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In this talk we present a simple combinatorial method to study some
combinatorial problems in finite fields.



1. Equations in finite fields

Sarkozy studied the number of solutions of the following equations in Fq:

(1) a + b = cd , a ∈ A, b ∈ B, c ∈ C , d ∈ D

(2) ab + 1 = cd , a ∈ A, b ∈ B, c ∈ C , d ∈ D

Theorem (Sarkozy, 2005)
If N is the number of solutions of the equation (1) or (2), then∣∣∣∣N − |A||B||C ||D|q

∣∣∣∣� (|A||B||C ||D|)1/2 q1/2

The proof use estimates of exponential sums and he asked for an

algebraic combinatorial proof of these results.



2. Incidence of points and lines in Fq × Fq

Let P be a set of points and L a set of lines in Fq × Fq. We denote by
I(P, L) the number of incidences between P and L.

I(P, L) = |{(p, l) : p ∈ P, l ∈ L, p ∈ l}|

Theorem (Vinh)

I(P, L) ≤ |P||L|
q

+
√
|P||L|q.



3. Sum-product estimates in finite fields

Theorem (Garaev, 2007)
For any A1,A2,A3 ⊂ Fq we have

(∗) |A1 + A2||A1A3| � min(|A1|q, |A1|2|A2||A3|/q).

He asked for a combinatorial proof of this estimate.

Solymosi (2010) gave a different proof of this result using the spectral
graph method.

(∗) =⇒ max(|A + A|, |AA|)� min(
√
|A|q, |A|2/√q),

which is optimal when |A| � p2/3.



Sidon sets

Definition: A set A ⊂ (G ,+) is a Sidon set if all the differences a−a′, a 6=
a′ are distinct.

|A|(|A| − 1) ≤ |G | − 1 =⇒ |A| ≤
√
|G | − 3/4 + 1/2

The interesting Sidon sets are those with

|A| =
√
|G | − δ

and small δ.



I The set A = {(x , x2), x ∈ Zq} is a Sidon set in G = Fq × Fq with q
elements.
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|A| = |G |1/2 − δ, δ = 0.



I Let g be a generator of Fq. The set

A = {(logg x , x), x ∈ F∗q}

is a Sidon set in G = Zq−1 × Fq with q − 1 elements.
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|A| = |G |1/2 − δ, δ = 1/2− o(1).



I Let g1, g2 be generators of Fq. The set

A = {(x , y), x , y ∈ Zq−1, g x
1 + g y

2 = 1}

is a Sidon set in G = Zq−1 × Zq−1 with q − 2 elements.
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|A| = |G |1/2 − δ, δ = 1.



The main theorem

Theorem (C.,2012)
Let A be a Sidon set in a finite abelian group G with |A| =

√
|G | − δ.

Then, for all B,B ′ ⊂ G we have

|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| =
|A|
|G |
|B||B ′|+ θ(|B||B ′|)1/2|G |1/4

for some θ with |θ| ≤ 1 + max(0, δ) |B||G | .

We will apply this theorem to the three Sidon sets above. For the Sidon
sets in the examples we have that 0 ≤ δ ≤ 1.

In applications we have |B| = o(|G |), so |θ| ≤ 1 + o(1).



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Corollary
For any U,V ⊂ Fq × Fq let N(U,V ) be the number of solutions of the
equation

x3 + x4 = (x1 + x2)2, (x1, x3) ∈ U, (x2, x4) ∈ V .

We have ∣∣∣∣N − |U||V |q

∣∣∣∣ ≤√q|U||V |.

Proof: We consider the set A = {(x , x2) : x ∈ Fq} and the sets

B = {(x1, x3) ∈ U} B ′ = {(x2, x4) ∈ V }.

It is clear that (x1, x3) + (x2, x4) ∈ A ⇐⇒ x3 + x4 = (x1 + x2)2. Thus

N(U,V ) = |{(b, b′) ∈ B × B ′ : b + b′ ∈ A}|



Corollary
For any A1,A2,A3,A4 ⊂ Fq let N be the number of solutions of the
equation

x1 + x2 = (x3 + x4)2, xi ∈ Ai∣∣∣∣N − |A1||A2||A3||A4|
q

∣∣∣∣ ≤√q|A1||A2||A3||A4|.

Corollary
For any A1,A2 ⊂ Fq let N be the number of solutions of the equation

x1 + x2 = z2, x1 ∈ A1, x2 ∈ A2, z ∈ Fq.

|N − |A1||A2|| ≤
√

q|A1||A2|.

Corollary (Shkredov)
Let A1,A2 ⊂ Fq, |A1||A2| > 2q. Then there exist x , y ∈ Fq such that

x + y ∈ A1, xy ∈ A2.



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Corollary (Sarkozy)
For any U,V ⊂ F∗q × Fq let N(U,V ) be the number of solutions of the
equation

x1x2 = x3 + x4, (x1, x3) ∈ U, (x2, x4) ∈ V .

We have ∣∣∣∣N − |U||V |q

∣∣∣∣�√
q|U||V |.

Proof: We consider the set A = {(log x , x) : x ∈ F∗q} and the sets

B = {(log x1, x3) : (x1, x3) ∈ U} B ′ = {(log x2, x4) : (x2, x4) ∈ V }.

It is clear that (log x1, x3) + (log x2, x4) ∈ A ⇐⇒ x1x2 = x3 + x4. Thus

N(U,V ) = |{(b, b′) ∈ B × B ′ : b + b′ ∈ A}|



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Corollary (Sarközy)
For any U,V ⊂ F∗q × F∗q let N(U,V ) be the number of solutions of the
equation

x1x2 − x3x4 = 1, (x1, x3) ∈ U, (x2, x4) ∈ V .

We have ∣∣∣∣N − |U||V |q

∣∣∣∣�√
q|U||V |.

Proof: We consider the set A = {(x , y) : g x − g y = 1} and the sets

B = {(log x1, log x3) : (x1, x3) ∈ U} B ′ = {(log x2, log x4) : (x2, x4) ∈ V }.

It is clear that (log x1, log x3) + (log x2, log x4) ∈ A ⇐⇒ x1x2 − x3x4 = 1.
Thus

N(U,V ) = |{(b, b′) ∈ B × B ′ : b + b′ ∈ A}|



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Theorem (Vinh)
I(P, L) = |P||L|

q + O
(√
|P||L|q

)
.

Proof: Let

L = {y = λix + µi : 1 ≤ i ≤ |L|}
P = {(pj , qj) : 1 ≤ j ≤ |P|}

We consider the Sidon set A = {(log x , x) : x ∈ F∗q} and the sets

B = {b = (log λi ,−µi ) : 1 ≤ i ≤ |L|}
B ′ = {b′ = (log pj , qj) : 1 ≤ j ≤ |P|}

We observe that
b + b′ ∈ A ⇐⇒ λipj = qj − µi ⇐⇒ (pj , qj) ∈ y = λix + µi

I(P, L) =
q − 1

(q − 1)q
|P||L|+θ(|P||L|)1/2((q−1)q)1/4 =

|P||L|
q

+O(
√
|P||L|q)



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Corollary
Let A be a Sidon set in a finite abelian group G with |A| =

√
|G | − δ.

Then, for all B,B ′ ⊂ G we have

|A ∩ B| ≤ |B + B ′||A|
|G |

+ θ

(
|B + B ′|
|B ′|

)1/2

|G |1/4

for some θ with |θ| ≤ 1 + max(0, δ) |B||G | .

Proof:

|B ′||A ∩ B| = |{(−b′, b + b′) : b′ ∈ B ′, b ∈ B, −b′ + (b + b′) ∈ A}|
≤ |{(−b′, b′′) ∈ (−B ′)× (B + B ′), −b′ + b′′ ∈ A}|

≤ |A||B ′||B + B ′|
|G |

+ θ
√
|B ′||B + B ′||G |1/4.



|A ∩ B| ≤ |B+B′||A|
|G | + θ

(
|B+B′|
|B′|

)1/2
|G |1/4

Theorem (Garaev, 2007)
Let A1,A2,A3 ∈ Fq. We have

|A1A2||A1 + A3| � min(|A1|q, |A1|2|A2||A3|/q).

Proof: We consider the Sidon set A = {(log x , x) : x ∈ Fq} and the sets

B = (log A1)× A1

B ′ = (log A2)× A3

Since (log a1, a1) ∈ A for all a1 ∈ A1 we have that |A ∩ B| = |A1|. We
observe also that |B + B ′| = |A1A2||A1 + A3|. Lemma above implies that

|A1| ≤
|A1A2||A1 + A3|

q
+ θ

√
q
|A1A2||A1 + A3|
|A2||A3|

.



|A ∩ B| ≤ |B+B′||A|
|G | + θ

(
|B+B′|
|B′|

)1/2
|G |1/4

Theorem (Garaev-Shen)
Let A1,A2,A3 ∈ Fq. We have

|(A1 + 1)A2||A1A3| � min(|A1|q, |A1|2|A2||A3|/q).

Proof: We consider the Sidon set A = {(x , y) : g x − g y = 1} and the
sets

B = (log(A1 + 1))× log A1

B ′ = (log A2)× log A3

Since (log(a1 + 1), log a1) ∈ A for all a1 ∈ A1 we have that
|A ∩ B| = |A1|. We observe also that |B + B ′| = |(A1 + 1)A2||A1A3|.
Lemma above implies that

|A1| ≤
|(A1 + 1)A2||A1A3|

q
+ θ

√
q
|(A1 + 1)A2||A1A3|

|A2||A3|



|A ∩ B| ≤ |B+B′||A|
|G | + θ

(
|B+B′|
|B′|

)1/2
|G |1/4

Theorem (Solymosi, 2008)
Let p(x) be a quadratic polynomial. For all X ⊂ Fq we have

|X + p(X )| � min(
√
|X |q, |X |2/√q).

Proof: We consider the Sidon set A = {(x , p(x)) : x ∈ Fq} and the sets

B = X × p(X )

B ′ = p(X )× X

Since (x , p(x)) ∈ A for all x ∈ X we have that |A ∩ B| = |X |. We
observe also that |B + B ′| = |X + p(X )|2. Lemma above implies that

|X | ≤ |X + p(X )|2

q
+ O

(
|X + p(X )|
|X |

√
q

)



|A ∩ B| ≤ |B+B′||A|
|G | + θ

(
|B+B′|
|B′|

)1/2
|G |1/4

Theorem (Solymosi, 2008)
Let p(x) be a quadratic polynomial. For all X ⊂ Fq we have

max(|X + X |, |p(X ) + p(X )|)� min(
√
|X |q, |X |2/√q).

Proof: We consider the Sidon set A = {(x , p(x)) : x ∈ Fq} and the sets

B = X × p(X )

B ′ = X × p(X )

Since (x , p(x)) ∈ A for all x ∈ X we have that |A∩B| = |X |. We observe
also that |B + B ′| = |X + X ||p(X ) + p(X )|. Lemma above implies that

|X | ≤ |X + X ||p(X ) + p(X )|
q

+ O

(√
|X + X ||p(X ) + p(X )|

|X |
√

q

)



The main theorem

Theorem (C.,2012)
Let A be a Sidon set in a finite abelian group G with
|A| =

√
|G | − δ. Then, for all B ,B ′ ⊂ G we have

|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| =
|A|
|G |
|B||B ′|+ θ(|B||B ′|)1/2|G |1/4

for some θ with |θ| ≤ 1 + max(0, δ) |B|
|G | .



Proof of the main theorem

|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| =
∑
b′∈B

rA−B(b′).

i)
∑

x∈G rA−B(x) = |A||B|

ii)
∑

x∈G r2A−B(x) =
∑

x∈G rA−A(x)rB−B(x)

iii)
∑

x∈G

(
rA−B(x)− |A||B||G |

)2
=
∑

x∈G rA−A(x)rB−B(x)− |A|
2|B|2
|G |

E = |{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| − |A|
|G |
|B||B ′|

=
∑
b′∈B′

(
rA−B(b′)− |A||B|

|G |

)



E 2 ≤
∑
b′∈B′

1
∑
b′∈B′

(
rA−B(b′)− |A||B|

|G |

)2

≤ |B ′|
∑
x∈G

(
rA−B(x)− |A||B|

|G |

)2

by iii) = |B ′|

(∑
x∈G

rA−A(x)rB−B(x)− |A|
2|B|2

|G |

)

(A is a Sidon set) ≤ |B ′|

|A||B|+∑
x 6=0

rB−B(x)− |A|
2|B|2

|G |


= |B ′|

(
|A||B|+ |B|2 − |B| − |A|

2|B|2

|G |

)
(|A| = |G |1/2 − δ) = |B||B ′|

(
|G |1/2 − δ − 1 + |B|2δ|G |

1/2 − δ2

|G |

)
≤ |B||B ′||G |1/2

(
1 + 2 max(0, δ)

|B|
|G |

)



The equation g x − g y = λ

Let g be a generator of Fp and let M the smallest positive integer such
that

{g x − g y : 1 ≤ x , y ≤ M} = Fp.

In other words, M is the smallest integer such that the equation

g x − g y = λ, 1 ≤ x , y ≤ M

has solutions for any λ ∈ Fp.

I M � p3/4 log p (Rudnick and Zaharescu, 2000)

I M ≤ Cp3/4 (Garaev and Khue, Konyagin, Shkredov, 2003)

I M ≤ 25/4p3/4 (Garćıa, 2005)

I M ≤ 2p3/4 (Garaev-Garćıa, personal communication)

I M ≤ (
√

2 + o(1))p3/4 (C., 2012)



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Proof: Suppose that the equation g x − g y = λ, 1 ≤ x , y ≤ M has not
solutions. We consider the Sidon set

A = {(x , y) : g x − g y = λ}
Since (x , y) ∈ A ⇐⇒ (y , x) + ( p−1

2 , p−22 ) ∈ A, the set in red color does
not contains elements of A.

B

M/2

B + B

M



|{(b, b′) ∈ B × B ′ : b + b′ ∈ A}| = |A|
|G | |B||B

′|+ θ(|B||B ′|)1/2|G |1/4

Proof:

|A|
|G |
|B||B ′| ≤ (1 + o(1))(|B||B ′|)1/2|G |1/4 =⇒ M ≤ (

√
2 + o(1))p3/4

|B| = |B ′| ∼ M2/2, |A| = p − 2, |G | = (p − 1)2

B

M/2

B + B

M



Let J(M) the number of solutions of

g x − g y = 1, 1 ≤ x , y ≤ M.

Theorem (Folklore)

J(M) =
M2

p
+ O(

√
p log2 p).

In particular, J(M) ∼ M2/p in the range Mp−3/4 log−1 p →∞.

Theorem (Garaev, 2006)

J(M) =
M2

p
+ O

(
M2/3 log2/3(Mp−3/4 + 2) +

√
p
)
.

In particular, J(M) ∼ M2/p in the range Mp−3/4 →∞.

Theorem (C., 2012)

J(M) =
M2

p
+ O

(√
peO(
√

log(Mp−3/4+2))
)
.



Let I (M) be the number of solutions of

xy = 1, 1 ≤ x , y ≤ M.

Theorem (Folklore)

I (M) =
M2

p
+ O(

√
p log2 p).

In particular, I (M) ∼ M2/p in the range Mp−3/4 log−1 p →∞.

Theorem (Garaev, 2006)

I (M) =
M2

p
+ O

(√
p log2(pM−3/4 + 2)

)
.

In particular, I (M) ∼ M2/p in the range Mp−3/4 →∞.



Saving the logarithm in the threshold

Theorem (C.-Zumalacárregui, 2013)
Let G ∼= Zn1 × · · · × Znk be a finite abelian group and B ⊂ G a
k-dimensional box. For any subset A ⊂ G we have

|A ∩ B| =
|A||B|
|G |

+ Ok

(
m(A) logk

(
|A||B|

m(A)|G |
+ 2

))
where

m(A) = max
χ 6=χ0

∣∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣ .

In the interesting applications m(A)� |A|1/2 holds. It is the case when

A is a Sidon set with |A| = |G |1/2 + O(1).



Applications

|A ∩ B| = |A||B|
|G | + Ok

(
m(A) logk

(
|A||B|

m(A)|G | + 2
))

Take A = {(x , y) : g x − g y = 1}, G = Zp−1 × Zp−1 and

B = [1,M]× [1,M].

It is easy to check that m(A) ≤ √p. Theorem above implies that if J(M)
is the number of solutions of

g x − g y = 1, 1 ≤ x , y ≤ M

then

J(M) = |A ∩ B| =
M2

p
+ O

(√
p log2(Mp−3/4 + 2)

)



Proof

Lemma
Let G be a finite abelian group. For any A,B,C ⊂ G we have

|{(b, c) ∈ B×C : b+c ∈ A}| =
|A||B||C |
|G |

+θ
m(A)

|G |
∑
χ 6=χ0

∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣∣
∣∣∣∣∣ ∑
b′∈B′

χ(b′)

∣∣∣∣∣
for some |θ| ≤ 1.

Proof:

|{(b, c) ∈ B × C : b + c ∈ A}| =
1

|G |
∑
χ

∑
a∈A,b∈B,c∈C

χ(b + c − a)

=
|A||B||C |
|G |

+ Error



Proof

Lemma
Let G be a finite abelian group. For any A,B,C ⊂ G we have

|{(b, c) ∈ B×C : b+c ∈ A}| =
|A||B||C |
|G |

+θ
m(A)

|G |
∑
χ 6=χ0

∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣∣
∣∣∣∣∣ ∑
b′∈B′

χ(b′)

∣∣∣∣∣
for some |θ| ≤ 1.

Proof:

|Error | =

∣∣∣∣∣∣ 1

|G |
∑
χ 6=χ0

∑
a∈A,b∈B,c∈C

χ(b + c − a)

∣∣∣∣∣∣
≤ 1

|G |
∑
χ 6=χ0

∣∣∣∣∣∑
a∈A

χ(a)

∣∣∣∣∣
∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣∣
∣∣∣∣∣ ∑
b′∈B′

χ(b′)

∣∣∣∣∣
≤ m(A)

|G |
∑
χ 6=χ0

∣∣∣∣∣∑
b∈B

χ(b)

∣∣∣∣∣
∣∣∣∣∣ ∑
b′∈B′

χ(b′)

∣∣∣∣∣



Proof

B =
k∏

i=1

[Hi + 1,Hi + Mi ]

We consider two approximations of B, say B ′,B ′′, and a suitable small
box C such that

B ′′ + C ⊂ B ⊂ B ′ + C

C =
k∏

i=1

[0,mi ]

|(b′′, c) ∈ B ′′ × C : b′′ + c ∈ A}|
|C |

≤ |A∩B| ≤ |(b′, c) ∈ B ′ × C : b′ + c ∈ A}|
|C |



Proof

For α = (α1, . . . , αk) ∈ G we write

χα(x1, . . . , xk) = e

(
α1x1

n1
+ · · ·+ αkxk

nk

)
.

∑
c∈C

χα(c) =
k∏

i=1

(
mi∑
ci=0

e

(
αici
ni

))
∣∣∣∣∣∑
c∈C

χα(c)

∣∣∣∣∣ =
k∏

i=1

min

(
4ni

|αi |
,mi + 1

)
∑
α

∣∣∣∣∣ ∑
b′∈B′

χα(b′)

∣∣∣∣∣
∣∣∣∣∣∑
c∈C

χα(c)

∣∣∣∣∣ ≤
k∏

i=1

 ∑
0≤αi≤ni/2

min( 8ni
αi
, 4Mi ) min( 4ni

αi
,mi + 1)




