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Introduction

Ordinary lines

@ Let P be a finite set of n points in the affine plane R?. For
any k > 2, define a k-rich line to be a line that meets
exactly k points from P.

@ A 2-rich line is known as an ordinary line.

@ We let Nx = Ni(P) denote the number of k-rich lines
associated to the point set P.

@ General question: for fixed n, what can we say about Nj?
@ Erdds $100: if Ny = 0 for k > 5, is Ny = o(n?)?
@ We will focus on N, and Njs in this talk.
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Introduction

Ordinary lines cont.

A configuration of n = 7 points with N> = 3 ordinary lines and
N3 = 6 3-rich lines.
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Introduction

Projective geometry

@ Note that applying a projective transformation to a point set
P does not affect the number of k-rich lines. Because of
this, we may pose the problem on the projective plane RP?
instead of the Euclidean plane and obtain the same results.

@ By projective duality, we may also consider collections P*
of n lines in the projective plane RP? and count k-rich
points (and in particular, ordinary points that meet exactly
two lines in P*), and obtain an equivalent problem.

@ For this and other reasons, it is natural to work in the
projective plane instead of the affine one.
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Introduction

The Sylvester-Gallai theorem

Perhaps the most well known result in this area is the
Sylvester-Gallai theorem:

QUEBSTIONS FOH BOLUTION.

11851. (Professor Svivesten.)—Prove that it is not possible to
arrange any finite number of real points so that a right line through
every two of them shall pass 1hmugﬁl a third, unless they all lie in the
same right line.

Theorem (Sylvester-Gallai theorem)

Let P be a set of points in RP?, not all collinear. Then there
exists at least one ordinary line: N, > 1.
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Introduction

Sylvester-Gallai cont.

@ Posed first by Sylvester (1893), and then by Erdds (1943).
Has many proofs, including Melchior (1940), Gallai (1944),
and Kelly (1948). Kelly’s proof is the most well known, but
Melchior’s is the most relevant for our work.

@ Depends crucially on the properties of the real line R. The
Sylvester-Gallai theorem fails over finite fields F of order
greater than two (just take P = F?) and over the complex
numbers (the Hesse configuration - see below).
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Introduction

Kelly’s proof of Sylvester-Gallai

Suppose for contradiction that we have a set of points P, not all
collinear, with no ordinary lines. Consider all pairs p, ¢ where

p € P and ¢ meets at least two points of P, but does not meet
p. Among all such pairs, take a pair where the distance
between p and ¢ is shortest:

L
@
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Introduction

Kelly cont.

By hypothesis, ¢ contains at least three points g, r, sin P. One
can then use p, q, r, s to create another point-line pair that are
closer to each other than p and ¢, a contradiction.
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Introduction

Hesse example

An elliptic curve is a curve which (up to projective
transformation) takes the Weierstrass normal form

C={(xy):y>=x3+ax+b}

for some a, b with 48 + 27b% # 0. There is an abelian group
law & on C, with p@ g@ r = 0if and only if p, g, r are collinear
(image from Wikipedia):

P+O+R=0 P+0+0=0 P+Q+0=0 P+P+0=0
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Introduction

Hesse cont.

@ Over the complex numbers C, an elliptic curve C is
isomorphic as an abelian group to the two-torus R?/Z2.

@ In particular, it contains a nine-element subgroup
isomorphic to (Z/3Z)? (the points of 3-torsion, or more
geometrically the inflection points of the elliptic curve).

@ This set of nine points is not collinear, but contains no
ordinary lines: any line through two of these points passes
through a third, thanks to the elliptic curve group law.

@ Thus the Sylvester-Gallai theorem fails in the complex
plane.
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Dirac-Motzkin conjecture

@ Let P be a set of n points in RP?, not all collinear. The
Sylvester-Gallai theorem tells us that N is positive. But
how small can N> be?

@ When nis even, a basic example of Béréczky (1968)
involving n/2 equally spaced points on the unit circle, and
n/2 points on the line at infinity, shows that N, can be as
small as n/2.

@ For odd n, a modification of this constriction shows N, can
be as small as 3| n/4|.

@ One also has examples in which N, =3 whenn=7
(Kelly-Moser, 1958), or N, = 6 when n =13
(Crowe-McKee, 1968).
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Introduction

Boroczky example

A Bordczky example with n = 12 and N, = 6, consisting of n/2 = 6 points
on the unit circle and n/2 = 6 points on the line at infinity; a projective
transformation has been applied to bring the line at infinity into view.
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Boroczky cont.

A Boréczky example with n = 13 and N> = 9, consisting of
(n—1)/2 = 6 points on the unit circle, (n— 1)/2 = 6 points on
the line at infinity, and the origin.
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Kelly-Moser and Crowe-McKee examples

Qe

The examples of Kelly-Moser (n =7, N, = 3)
and Crowe-McKee (n = 13, N, = 6). (From Wikipedia.)
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Dirac-Motzkin conjecture

Dirac-Motzkin conjecture

If n> 13, and P is a set of n points in RP?, not all collinear,
then N> > n/2.

Stated as “likely” by Dirac (1951).

Strong Dirac-Motzkin conjecture

If n> 13, and P is a set of n points in RP?, not all collinear,
then N> > n/2if nis even and N, > 3| n/4| when nis odd.
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Partial results

@ The Sylvester-Gallai theorem gives N> > 1.

@ Melchior’s proof (1940) of Sylvester-Gallai gives N> > 3.
@ Motzkin (1951) showed N, >> v/n.

@ Kelly-Moser (1958) showed N, > 3n/7.

@ Csima-Sawyer (1993) showed N>, > 6n/13 when n > 7.
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First main theorem

Our first main result is that the strong Dirac-Motzkin conjecture
holds for sufficiently large n.

There exists a constant ny such that if n > ng and P is a set of
n points in RP?, not all collinear, then N> > n/2 if n is even and
N> > 3|n/4| when n is odd.

The value we get for ng is effective, but huge (double
exponential in size).
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Introduction

The orchard planting problem

2. Fain would I plant a grove in rows,
But how must I its form compese
With three trees in each row ;
To have as many rows as trees;
Now tell me, artists, if you please;
’Tis all I want to know.

@ The orchard planting problem asks to maximise N3 as P
ranges over all configurations of n points in RP2.

@ Asked (poetically) by Jackson (1821) and by Sylvester
(1868).
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Orchard planting cont.

Since every two points determine a k-rich line for some k > 2,
we have the double-counting identity

n
k n
> (2% ()
k=2
which gives the trivial upper bound

Ny < —n®— —n.

o =
o =
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Orchard planting cont.

As observed by Burr, Grunbaum, Sloane (1974), lower bounds
on N> can be used to improve this upper bound. For instance,
the Dirac-Motzkin conjecture implies that

N; < énz—;n

for n > 13 (with some small further improvements possible
using the fact that the Ny are integers).
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Orchard planting cont.

@ In the converse direction, sets with large N3 may be
constructed using elliptic curves (Sylvester 1868,
Burr-Grunbaum-Sloane 1974).

@ Over R, an elliptic curve C is either isomorphic as a group
to R/Z (if connected) or R/Z x Z/2Z (if disconnected). In
either case, it will contain a subgroup P of order n for any
n>1.

@ Elementary combinatorics then tells us that there are
L%nz - %nj + 1 triples {a, b, ¢} of distinct elements in P
that sum to zero, and so
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Introduction

Orchard planting cont.

@ Similarly if one shifts P within the group C by an element of
order three (i.e. one works with a coset of P rather than P
itself).

@ The construction also works for an acnodal cubic curve
such as {(x,y) : y? = x3 — x} (which, as a group, is
isomorphic to R/Z away from the singular point.

y' = y* =2z +1) y* =2z —1)

cuspidal nodal acnodal
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Second main theorem

Our second main theorem shows that the elliptic curve
examples are sharp for sufficiently large n:

There exists a constant ny such that if n > ng and P is a set of
n points, then Ny < [n? — 5n| +1.
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Structure theorems

@ The proof of both of our main theorems rely on structure
theorems that describe classify the sets of n points P that
have few ordinary lines (N> = O(n)).

@ [t turns out that sets with few ordinary lines are very
restricted in structure, and are all closely tied to cubic
curves such as elliptic curves, or the union of a conic
section and a line. (This is already suggested by several of
the previous examples.)

@ Note that counterexamples to either of our two theorems
would have few ordinary lines (large N3 implies small N5).
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First structure theorem

In fact we prove several structure theorems, in increasing order
of difficulty (and with increasingly worse constants). This
structure theorem is the easiest to prove:

Theorem (First structure theorem)

Let P be a set of n points with at most Kn ordinary lines. Then
P can be covered by at most 500K cubic curves.
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Second structure theorem

Here is a harder one:

Theorem (Second structure theorem)

Let P be a set of n points with at most Kn ordinary lines.
Suppose that n > exp exp(CK©) for some large absolute
constant C. Then all but at most O(K°(")) points of P lie on a
single curve of degree at most three.

Ben Green and Terence Tao Ordinary lines and orchards



Introduction

Third structure theorem

Here is our strongest theorem:

Theorem (Third structure theorem)

Let P be a set of n points with at most Kn ordinary lines.
Suppose that n > exp exp(CK©) for some large absolute
constant C. Then, after applying a projective transformation
and adding and deleting at most O(K) points, P is either

@ collinear;
@ a Béréczky example (equally spaced points on the unit
circle and on the line at infinity); or

@ a subgroup or coset of an elliptic curve (or the acnodal
singular cubic curve y? = x® — x).
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Introduction

Third structure theorem cont.

From this strongest structure theorem it is straightforward to
establish our first two main theorems, basically by checking all
the cases explicitly. It also shows that there are no other
extremisers for these theorems beyond the ones already given.
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Proofs

Why cubic curves?

Why are cubic curves so fundamentally tied to the property of
having few ordinary lines: the answer lies in the
Cayley-Bacharach theorem, or more precisely a version of this
theorem due to Chasles (1885):

Theorem (Cayley-Bacharach theorem)

Suppose that two sets of three lines in RP?> meet in nine distinct
points. Then any cubic curve that passes through eight of these
nine points, necessarily passes through the ninth.
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Proofs

Cubic curves cont.

This classical theorem contains as special cases Pappus’s
theorem (when the cubic curve consists of three lines), Pascal’s
theorem (when the cubic curve is the union of a conic section
and a line), and the associative law for elliptic curves (when the
cubic curve is an elliptic curve).
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Proofs

Melchior’s argument

@ To see how the Cayley-Bacharach theorem can actually be
used, we need to first review Melchior’s proof of the
Sylvester-Gallai theorem.

@ The first step is to pass to the dual configuration P* of n
lines in RP?, rather than n points. If the points in P were
not all collinear, then this partitions the projective plane into
a certain number of vertices, edges, and faces. In
particular we have Euler’s formula

V_E+F=1

in the projective plane.
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Proofs

Melchior cont.

Double counting reveals that

n n n n
V:ZNk; E:Zka; F:ZMS; 2E:ZSM5,
k=2 k=2 s=3 s=3

where Ms is the number of faces with s sides. After some

rearranging, Euler’s formula V — E + F = 1 then becomes
Melchior’s formula

n n
No =3+ (k—3)Nk+ Y (s—3)Ms
k=4 s=4
which gives Melchior’'s bound N, > 3.
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Proofs

Inverting Melchior

Melchior’s identity

n n

Ny =3+ (k—3)Nc+ Y (s—3)Ms

k=4 s=4

reveals important information about sets with few ordinary lines
(N> small); it says that
@ N is small for most k > 4 (thus most lines are 3-rich, and
most vertices in the dual configuration have degree six);
and
@ M is small for most s > 4 (thus most faces in the dual
configuration are triangles).

This implies that the dual configuration usually has the local
combinatorial structure of a triangular grid.
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Proofs

Triangular grids and Cayley-Bacharach

Key fact: triangular grids are dual to Cayley-Bacharach

configurations!
>/
4 To 0
// &1
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Proofs

First structure theorem

By Melchior, if P has few ordinary lines, then P* contains many
triangular grids, so P contains many Cayley-Bacharach
configurations, and so many points lie on the same cubic curve.
This is basically how our first structure theorem is proven:

Theorem (First structure theorem)

Let P be a set of n points with at most Kn ordinary lines. Then
P can be covered by at most 500K cubic curves.
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Proofs

Linear and nonlinear cases

A refined version of the above analysis can also exclude cases
in which the cubic curves that cover P contain two or more
irreducible nonlinear curves (i.e. irreducible conic sections, or
irreducible cubic curves), basically because Bezout’s theorem
prevents these curves from “interacting” much with each other.
A more difficult situation to eliminate is the linear case when a
large portion of P is covered by a small number of lines. There
are three model subcases:

() (Triangular case) P is covered by three non-concurrent
lines.

(i) (Non-concurrent case) P is covered by k lines, no three of
which are concurrent.

(iii) (Parallel case) P is covered by k parallel lines.
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Proofs

Triangular case

The key geometric tool to deal with the triangular case is
Menelaus’ theorem:

This theorem reduces the question to one in additive
combinatorics (or more precisely, multiplicative combinatorics).
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Triangular case cont.

Roughly speaking, the triangular case is deduced from the
following assertion:

Let A C R* be a set of cardinality n for some large n. Then
there are > n? pairs (a, b) € A x A such that ab ¢ A.

Informally, this is a robust version of the assertion that the
multiplicative group R* does not contain large finite subgroups.
It can be proven by standard tools from additive combinatorics.
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Proofs

Non-concurrent case

The non-concurrent case is a generalisation of the triangular
case, but in addition to simple products as in Menelaus’s
theorem, fractional linear transformations also begin to appear.
To deal with this, we use (among other things) the following
result of Elekes, Nathanson, and Ruzsa (2000), stated
somewhat informally:

Let A be a finite set of real numbers, and let f : RP' — RP' be
a fractional linear transformation that is not a dilation. Then at
least one of the sets A - A and f(A) - f(A) is large.
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Proofs

Parallel case

A nice treatment of the parallel case was worked out for us by
Luke Betts (an undergraduate at Cambridge). After projective
duality, the key claim is the following:

Let P* be a collection of n lines that point in only O(1) different
directions, not all concurrent. Then there are > n? ordinary
points (points that meet only two lines).
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Proofs

Parallel case cont.

The key trick is to take an extreme point of the convex hull of
the non-ordinary points, and find rays from that point that
contain many ordinary points. Then remove the lines going
through that extreme point and iterate.

¢
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Combining the non-concurrent case and the parallel case
together to cover the general linear case requires an iteration
argument based on the pigeonhole principle. Unfortunately, this
iteration is the main reason why there are double exponentials
in the final bounds. Ultimately we obtain

Theorem (Second structure theorem)

Let P be a set of n points with at most Kn ordinary lines.
Suppose that n > exp exp(CK©) for some large absolute
constant C. Then all but at most O(K°(")) points of P lie on a
single curve of degree at most three.
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Once one has most of the points on a single curve, one can
use additional tools to finish off the structural classification.
Firstly, one can arrange most of these points in a subgroup or a
coset of the cubic curve, using the following tool from additive
combinatorics:

Let A be a finite subset of an abelian group G of order n, such
that there are only O(n) pairs a,b € A for which a+ b ¢ A.
Then after adding or deleting O(1) elements, A is equal to a
coset of a finite subgroup of G.

Using this lemma, one can place most of P in something like a
subgroup of an elliptic curve, or the roots of unity on the unit
circle.
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To finish up and get the full structure theorem, results such as
the following result of Poonen and Rubinstein (1998) are useful:

Theorem (Poonen-Rubinstein theorem)

Let p be a point in the interior of the unit circle that is not the
origin. Then p lies on at most seven chords connecting two
roots of unity.

Actually we also need variants of this result in the exterior of
the circle, and also for subgroups of elliptic curves instead of
roots of unity.
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Proofs

Theorem (Third structure theorem)
Let P be a set of n points with at most Kn ordinary lines.
Suppose that n > exp exp(CK©) for some large absolute
constant C. Then, after applying a projective transformation
and adding and deleting at most O(K) points, P is either

@ collinear;

@ a Béréczky example (equally spaced points on the unit
circle and on the line at infinity); or

@ a subgroup or coset of an elliptic curve (or the acnodal
singular cubic curve y? = x3 — x).
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Open questions

Open questions

@ Are there structure theorems over the complex numbers?
Euler formula does not seem to be available.

@ What about other curves than lines? Cayley-Bacharach
does not seem to be available.

@ We understand the N> = O(n) case, but what about
N, = o(n?) or something in between?

@ Get better constants (no double exponentials!). Maybe one
can finish off all cases of the Dirac-Motzkin and orchard
problems?

@ Erdds $100: if Ny = 0 for k > 5, is Ny = o(n?)?
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