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(Nancy) and Giovanni Peccati (Luxembourg).



The model for a quantitative CLT
Let Xj a sequence of independent identically distributed random
variables such that E(X1) = 0, E(X 2

1 ) = 1 and E(|X1|3) is finite. If

Vn :=
X1 + X2 + · · ·+ Xn√

n
,

then Vn converges in distribution to N ∼ N (0, 1).
Moreover

Theorem Berry-Esseen 1942. There exists some universal
constant C such that, for all real z,

|P(Vn < z)− P(N < z)| ≤ CE(|X1|3)√
n

.

Kolmogorov Distance dKol(X ,Y ) := supz |P(X < z)− P(Y < z)|.

dKol(Vn,N) ≤ CE(|X1|3)√
n

.



The setting of Breuer Major Theorem.

Let (X (j))j∈Z a sequence of Centered Gaussian random variables
such that E(X (j)X (j + k)) = ρ(k) (Stationary Centered Gaussian
Time series). We are interested in proving that

1√
n

n−1∑
k=0

F (X (k))
d→ N (0, σ2)

for some functionals F . In particular polynomials, and specifically
Hermite polynomials

Hq(t) = (−1)qe
t2

2
dq

dtq

(
e−

t2

2

)
.

When it is possible, give the speed of convergence.



Theorem Breuer-Major 1983. Let ρ ∈ `q(Z). Then TFAE

(i) Var
(

1√
n

∑n−1
k=0 Hq(X (k))

)
−→ σ2

q,

(ii) 1√
n

∑n−1
k=0 Hq(X (k))

d→ N (0, σ2
q),

with
σ2
q = q!

∑
k∈Z

ρ(k)q.

Problem. Have quantitative versions.

Numerous partial results, in particular Nourdin, Peccati, Podolskij
(2010) and Biermé, B., Léon (2010).



Wiener chaos and Fourth Moment Approach

L2(X ) := L2(Ω,A,P) =
⊕
Hq

where
⊕
Hq is the qth Wiener chaos.

Hq generated by the Hq(
∑

finite ajX (j)). In particular Hq(X (k))
belongs to the Wiener chaos Hq.

Particular case of quantitative CLT for Fn, when Fn belongs to Hq.

Fourth Moment Theorem (Nualart Peccati 2005.)Let
{Fn : n ≥ 1} a sequence of random variables in Hq such that
E[F 2

n ] = 1 for all n ≥ 1. Then Fn converges in distribution to
N ∼ N (0, 1) if and only if E[F 4

n ]→ 3.



Fourth moment and cumulants
Moreover (Nourdin, Peccati 2009)

dKol(Fn,N) ≤
√
E[F 4

n ]− 3.

E[N4] = 3. Stein’s Method: Y ∼ N (0, 1) if and only if
E(f ′(Y )) = E(Yf (Y )), f smooth.

Let F a real-valued random variable, φF (t) = E[e itF ] its
characteristic function. The jth cumulant of F , denoted by κj(F ),
is

κj(F ) = (−i)j
d j

dt j
log φF (t)|t=0.

κj(N) = 0 for all j > 2.
When E(F ) = 0 and E(F 2) = 1, then
κ3(F ) = E(F 3), κ4(F ) = E(F 4)− 3.

E[Fm+1]− κm+1(F ) =
m∑
s=1

(
m

s − 1

)
κs(F )E[Fm+1−s ].



Estimates of cumulants

Theorem (BBNP). There exists universal constants cs(q) such
that, for q ≥ 2 and s > 4, whenever F is in the chaos Hq and
satisfies E(F ) = 0, E(F 2) = 1, then

κs(F ) ≤ cs(q) [κ4(F )]
s
4 .

Compare to the bounds for moments given by hypercontractivity:

E(|F |s) ≤ (s − 1)sq/2.

All moments (and cumulants) are bounded in terms of the second
one, but all cumulants (except for the second and the third one)
are bounded in terms of the fourth cumulant.

The theorem was known for q = 2, with cs(q) = (s−1)!

2×3s/4 .



The speed of convergence for a smooth distance.
Recall:

dKol(F ,N) ≤
√
E[F 4]− 3.

Wasserstein distance

dWass(X ,Y ) := sup
‖h′‖∞≤1

|E[h(X )]− E[h(Y )]| .

“smooth” distance

d(X ,Y ) := sup
‖h′′‖∞≤1

|E[h(X )]− E[h(Y )]| .

Theorem (BBNP). Whenever F is in the chaos Hq and satisfies
E(F ) = 0, E(F 2) = 1, then

dWass(F ,N) ≤ C max
{
|E [F 3]|, (E [F 4]− 3

)3/4}.

d(F ,N) ≤ C max
{
|E [F 3]|,E [F 4]− 3

}
.



Sharpness of the estimates.

Moreover the last result is sharp:
for Fn in the chaos Hq such that E(Fn) = 0, E(F 2

n ) = 1 and
converging in distribution to N ∼ N (0, 1), there exists c > 0 such
that

d(Fn,N) ≥ c max
{
|E [F 3

n ]|,E [F 4
n ]− 3

}
.

For q ≥ 4 even, the maximum can be obtained by each of the two
terms (examples given in the Breuer Major setting).



Back to the theorem of Breuer Major.

Recall that {X (j), j ∈ Z} is a Gaussian time series with

E(X (j)X (j+k)) = ρ(k) so that E[Hq(X (j))Hq(X (j+k))] = q!ρ(k)q.

We define Fn :=
Hq(X (1)) + · · ·+ Hq(X (n))

√
nvn

,

with

vn : =
1

n
E
[
(Hq(X (1)) + · · ·+ Hq(X (n)))2

]
=

q!

n

n∑
k,k ′=1

ρ(k − k ′)q = q!
n∑

k=−n

(
1− |k |

n

)
ρ(k)q.

vn tends to q!
∑

k∈Z ρ(k)q = σ2
q, which is the variance of the limit

law for
√

vnFn.



The third and fourth cumulants.
In the same way, computation of the cumulants of order three (for
q even, otherwise 0) and four.

v
3/2
n
√

n κ3(Fn) = 1
n

∑n
j ,k,l=1 ρ(k − l)q/2ρ(k − j)q/2ρ(l − j)q/2

=
∑n

k,l=−n

(
1− max(k,l)

n + min(k,l)+

n

)
ρ(k − l)q/2ρ(k)q/2ρ(l)q/2.

tends to 〈ρq/2 ∗ ρq/2, ρq/2〉 =
∫
T g 3dt, with g non negative, for

g(t) :=
∑
ρ(k)q/2e ikt under the assumption that ρ belongs to

`3q/4(Z).
Theorem (BBNP). For q even and ρ ∈ `3q/4(Z), for Fn defined
as above and h ∈ C1 with a bounded derivative and such that
γ(h) :=

∫ +∞
−∞ h(t)H3(t)e−t

2/2dt 6= 0. Then

E(h(Fn))− E(h(N)) ∼
cqγ(h)

∫
T g 3dt

√
n

.



Odd and even Wiener chaos behave differently.

Using previous work of Nourdin Peccati, one can prove that

Theorem . For q even and ρ ∈ `4/3(Z) when q = 2 or `2(Z) for
q ≥ 2, for Fn defined as above, then, for z ∈ Z with z 6= ±1,

P(Fn < z)− P(N < z) ∼
cq
∫
T g 3dt × (z2 − 1)e−z

2/2

√
n

.

In particular, one cannot expect a speed of convergence better
than n−1/2 for q even.

For q odd, one has a better convergence, in 1/n, for the smooth
distance.

Comparison between different distances?



First tool: Wiener-Itô stochastic integrals.
Here we can assume that

ρ(k) =

∫
T

e iktdµ(t).

µ, which is positive, is the spectral measure of the Gaussian time
series. When it is absolutely continuous, dµ(t) = g(t)dt, then we
can assume that

X (k) =

∫
e ikt(g(t))1/2dW (t)

with W a complex Brownian Motion.

More generally, let H := L2(A, µ) be a real Hilbert space and εk is
such that 〈εk , εl〉H = ρ(k − l). The Wiener-Itô stochastic integral
X (h) is defined for h ∈ H and such that

E [X (h)X (g)] = 〈h, g〉H.



The q-th fold multiple Wiener-Itô stochastic integral is defined on
H�q = L2

sym(Aq, µ⊗q) by

Iq(h ⊗ · · · ⊗ h) := Hq(X (h))

and is an isometry between H�q and the Wiener chaos Hq.

Multiplication Formula for f ∈ H�p and g ∈ H�q, then

Ip(f )Iq(g) =

min(p,q)∑
r=0

r !

(
p

r

)(
q

r

)
Ip+q−2r (f ⊗̃rg).



Malliavin calculus and integration by parts.

Define D, the Malliavin derivative, by

D(Iq(h ⊗ · · · ⊗ h)) := Iq−1(h ⊗ · · · ⊗ h︸ ︷︷ ︸
q−1 times

) h.

For F =
∑

finite Iq(fq), then L−1F := −
∑

q≥1 q−1Iq(fq).

With these notations, integration by parts

E(FG ) := E(F )E(G )− E(〈DF ,DL−1G 〉H).

In particular,

E(f (F )G ) := E(f (F ))E(G )− E(f ′(F )〈DF ,DL−1G 〉H).



Stein’s method and the end.
For fixed h consider f solution of f ′(t)− tf (t) = h(t)− E(h(N))
with control at infinity. Then

E(h(N))− E(h(F )) = E(Ff (F ))− E(f ′(F )).

Moreover, by using inductively integration by parts,

E[Ff (F )] =
M−1∑
s=0

κs+1(F )

s!
E[f (s)(F )] + E[ΓM(F )f (M)(F )].

where Γs(F ) is inductively defined by Γ0(F ) = F and, for every
j ≥ 1,

Γj(F ) = 〈DF ,−DL−1Γj−1(F )〉H.

We use the fact that (Nourdin, Peccati 2010) E(Γj(F )) =
κj+1(F )

j! .

The key point is the inequality, valid for q ≥ 2 and s ≥ 3,

E[|Γs(F )|] ≤ cs(q)×
(
E[F 4]− 3

) s+1
4 .
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