea of proof

Let f be an admissible smooth function for A(d) problem.

Define an even function g(t) = f (τ arccos t), t ∈ [0, 1].

Using Baratella–Gatteschi (1988) Hilb-type expansion
for Jacobi polynomials.

For DGS LP-bound the function g/g0 is admissible
and the following conditions hold:
g(1) = mes (Sd−1) f̂ (0) (1 + o(1));

g0 =
(2π/τ)d f (0)∫ 1

−1(1− t2)d/2−1 dt
(1 + o(1));

gk = τ−d−ε (f (k/τ) + εk) ,
∑

|εk | = o(1), k ≥ τ + 1.

This implies the statement of the theorem.
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Estimates for weighted spherical designs

X is a weighted spherical design if the following quadrature
formula

1

mes (Sd)

∫
Sd

f (x) dx =
N∑

ν=1

λν f (xν)

holds for positive weights λν .

DGS LP-bound is true for weighted designs.

Upper existent bound follows from product of one-dimensional
Gauss quadratures, e.g. elementary fact N(2, τ) . 0.5τ2

(conjecture: N(2, τ) ≈ 0.33τ2).

Thus main theorem also holds for the weighted case.
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Some interenet resources

Neil J.A. Sloane: Home Page;

D. Potts: Home page;

Snub cube;

Sphere packing.

D. Gorbachev Asymptotic lower bound for cardinality of designs

http://neilsloane.com/
http://www-user.tu-chemnitz.de/~potts/workgroup/graef/quadrature/
http://en.wikipedia.org/wiki/Snub_cube
http://en.wikipedia.org/wiki/Sphere_packing
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Thank you for your attention!
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