Roth’s theorem on arithmetic progressions

Tom Sanders

University of Oxford

1st July 2013
solve equations in sets of integers e.g. primes, squares, ...
solve equations in sets of integers e.g. primes, squares, ...

general framework: Ruzsa
$A \subseteq \mathbb{Z}$ ‘the’ set of integers
$A \subset \mathbb{Z}$ 'the' set of integers

solve $f(x, y, z, w, \ldots) = 0$ with $x, y, z, w, \ldots \in A$
$A \subset \mathbb{Z}$ ‘the’ set of integers

solve $f(x, y, z, w, \ldots) = 0$ with $x, y, z, w, \ldots \in A$

$x + y = z + w$ (add. quad.)
$A \subset \mathbb{Z}$ ‘the’ set of integers

solve $f(x, y, z, w, \ldots) = 0$ with $x, y, z, w, \ldots \in A$

$x + y = z + w$ (add. quad.)

$x + y = 2z$ (3ap)
A \subset \mathbb{Z} ‘the’ set of integers

solve \ f(x, y, z, w, \ldots) = 0 \text{ with } x, y, z, w, \ldots \in A

x + y = z + w \text{ (add. quad.)}

x + y = 2z \text{ (3ap)}

aim: show finding solutions is ‘equally’ difficult
$A \subset \mathbb{Z}$ ‘the’ set of integers

solve $f(x, y, z, w, \ldots) = 0$ with $x, y, z, w, \ldots \in A$

$$x + y = z + w \text{ (add. quad.)}$$

$$x + y = 2z \text{ (3ap)}$$

aim: show finding solutions is ‘equally’ difficult

(inequivalent: $x + y = z, x - y = 7$)
\[Q(A) := |\{(x, y, z, w) \in A^4 : x + y = z + w\}| \]

and

\[T(A) := |\{(x, y, z) \in A^3 : x + y = 2z\}| \]
\[Q(A) := |\{(x, y, z, w) \in A^4 : x + y = z + w\}| \]

and

\[T(A) := |\{(x, y, z) \in A^3 : x + y = 2z\}| \]

then

\[Q(A) \leq |A|^3 \quad \text{and} \quad T(A) \leq |A|^2 \]
$Q(A) := |\{(x, y, z, w) \in A^4 : x + y = z + w\}|$

and

$T(A) := |\{(x, y, z) \in A^3 : x + y = 2z\}|$

then

$Q(A) \leq |A|^3$ and $T(A) \leq |A|^2$

think $|A| \to \infty$
\[Q(A) := \left| \{(x, y, z, w) \in A^4 : x + y = z + w \} \right| \]

and

\[T(A) := \left| \{(x, y, z) \in A^3 : x + y = 2z \} \right| \]

then

\[Q(A) \leq |A|^3 \text{ and } T(A) \leq |A|^2 \]

think \(|A| \to \infty \)

‘many’ means positive proportion of max
easy fact: ‘many 3aps \Rightarrow many add. quads.’
easy fact: ‘many 3aps \Rightarrow many add. quads.’

$$T(A) = \sum z \cdot 1_{2 \cdot A}(z) \sum_{x+y=z} 1_A(x)1_A(y)$$
easy fact: ‘many 3aps \Rightarrow many add. quads.’

\[
T(A) = \sum_z 1_{2 \cdot A}(z) \sum_{x+y=z} 1_A(x)1_A(y)
\]

\[
\leq |2 \cdot A|^{1/2} \left(\sum_z \left(\sum_{x+y=z} 1_A(x)1_A(y) \right)^2 \right)^{1/2} = (|A|Q(A))^{1/2}
\]
easy fact: ‘many 3aps ⇒ many add. quads.’

\[T(A) = \sum_z 1_{2 \cdot A}(z) \sum_{x+y=z} 1_A(x)1_A(y) \]

\[\leq |2 \cdot A|^{1/2} \left(\sum_z \left(\sum_{x+y=z} 1_A(x)1_A(y) \right)^2 \right)^{1/2} = (|A| Q(A))^{1/2} \]

so

\[T(A) \geq \delta |A|^2 \Rightarrow Q(A) \geq \delta^2 |A|^3. \]
not polynomially equivalent (Behrend):

\[Q(A) \geq \delta |A|^3 \not\Rightarrow T(A) \geq \delta^{O(1)}|A|^2. \]
not polynomially equivalent (Behrend):

\[Q(A) \geq \delta |A|^3 \not\Rightarrow T(A) \geq \delta^{O(1)} |A|^2. \]

maybe

\[Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp(-O(\log^2 \delta^{-1})) |A|^2? \]
not polynomially equivalent (Behrend):

\[Q(A) \geq \delta |A|^3 \not\Rightarrow T(A) \geq \delta^{O(1)} |A|^2. \]

maybe

\[Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp\left(-O\left(\log^2 \delta^{-1}\right)\right)|A|^2? \]

hard fact: (Frei\v{c}man, Heath-Brown, Ruzsa, Szemerédi)

\[Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp\left(-\delta^{-O(1)}\right)|A|^2 \]
generalisation: $\mathbb{Z} \mapsto$ (Abelian) group
Arguments

generalisation: $\mathbb{Z} \mapsto$ (Abelian) group, ‘approximate’ group
Arguments

generalisation: \(\mathbb{Z} \mapsto \) (Abelian) group, ‘approximate’ group

\(\mathbb{Z} \mapsto \mathbb{F}_3^n \): Bateman-Katz!
generalisation: $\mathbb{Z} \mapsto \text{(Abelian) group, ‘approximate’ group}$

$\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

B approximate group $\to T_B$ and Q_B
generalisation: \(\mathbb{Z} \mapsto \) (Abelian) group, ‘approximate’ group

\(\mathbb{Z} \mapsto \mathbb{F}_3^n \): Bateman-Katz!

\(B \) approximate group \(\rightarrow T_B \) and \(Q_B \)

plan: find an ‘approximate’ group \(B \) so that \(Q_B \) and \(T_B \) (strongly) polynomially equivalent
generalisation: $\mathbb{Z} \mapsto$ (Abelian) group, ‘approximate’ group

$\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

B approximate group $\rightarrow T_B$ and Q_B

plan: find an ‘approximate’ group B so that Q_B and T_B (strongly) polynomially equivalent

$(A' := A \cap B$ is large and has $Q_B(A')|A'| \approx T_B(A')^2)$
Arguments

generalisation: $\mathbb{Z} \mapsto \text{(Abelian) group, ‘approximate’ group}$

$\mathbb{Z} \mapsto \mathbb{F}_3^n$: Bateman-Katz!

B approximate group $\to T_B$ and Q_B

plan: find an ‘approximate’ group B so that Q_B and T_B (strongly) polynomially equivalent

$(A' := A \cap B$ is large and has $Q_B(A')|A'| \approx T_B(A')^2)$

Bourgain
fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.
Fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.

Good aim

\[Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp(-\delta^{o(1)})|A|^2. \]
fact: (Peng, Rödl, Rucinski, Gowers) making Q and T strongly polynomially equivalent *can* be exponentially expensive.

good aim

$$Q(A) \geq \delta |A|^3 \Rightarrow T(A) \geq \exp(-\delta^o(1))|A|^2?$$

so precise direct counting

Bloom, Henriot, Schoen, Shkredov