On a Hamiltonian Problem For Triple Systems

Andrzej Ruciński
(substituted by M. Schacht)

UAM Poznań and Emory University

joint work with
V. Rödl, M. Schacht and E. Szemerédi

Erdős Centennial Conference
Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

What is a (Hamiltonian) cycle in a hypergraph?

What replaces minimum degree in hypergraphs?
Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.
Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?
Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

- What is a (Hamiltonian) cycle in a hypergraph?
Dirac-type questions

Theorem (Dirac 1952)

If an n-vertex graph G with $n \geq 3$ satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main Question

How to extend this result to k-uniform hypergraphs?

Problems:

- What is a (Hamiltonian) cycle in a hypergraph?
- What replaces minimum degree in hypergraphs?
Cycles in hypergraphs

A. Ruciński (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Cycles in hypergraphs

- k-uniform hypergraph $H = (V, E)$, i.e., $E \subseteq \binom{V}{k}$
Cycles in hypergraphs

- k-uniform hypergraph $H = (V, E)$, i.e., $E \subseteq \binom{V}{k}$
- ℓ-overlapping cycle $C_n^{(k,\ell)}$, $0 \leq \ell \leq k - 1$, $(k - \ell)|n$, $|C_n^{(k,\ell)}| = \frac{n}{k-\ell}$
Cycles in hypergraphs

- k-uniform hypergraph $H = (V, E)$, i.e., $E \subseteq \binom{V}{k}$
- ℓ-overlapping cycle $C_n^{(k, \ell)}$, $0 \leq \ell \leq k - 1$, $(k - \ell)|n$, $|C_n^{(k, \ell)}| = \frac{n}{k-\ell}$
Cycles in hypergraphs

- \(k \)-uniform hypergraph \(H = (V, E) \), i.e., \(E \subseteq \binom{V}{k} \)
- \(\ell \)-overlapping cycle \(C^{(k,\ell)}_n \), \(0 \leq \ell \leq k - 1 \), \((k - \ell)|n \), \(|C^{(k,\ell)}_n| = \frac{n}{k-\ell} \)
Cycles in hypergraphs

- k-uniform hypergraph $H = (V, E)$, i.e., $E \subseteq \binom{V}{k}$
- ℓ-overlapping cycle $C_n^{(k,\ell)}$, $0 \leq \ell \leq k - 1$, $(k - \ell)|n$, $|C_n^{(k,\ell)}| = \frac{n}{k-\ell}$
Degrees in hypergraphs

- minimum vertex degree $\delta_1(H)$
Degrees in hypergraphs

- minimum vertex degree $\delta_1(H)$
- minimum pair degree $\delta_2(H)$
Degrees in hypergraphs

- minimum vertex degree $\delta_1(H)$
- minimum pair degree $\delta_2(H)$
Degrees in hypergraphs

- minimum vertex degree $\delta_1(H)$
- minimum pair degree $\delta_2(H)$

- triple degrees $\delta_3(H)$
- ...
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Remarks:

$\ell = 0 \rightarrow$ perfect matchings

Bollobás, Daykin & Erdős 1976

Daykin & Häggkvist 1981

$h(3,0)$

A. Ruciński (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \geq h_d^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
- Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999
- Today: $k = 3$ and $\ell = 1$ or 2 and we write $h_{\ell} = h_{(3,\ell)}$
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_d^{(k,\ell)}(n)$ with the property

$$\delta_d(H) \geq h_d^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k,\ell)}(n)$ with the property

$$\delta_{d}(H) \geq h_{d}^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k, \ell)}(n)$ with the property

$$\delta_{d}(H) \geq h_{d}^{(k, \ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
 - Daykin & Häggkvist 1981
 - $h_{1}^{(3,0)}(n)$

A. Rucínski (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k,\ell)}(n)$ with the property

$$\delta_{d}(H) \geq h_{d}^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999

$h_{1}^{(3,0)}(n)$

$h_{2}^{(3,2)}(n)$
Main question

Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq \frac{n}{2}$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_{d}^{(k,\ell)}(n)$ with the property

$$\delta_{d}(H) \geq h_{d}^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H$$

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999
- **Today:** $k = 3$ and $\ell = 1$ or 2

$h_{1}^{(3,0)}(n)$

$h_{2}^{(3,2)}(n)$

A. Rucínski (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Theorem (Dirac 1952)

If an n-vertex graph G satisfies $\delta(G) \geq n/2$, then G is Hamiltonian.

Main question

Given integers k, ℓ, and d determine the function $h_d^{(k,\ell)}(n)$ with the property

\[\delta_d(H) \geq h_d^{(k,\ell)}(n) \implies \text{Hamiltonian } \ell\text{-cycle in } H \]

for any n-vertex k-uniform hypergraph H.

Remarks:

- $\ell = 0 \rightarrow$ perfect matchings
- Bollobás, Daykin & Erdős 1976
 Daykin & Häggkvist 1981
- G. Y. Katona and Kierstead 1999
- Today: $k = 3$ and $\ell = 1$ or 2 and we write $h_d^{\ell} = h_d^{(3,\ell)}$
Some known results

Theorems \((d = 2, n \text{ large})\)

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühn and Osthus</td>
<td>(h_1(n) \sim n/4)</td>
</tr>
<tr>
<td>Rodl, R. & Szemerédi</td>
<td>(h_2(n) = \lfloor n/2 \rfloor)</td>
</tr>
<tr>
<td>Buß, Hän & Schacht</td>
<td>(h_1(n) \sim 7/16 n^2)</td>
</tr>
<tr>
<td>Glebov, Person & Weps</td>
<td>(h_2(n) \leq \left(1 - \frac{5}{10} - \frac{7}{10^2}\right) n^2 \approx 0.92 n^2)</td>
</tr>
</tbody>
</table>

New bound (work in progress) \(h_2(n) \lesssim 4/5 n^2\)

A. Ruciński (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Some known results

Theorems ($d = 2$, n large)

- $h_2^1(n) \sim n/4$

Kühn and Osthus

New bound (work in progress)

A. Ruciński (UAM Poznań & Emory)

Hamiltonian cycles in 3-graphs

July 2013
Some known results

<table>
<thead>
<tr>
<th>Theorems ($d = 2$, n large)</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_2^1(n) \sim n/4$</td>
<td>Kühn and Osthus</td>
</tr>
<tr>
<td>$h_2^2(n) = \lfloor n/2 \rfloor$</td>
<td>Rödl, R. & Szemerédi</td>
</tr>
</tbody>
</table>
Some known results

Theorems ($d = 2$, n large)

- $h_2^1(n) \sim n/4$
 - Kühn and Osthus
- $h_2^2(n) = \lceil n/2 \rceil$
 - Rödl, R. & Szemerédi

Theorems ($d = 1$, n large)

- New bound (work in progress)
 - $h_2^1(n) \lesssim 4/5 (n^2)$
 - A. Ruciński (UAM Poznań & Emory)
Some known results

Theorems ($d = 2$, n large)

- $h_2^1(n) \sim n/4$
 - Kühn and Osthus
- $h_2^2(n) = \lfloor n/2 \rfloor$
 - Rödl, R. & Szemerédi

Theorems ($d = 1$, n large)

- $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$
 - Buß, Hàn & Schacht
Some known results

Theorems \((d = 2, n \text{ large})\)

- \(h_2^1(n) \sim n/4\)
 - Kühn and Osthus

- \(h_2^2(n) = \lfloor n/2 \rfloor\)
 - Rödl, R. & Szemerédi

Theorems \((d = 1, n \text{ large})\)

- \(h_1^1(n) \sim \frac{7}{16} \binom{n}{2}\)
 - Buß, Hàn & Schacht

- \(h_1^2(n) \leq (1 - 5 \cdot 10^{-7}) \binom{n}{2}\)
 - Glebov, Person & Weps
Some known results

Theorems ($d = 2$, n large)

- $h_2^1(n) \sim n/4$
 - Kühn and Osthus
- $h_2^2(n) = \lfloor n/2 \rfloor$
 - Rödl, R. & Szemerédi

Theorems ($d = 1$, n large)

- $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$
 - Buß, Hàn & Schacht
- $h_1^2(n) \leq (1 - 5 \cdot 10^{-7}) \binom{n}{2}$
 - Glebov, Person & Weps
- $h_1^2(n) \leq \left(\frac{5-\sqrt{5}}{3}\right) \binom{n}{2} \approx 0.92 \binom{n}{2}$
 - Rödl & R.
Some known results

<table>
<thead>
<tr>
<th>Theorems ((d = 2, \ n \ large))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_2^1(n) \sim n/4)</td>
<td>Kühn and Osthus</td>
</tr>
<tr>
<td>(h_2^2(n) = \lfloor n/2 \rfloor)</td>
<td>Rödl, R. & Szemerédi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorems ((d = 1, \ n \ large))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1^1(n) \sim \frac{7}{16} \binom{n}{2})</td>
<td>Buß, Hàn & Schacht</td>
</tr>
<tr>
<td>(h_1^2(n) \leq (1 - 5 \cdot 10^{-7}) \binom{n}{2})</td>
<td>Glebov, Person & Weps</td>
</tr>
<tr>
<td>(h_1^2(n) \leq \left(\frac{5 - \sqrt{5}}{3}\right) \binom{n}{2} \approx 0.92 \binom{n}{2})</td>
<td>Rödl & R.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New bound (work in progress)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2})</td>
<td>A. Rucínski (UAM Poznań & Emory)</td>
</tr>
</tbody>
</table>

Hamiltonian cycles in 3-graphs

July 2013
Some known results

Theorems \((d = 2, \ n \text{ large})\)

- \(h^1_2(n) \sim n/4\)
 - Kühn and Osthus

- \(h^2_2(n) = \lfloor n/2 \rfloor\)
 - Rödl, R. & Szemerédi

Theorems \((d = 1, \ n \text{ large})\)

- \(h^1_1(n) \sim \frac{7}{16} \binom{n}{2}\)
 - Buß, Hàn & Schacht

- \(h^2_1(n) \leq (1 - 5 \cdot 10^{-7}) \binom{n}{2}\)
 - Glebov, Person & Weps

- \(h^2_1(n) \leq \left(\frac{5 - \sqrt{5}}{3}\right) \binom{n}{2} \approx 0.92 \binom{n}{2}\)
 - Rödl & R.

New bound (work in progress)

\[
h^2_1(n) \lesssim \frac{4}{5} \binom{n}{2}
\]
Where do we stand?

New bound (work in progress)

\[
\frac{h}{1^n} \lesssim \frac{4}{5^{n/2}}
\]

Conjecture

\[
\frac{h}{1^n} \sim \frac{h}{0^n} \sim \frac{n}{4} \sim \text{"min. pair degree for matchings of size } \frac{n}{4}\text{"}
\]

\[
\frac{h}{1^n} \sim \frac{7}{16^{n/2}} \sim \text{"min. vertex degree for matchings of size } \frac{n}{4}\text{"}
\]
Where do we stand?

New bound (work in progress)

\[h^2_1(n) \lesssim \frac{4}{5} \binom{n}{2} \]

Some evidence:

\[h^2_2(n) \lesssim \frac{1}{2} \binom{n}{2} \]

\[h^1_1(n) \lesssim \frac{7}{16} \binom{n^2}{2} \]

“min. pair degree for matchings of size \(n/4 \)”
Where do we stand?

New bound (work in progress)

\[h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2} \]

Conjecture

\[h_1^2(n) \sim \frac{5}{9} \binom{n}{2} \]
Where do we stand?

New bound (work in progress)

$$h_1^2(n) \leq \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_2^2(n) \sim h_0^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:
Where do we stand?

New bound (work in progress)

\[h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2} \]

Conjecture

\[h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2} \]

Some evidence:

- \(h_2^2(n) \sim h_2^0(n) \sim n/2 \)
Where do we stand?

New bound (work in progress)

\[h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2} \]

Conjecture

\[h_1^2(n) \sim h_0^1(n) \sim \frac{5}{9} \binom{n}{2} \]

Some evidence:

- \(h_2^2(n) \sim h_2^0(n) \sim n/2 \)
- \(h_2^1(n) \sim n/4 \sim \text{“min. pair degree for matchings of size } n/4\text{”} \)
Where do we stand?

New bound (work in progress)

$$h_1^2(n) \lesssim \frac{4}{5} \binom{n}{2}$$

Conjecture

$$h_1^2(n) \sim h_1^0(n) \sim \frac{5}{9} \binom{n}{2}$$

Some evidence:

- $h_2^2(n) \sim h_2^0(n) \sim n/2$
- $h_2^1(n) \sim n/4$ “min. pair degree for matchings of size $n/4$”
- $h_1^1(n) \sim \frac{7}{16} \binom{n}{2}$ “min. vertex degree for matchings of size $n/4$”
Lower bound construction

Suppose $3|n$ and $|X| = n/3 - 1$
Lower bound construction

Suppose $3|n$ and $|X| = n/3 - 1$

- $e \in E(H) \iff e \cap X \neq \emptyset$
Lower bound construction

Suppose $3|n$ and $|X| = n/3 - 1$

- $e \in E(H) \iff e \cap X \neq \emptyset$

$\Rightarrow \delta_1(H) \sim \binom{n}{2} - \binom{2n/3}{2} \sim \frac{5}{9} \binom{n}{2}$,
Lower bound construction

- Suppose $3|n$ and $|X| = n/3 - 1$
- $e \in E(H) \iff e \cap X \neq \emptyset$
- $\delta_1(H) \sim \binom{n}{2} - \binom{2n/3}{2} \sim \frac{5}{9}\binom{n}{2}$, but H contains no perfect matching
Lower bound construction with perfect matching

Suppose $3|n$ and $|X| = n/3 + 1$
Suppose $3|n$ and $|X| = n/3 + 1$

- $e \in E(H) \iff |e \cap Y| \neq 1$
Suppose $3|n$ and $|X| = n/3 + 1$

- $e \in E(H) \iff |e \cap Y| \neq 1$

$\Rightarrow \delta_1(H) \sim \binom{n}{2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} \binom{n}{2}$,
Suppose $3|n$ and $|X| = n/3 + 1$

- $e \in E(H) \iff |e \cap Y| \neq 1$

$\Rightarrow \ \delta_1(H) \sim \binom{n}{2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} \binom{n}{2}$,

- every edge with two vertices in $|X|$ is contained in X
Suppose $3|n$ and $|X| = n/3 + 1$

- $e \in E(H) \iff |e \cap Y| \neq 1$

$$\delta_1(H) \sim \binom{n}{2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} \binom{n}{2},$$

- every edge with two vertices in $|X|$ is contained in X

$$\Rightarrow$$

- every edge of a C^2_n intersects Y in at least two vertices
Suppose $3|n$ and $|X| = n/3 + 1$

- $e \in E(H) \iff |e \cap Y| \neq 1$

$\Rightarrow \delta_1(H) \sim \binom{n}{2} - \frac{n}{3} \cdot \frac{2n}{3} \sim \frac{5}{9} \binom{n}{2}$,

- every edge with two vertices in $|X|$ is contained in X

\Rightarrow every edge of a C_n^2 intersects Y in at least two vertices.
Absorbing method

1. Find an absorbing path A in H with $|V(A)| = c_1 n$.

2. Find almost Hamiltonian cycle C containing A.

3. Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.
Absorbing method

1. Find an absorbing path A in H with $|V(A)| = c_1 n$:
 - $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ll c_1 n$
 - \exists path A_U with the same endpairs and $V(A_U) = V(A) \cup U$.

2. Build a long cycle $C = T_m \supset A$, $m \geq n - c_2 n$

3. Apply the absorbing property of A to $U = V \cap V(T_m)$ obtaining a Hamiltonian cycle T_n.
Absorbing method

1. Find an absorbing path A in H with $|V(A)| = c_1 n$:
 - $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ (\ll c_1 n)$
 - \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.

2. Find almost Hamiltonian cycle C containing A.
Absorbing method

1. Find an absorbing path \(A \) in \(H \) with \(|V(A)| = c_1 n \):
 \[\forall U \subseteq V \setminus V(A) \text{ with } |U| \leq c_2 n \quad (\ll c_1 n) \]
 \[\exists \text{ path } A_U \text{ with same endpairs and } V(A_U) = V(A) \cup U. \]

2. Find almost Hamiltonian cycle \(C \) containing \(A \).

3. Apply absorbing property of \(A \) to \(U = V \setminus V(C) \) and obtain Hamiltonian cycle.
Absorbing method

1. Find an absorbing path A in H with $|V(A)| = c_1 n$:
 $\forall U \subseteq V \setminus V(A)$ with $|U| \leq c_2 n \ll c_1 n$
 \exists path A_U with same endpairs and $V(A_U) = V(A) \cup U$.

2. Find almost Hamiltonian cycle C containing A.

3. Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.

A. Ruciński (UAM Poznań & Emory) Hamiltonian cycles in 3-graphs July 2013
Absorbing method

1. Find an absorbing path A in H with $|V(A)| = c_1 n$:
 \[\forall U \subseteq V \setminus V(A) \text{ with } |U| \leq c_2 n \ (\ll c_1 n) \]
 \[\exists \text{ path } A_U \text{ with same endpairs and } V(A_U) = V(A) \cup U. \]

2. Find almost Hamiltonian cycle C containing A.

3. Apply absorbing property of A to $U = V \setminus V(C)$ and obtain Hamiltonian cycle.
Finding absorbers with $\delta_2(H) \geq (1/2 + \varepsilon)n$

Fact 1
For all $v \in V$ there are $\Omega \varepsilon(n^4)$ 4-tuples (a, b, c, d) such that $abc, bcd, abv, bvc, vcd \in H$.

Proof: there are $\geq n \times n/2$ choices of b, c and $\geq (2\varepsilon n)^2$ choices of a, d.
Finding absorbers with $\delta_2(H) \geq (1/2 + \varepsilon)n$

Fact: For every $v \in V$ there are $\varepsilon^2 n^4$ absorbers (a, b, c, d).
1 Randomly select γn from all 4-tuples
Absorbing path

1. Randomly select γn from all 4-tuples
2. Select a pairwise disjoint subset of those 4-tuples forming paths
 \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^4 \varepsilon^2 n$ absorber were selected
Absorbing path

1. Randomly select γn from all 4-tuples
2. Select a pairwise disjoint subset of those 4-tuples forming paths \Rightarrow w.h.p. for every $v \in V$ at least $\gamma^4 \epsilon^2 n$ absorber were selected
3. Connect the selected 4-tuples P_i to obtain the path A
Some ideas

- remove hyperedges from H, that contain pairs (x, y) with
 $\deg_H(x, y) \leq (1/2 + \varepsilon)n$
Some ideas

- remove hyperedges from H, that contain pairs (x, y) with $\deg_H(x, y) \leq (1/2 + \varepsilon)n$

\[\leftarrow \text{requires } \delta_1(H) \geq \frac{5 - \sqrt{5}}{3} \binom{n}{2} \]
Some ideas

- remove hyperedges from H, that contain pairs (x, y) with $\deg_H(x, y) \leq (1/2 + \varepsilon)n$

 \leftarrow requires $\delta_1(H) \geq \frac{5-\sqrt{5}}{3} \binom{n}{2}$

- slightly more careful, remove only hyperedges which contain no pair of high degree
Some ideas

- remove hyperedges from H, that contain pairs (x, y) with $\deg_H(x, y) \leq (1/2 + \varepsilon)n$
 \[\exists \text{ requires } \delta_1(H) \geq \frac{5-\sqrt{5}}{3} \binom{n}{2} \]

- slightly more careful, remove only hyperedges which contain no pair of high degree

- balance between “finding absorbers” and “making connections between large pairs”
Questions