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In this talk we present a simple combinatorial method to study some
combinatorial problems in finite fields.



1. Equations in finite fields

Sarkozy studied the number of solutions of the following equations in [Fy:
(1) a+b=cdd, acA beB, ceC,deD
(2) ab+1=cd, acA beB,ceC,deD

Theorem (Sarkozy, 2005)
If N is the number of solutions of the equation (1) or (2), then

N

Al|B||CI||D
- B < asiclon o

The proof use estimates of exponential sums and he asked for an
algebraic combinatorial proof of these results.



2. Incidence of points and lines in [, x g

Let P be a set of points and L a set of lines in Iy x F,. We denote by
Z(P, L) the number of incidences between P and L.

I(P,L) = {(p.1): peP, L, pell

Theorem (Vinh)

Pl|L
z(p.0) < PIH /PTG



3. Sum-product estimates in finite fields

Theorem (Garaev, 2007)
For any A1, Az, Az C Fgq we have

(%) |AL + Azl|A1As] > min(|A1]q, |A1*[ Az||As| /q).

He asked for a combinatorial proof of this estimate.

Solymosi (2010) gave a different proof of this result using the spectral
graph method.

(+) = max(|A + A[,|AA]) > min(/|Alq, |A]*/v/q),

which is optimal when |A| > p?/3.



Sidon sets

Definition: Aset A C (G, +) is a Sidon set if all the differences a—a’, a #
a’ are distinct. J

AI(IAl = 1) <[G] =1 = [Al < V|G| - 3/4+1/2

The interesting Sidon sets are those with
Al = V|Gl =

and small 4.



» The set A= {(x,x?), x € Zq} is a Sidon set in G = F, x F, with q
elements.

Al =|G|"? -5, 5=0.



> Let g be a generator of ;. The set
A= {(log, x,x), x € Fg}

is a Sidon set in G = Z4_1 x Fy with g — 1 elements.

|Al = |G|"2 -6, 6=1/2—0(1).



> Let g1, 8 be generators of ;. The set

A:{(X7}’)7 X’yeZq—la gf+g§/: 1}

is a Sidon set in G = Zg_1 X Zg—1 with g — 2 elements.

Al =|G|"2 -5, 6=1.



The main theorem

Theorem (C.,2012)

Let A be a Sidon set in a finite abelian group G with |A| = /|G| — .
Then, for all B,B’ C G we have

A
{(b,b) € BxB': b+b' €A} = |G|||B||B’| +0(1BIIB'[) /2|6

for some 0 with |0] < 1+ max(0, 6)%.
We will apply this theorem to the three Sidon sets above. For the Sidon
sets in the examples we have that 0 < ¢ < 1.

In applications we have |B| = o(|G|), so |0] < 1+ o(1).



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Corollary
For any U,V CFq x Fq let N(U, V) be the number of solutions of the
equation
X3+ Xq = (X1 —|—X2)2, (X17X3) S U, (X2,X4) c V.
We have

ul||lvV
‘N‘HH“/‘”'V"

Proof: We consider the set A = {(x,x?): x € F,} and the sets
B ={(x1,x3) € U} B' ={(x2,xs) € V}.
It is clear that (x1,x3) + (X2, %) € A <= x3 + x4 = (x1 + x2)?. Thus

N(U, V) = |{(b,b) e Bx B : b+b €A}



Corollary
For any A1, Az, Az, Ay C Fy let N be the number of solutions of the
equation

X1+ Xo = (X3 +X4)2, X; € A;

AqillAs]| Azl A
N ""q"" < /e[ A Al ATl

Corollary
For any A1,Ax C IFy let N be the number of solutions of the equation

X1"|'X2:Z27 x1 € A1, xo € Ay, ZEFq.
IN = |Au][Az]| < v/ q|As][Az].

Corollary (Shkredov)
Let A1, Ay C Fy, |A1]|Az| > 2q. Then there exist x,y € Fq such that

x+y €A, xy € A.



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Corollary (Sarkozy)

For any U,V C F; x Fy let N(U, V') be the number of solutions of the
equation

X1X = X3 + X4, (x1,x3) € U, (x2,xa) € V.

We have

ul|lv
'N—l I ‘<< q|U||V].

q
Proof: We consider the set A = {(logx,x) : x € Fy} and the sets

B = {(log x1,x3) : (x1,x3) € U} B' = {(log x2, x1) : (x2,x) € V}.
It is clear that (log x1,x3) + (log x2,x4) € A <= x1x2 = x3 + X4. Thus

N(U,V) = [{(b,b) € Bx B : b+b €A}



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Corollary (Sarkozy)

For any U,V C F; x IF let N(U, V') be the number of solutions of the
equation

X1Xp — X3Xg = 1, (X17X3) € U7 (X27X4) c V.

We have

%
'N—' ! ‘<< alul[V].

q
Proof: We consider the set A= {(x,y): g — g¥ =1} and the sets

B = {(log x1,log x3) : (x1,x3) € U} B" = {(log x2, log x4) : (x2,xs) € V}.
It is clear that (log xi1, log x3) + (log x2,log xs) € A <= x1x2 — x3xa = 1.

Thus
N(U,V)=|{(b,b') € Bx B": b+ b € A}



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Theorem (Vinh)
(P, 1) = P + 0 (/IPILlq).
Proof: Let
L = {y=Xx+up: 1<i<|L[}
P = {(pg): 1<j<|Pl}
We consider the Sidon set A = {(logx,x) : x € F} and the sets
B = {b: (|Og/\,',—p,,') o1 < i < |L|}
B' = {b'=(logpj,q): 1<j<|P[}

We observe that
b+b A )\;pj:qj—u,' — (pj,qj)Ey:A,-x—i—u,-

-1 P|IL
TPl (-9 = Pl TR

Z(P,L) = Q-1



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Corollary

Let A be a Sidon set in a finite abelian group G with |A| = /|G| — ¢.
Then, for all B, B’ C G we have

2
IB+BAl L, <B+B’|>1/ e

AN B| <
G| 1B/]

for some 6 with |6] < 1+ max(0, 5)%.

Proof:
IB[ANB| = |{(~b,b+b): b €B, beB, —b +(b+b)c A}
< (.5 € (~B) x (B+ B, —b'+ b < Al
Al||B'||B + B’



, SN 1/2
B+B'||A B+B
AN B| < 1BBIAL 4 g (180817 e

Theorem (Garaev, 2007)
Let A1, Az, A3 € Fy. We have

|ALAa|| AL + As| > min(| A1l g, [Auf?] Azl | As] /q).

Proof: We consider the Sidon set A= {(logx,x): x € Fq} and the sets

B = (|OgA1) X A1
B/ = (|OgA2) X A3

Since (log a1, a1) € A for all a; € A; we have that |[AN B| = |A;]. We
observe also that |B + B'| = |A1A||A1 + As|. Lemma above implies that

|A1A2|| A1 + As|

+46
|Aa || As|

A < |[A1A2|| A1 + As|
q



|ANB| < \B+‘BHA|+‘9<\B‘+B\> |G|L/4

Theorem (Garaev-Shen)
Let A1, Az, A3 € Fy. We have

(A1 + 1)A2|[A1As| > min(|Aulq, [Ar*[ A2l As]/q).

Proof: We consider the Sidon set A= {(x,y): g — g¥ =1} and the
sets

B = (log(A1+1)) x logA;
B" = (logAz) x log A3
Since (log(a; + 1), log a;) € A for all a; € A; we have that

|AN B| = |A1]. We observe also that |B + B'| = |[(A; + 1)Az||A1A3].
Lemma above implies that

[(A1 4+ 1)Az||A1 As]
|Az|[As]

|A1| < |(A1+1)A2HA1A3|
q

+6



, SN 1/2
B+B'||A B+B
AN B| < 1BBIAL 4 g (180817 e

Theorem (Solymosi, 2008)
Let p(x) be a quadratic polynomial. For all X C Fq we have

X + p(X)| > min(v/|X[q, IX|*/\/q)-

Proof: We consider the Sidon set A= {(x, p(x)) : x € Fq} and the sets
B = Xxp(X)
B = p(X)xX

Since (x, p(x)) € A for all x € X we have that |[AN B| = |X]|. We
observe also that |B + B'| = |X + p(X)|?. Lemma above implies that

XX <|X T;(XN\/E)



, SN 1/2
B+B'||A B+B
AN B| < 1BBIAL 4 g (180817 e

Theorem (Solymosi, 2008)
Let p(x) be a quadratic polynomial. For all X C Fq we have

max(|X + X[, [p(X) + p(X)]) > min(v/|X[q,|X[*/v/q).

Proof: We consider the Sidon set A = {(x, p(x)) : x € Fq} and the sets

B = Xxp(X)
B = Xxp(X)

Since (x, p(x)) € A for all x € X we have that |[AN B| = |X|. We observe
also that |B + B’| = |X + X]|p(X) + p(X)|. Lemma above implies that

)< X X000 <¢|X+X|||px(><) +p(><>|ﬁ>



The main theorem

Theorem (C.,2012)
Let A be a Sidon set in a finite abelian group G with
|Al = /|G| — . Then, for all B,B’ C G we have

A
{(b,b) € BxB': b+b' €A} = |G|||B||B’| +0(1BIIB'[) /2|6

for some 0 with |0| < 1 + max(0, (5)%.



Proof of the main theorem

{(b,b) e Bx B : b+ b A= rap(b).

b'eB

1) Xvec ra-8(x) = |AlB]
i) Yoxee ra—s(X) = Y ra-alx)ra—s(x)
1AlIB] _ laPBP?

iii) erG ("A—B(X) I )2 = erG ra-a(x)rg—g(x) 1G]

A

E {(b.6) B x B b+t €AYl = [BE

|AllB]

= Z (rAB(b/)_ G| )

b’eB’



by iii) ~

(A is a Sidon set) ~»

(1Al =

|G|1/2 -5

)~

IN

IN

IA

2
Z Z s(b) — Al|B|
g
b’eB’ b eB’
L
|B’| <A B(x
2 ol
: AR
|B’| (ZrAA x)rg—g(x) — G|
xeG
Al2|B|?
(11814 Y rss0) - A
x7#0
Al%|B|?
&1 (1Al + 167 - 18] - A2
9 1/2 _ 52
sl (1612 -5 -1+ 181 21 =)

|B||B||G|*/? (1 + 2 max(0, 5):51)



The equation g*¥ — g¥ = A

Let g be a generator of F, and let M the smallest positive integer such
that

{g¥—g": 1<x,y <M} =F,.

In other words, M is the smallest integer such that the equation
g —g"=\1<x,y<M

has solutions for any A € IFp,.

v

M < p**log p (Rudnick and Zaharescu, 2000)
M < Cp®/* (Garaev and Khue, Konyagin, Shkredov, 2003)
M < 25/4p3/4 (Garcfa, 2005)

v

v

v

M < 2p3/4 (Garaev-Garcia, personal communication)

M < (v2 4 o(1))p%/* (C., 2012)

v



[{(b,b') € Bx B': b+b € A}| = [31|BI|B'| + 6(|B||B'|)"/?|G|/*

Proof: Suppose that the equation g*¥ — g¥ = A\, 1 < x,y < M has not
solutions. We consider the Sidon set

A={(xy): g"—g" =X}
Since (x,y) € A <= (y,x)+ (”T_l, ‘%2) € A, the set in red color does

not contains elements of A.

B B+ B



[{(b,b)) € Bx B': b+ b € A} = 14|B||B'| + 6(|B|| B'|)/?|G|"/*

= Tl
Proof:
TG IBIIET < (1-+ o(L)BIIE NI — M < (V2 +o(1))p
Bl =|B|~M?/2, |Al=p-2, |G|=(p—1)
B B+ B .

M/2 M



Let J(M) the number of solutions of
g —g'=11<xy<M.

Theorem (Folklore)

s =+ o( g’ )

In particular, J(M) ~ M?/p in the range Mp=3/*log™! p — ooc.
Theorem (Garaev, 2006)

M2
JM) ===+ 0 (/\/I2/3 log2/3(Mp~3/* 4 2) + \//5) .

In particular, J(M) ~ M?/p in the range Mp=3/% — oc.
Theorem (C., 2012)

M? -
JM) = 3 +0 (ﬁeO(V'Og(Mp 3/“+2))) )



Let /(M) be the number of solutions of

xy =1, 1<x,y <M.

Theorem (Folklore)

i) ="+ o(plog? ).

In particular, (M) ~ M?/p in the range Mp=3/*log™! p — oc.
Theorem (Garaev, 2006)

(M) = Aj: +0 (\ﬁlog2(pM_3/4 + 2)) :

In particular, (M) ~ M?/p in the range Mp=3/* — oo.



Saving the logarithm in the threshold

Theorem (C.-Zumalacérregui, 2013)

Let G = Zpy X -+ X Zp, be a finite abelian group and B C G a
k-dimensional box. For any subset A C G we have

|AllB| ( k( |Al| B ))
ANB| = + 0 lo —— +2
where

= max
x;éXo

Zx

In the interesting applications m(A) < |A|*/2 holds. It is the case when
A'is a Sidon set with |A| = |G|Y/2 + O(1).



Applications

AN B| =LAl 1 o, (m(A)|og (‘f“)‘fgﬁz))

Take A= {(x,y): g°—g"=1}, G=Zp_1 X Zp—1 and
=[1,M] x [1, M].
It is easy to check that m(A) < ,/p. Theorem above implies that if J(M)
is the number of solutions of
g_gy:]-a 1§XaySM

then
2

J(M) = |AN B| = M7 +0 <\/;3Iog2(/\/lp’3/4 + 2))



Proof

Lemma
Let G be a finite abelian group. For any A, B, C C G we have

Al|B]||C A)
1(6.c) € BxC - bre ey = AIBIA T 5~ 57 ()| 3= wio)
| | | ‘ X#Xo |1bEB b’ eB’
for some |6| < 1.
Proof:
{(b,c)e BxC: b+ceA}| = GZ > xlb+c—a)
€] X a€A,beB,ceC
= 7|A||B‘|C|+Error

|G




Proof

Lemma
Let G be a finite abelian group. For any A, B, C C G we have

> _x(b)

beB

Al|B A)
{(b,c) € BXC : brce A} = |||G|||C| n|,( 5

X#Xo0

for some |6| < 1.
Proof:

|Error| = Z Z (bt c—a)

x#xO a€A,beB,ceC
> x)

5 2 @) [ )

X#Xo |a€A beB beB
m
< 76 Z S| 5w
X#Xo |1beB b eB

> X

b'eB’

(b")




Proof

k
B = []IH; + 1, H; + M]
i=1
We consider two approximations of B, say B’, B”, and a suitable small
box C such that
B'"+CcBcCcB +C

k
C= H[a mij]

(b, c) € B" x C: b +c e A () € B/ x C: b/ +ce A}

<|ANB| <

IC| IC|



Proof

For a = (a1,...,ak) € G we write

QX QX
Xa(Xh...,xk):e( oy 2R k>.

m Ny

@ -T1(5: (7))

c;i=0
u 4n;
ZXQ —Hmm (',m,-—i—l)
ceC i=1 i
K
Z Z Xa(b') ZXQ(C) < Z min(&%, 4M;) min(22%, m; + 1)
o |bes cec =1

0<ai<n;/2



