Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method

Yuval Peres

Based on joint works with

Wilhelm Schlag;

Y. Babichenko, R. Peretz, P. Sousi and P. Winkler

1 Microsoft Research

Fine properties of Brownian paths, following Paul Lévy and continued by S.J. Taylor, J.F. Le Gall and many others.
Does Brownian motion have points of increase?
From the review by J. Lamperti:

Let X be the standard Brownian motion in one dimension. It is well-known that, with probability 1, a path of this process is nowhere differentiable; the present paper establishes the more delicate fact that almost all Brownian paths have no points of increase. The proof is quite intricate . . .

Simple proofs:
According to S. Kakutani (1990), DEK first found a "proof" that points of increase do exist, by a fancy version of the reflection principle . . .

Some echoes of 3AM can be found in the original paper . . .
For more information on Brownian sample paths:

- *Ecole d’Été de Probabilités de Saint-Flour XX – 1990* by Mark I. Freidlin and Jean-François Le Gall
- *Brownian Motion* by Peter Mörters and Yuval Peres
Define a graph G_S with vertex set \mathbb{Z}, where the pair $\{n, m\}$ is an edge iff $|n - m| \in S$.

Example: $n_k = k^d$ where $2 < d \in \mathbb{N}$.

- G_S has no triangles by FLT
- Furstenberg (1977) and Sárközy (1978) showed that $\forall A \subset \mathbb{Z}$ of positive upper density, $\exists x, y \in A$ and $k \in \mathbb{N}$ such that $x - y = k^d$.
- Thus every independent set in G_S has zero density \Rightarrow
- The chromatic number $\chi(G_S) = \infty$.
Two problems of Erdős on lacunary sequences

- The chromatic number $\chi(G)$ of a graph G is the minimal number of colors in a proper vertex coloring (neighbors assigned distinct colors.)

Problem A (Erdős, 1987)

Fix $\varepsilon > 0$ and suppose $S = \{n_j\}_{j=1}^\infty$ is a lacunary sequence of positive integers, where $n_{j+1} > (1 + \varepsilon)n_j$ for all $j \geq 1$. Is the chromatic number $\chi(G_S)$ necessarily finite?

Problem B (Erdős, 1975)

Let $\varepsilon > 0$ and S be as in Problem A. Is there a number $\theta \in (0, 1)$ so that the sequence $\{n_j\theta\}_{j=1}^\infty$ is not dense modulo 1?

The relation between Problem A and Problem B was discovered by Katznelson in 1987, and published in 2001.
• Let $\delta > 0$ and $\theta \in (0, 1)$ be such that $\inf_j \|\theta n_j\| > \delta$, where $\| \cdot \|$ is distance to the closest integer.

• Partition $\mathbb{T} = [0, 1)$ into $k = \lceil \delta^{-1} \rceil$ disjoint intervals I_1, \ldots, I_k of length $\frac{1}{k} \leq \delta$.

• Let G be the graph from Problem A and assign the vertex $n \in \mathbb{Z}$ the color j iff $n\theta \in I_j \pmod{1}$.

• Any two vertices connected by an edge must have different colors. Therefore, $\chi(G) \leq k = \lceil \delta^{-1} \rceil$.
Previous Works

- Problem B was solved by Pollington (1979), de Mathan (1980) and Katznelson (2001);
- As noted by Moshchevitin (2010), problem B was already raised and solved in 1926 by Khinchin, but this was forgotten . . .
- Khinchin (1926) and Katznelson (2001) showed that there exists a θ such that
 \[
 \inf_{j \geq 1} \| \theta n_j \| > c \varepsilon^2 |\log \varepsilon|^{-1}.
 \]
Theorem (P., Schlag; Bull. London Math. Soc. 42 (2010))

Suppose \(S = \{n_j\} \) satisfies \(n_{j+1}/n_j \geq 1 + \varepsilon \), where \(0 < \varepsilon < 1/4 \). Then there exists \(\theta \in (0, 1) \) such that

\[
\inf_{j \geq 1} \|\theta n_j\| > c\varepsilon \log \varepsilon^{-1},
\]

where \(c > 0 \) is a universal constant. Therefore, the graph \(G = G_S \) described in Problem A satisfies \(\chi(G) \leq c^{-1} |\log \varepsilon|/\varepsilon \).

- Up to the \(|\log \varepsilon|^{-1} \) factor, (1) is optimal. Indeed, let \(n_j = j \) for \(j = 1, 2, \ldots, \lfloor \varepsilon^{-1} \rfloor \) and continue this as a lacunary sequence with ratio \(1 + \varepsilon \). In this case \(\chi(G) > \lfloor \varepsilon^{-1} \rfloor \).
The following quantitative result on Problem B extends the previous theorem.

Theorem (P., Schlag 2010)

Suppose $S = \{n_j\}$ satisfies $n_{j+1}/n_j \geq 1 + \varepsilon$ for all j. Define

$$E_j = \left\{ \theta \in \mathbb{T} : \|n_j \theta\| < \frac{c_0 \varepsilon}{|\log_2 \varepsilon|} \right\}$$

for $j \geq 1$. If $240 c_0 \leq 1$, then

$$\bigcap_{j=1}^{\infty} E_j^c \neq \emptyset.$$
Proof ingredient: Lovász local lemma

Lemma

Let \(\{A_j\}_{j=1}^N \) be events in a probability space \((\Omega, \mathcal{F}, \mathbb{P})\) and let \(\{x_j\}_{j=1}^N \) be a sequence of numbers in \((0, 1)\). Assume that for every \(i \leq N \), there is an integer \(0 \leq m(i) < i \) so that

\[
\mathbb{P}(A_i \mid \bigcap_{j<m(i)} A_j^c) \leq x_i \prod_{j=m(i)}^{i-1} (1 - x_j).
\] (4)

Then for any integer \(n \in [1, N] \), we have

\[
\mathbb{P}\left(\bigcap_{i=1}^{n} A_i^c\right) \geq \prod_{\ell=1}^{n} (1 - x_\ell).
\] (5)

The lemma is applied to Lebesgue measure in \([0, 1]\) and to sets \(\{A_j\} \), where \(A_j \) is the union of all binary intervals of length \(\frac{c_0 \varepsilon}{n_j \log_2 \varepsilon} \) that intersect \(E_j \).
Further applications of the method

MR2770060 Y. Bugeaud and N. Moshchevitin (2011)
Badly approximable numbers and Littlewood-type problems.

From Math Reviews:

The Littlewood conjecture states that, for any given pair \((\alpha, \beta)\) of real numbers, we have \[
\inf_{q \geq 1} q \cdot \|q\alpha\| \cdot \|q\beta\| = 0,
\]
where \(\|\cdot\|\) denotes the distance to the nearest integer. The authors prove, with a method introduced by Y. Peres and W. Schlag, that the set of pairs \((\alpha, \beta) \in \mathbb{R}^2\) such that

\[
\lim_{q \to +\infty} q \cdot (\log q)^2 \cdot \|q\alpha\| \cdot \|q\beta\| > 0
\]

has full Hausdorff dimension in \(\mathbb{R}^2\).
A subset $S \subseteq \mathbb{R}^2$ is called a Kakeya set if it contains a unit segment in every direction.
A subset $S \subseteq \mathbb{R}^2$ is called a **Kakeya** set if it contains a unit segment in every direction.

Kakeya’s question (1917): Is the three-pointed deltoid shape a Kakeya set of minimal area?
Besicovitch (1919) gave the first *deterministic* construction of a Kakeya set of zero area.

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1/\log n$.
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1/ \log n$.

$n = 1$
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1 / \log n$.

\[n = 1 \quad \quad n = 2 \]
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1 / \log n$.
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1/\log n$.
Besicovitch (1919) gave the first deterministic construction of a Kakeya set of zero area.

He also constructed sets of arbitrarily small area where we can rotate a unit segment.

Besicovitch’s construction was later simplified by Perron and Schoenberg who gave a construction of a Kakeya set consisting of $4n$ triangles of area of order $1 / \log n$.

(Figures due to Terry Tao)
In this talk we will see a *probabilistic* construction of an optimal Kakeya set consisting of triangles.
In this talk we will see a probabilistic construction of an optimal Kakeya set consisting of triangles.

We do so by relating these sets to a game of pursuit on the cycle \mathbb{Z}_n introduced by Adler et al.
New connection to game theory and probability

In this talk we will see a *probabilistic* construction of an optimal Kakeya set consisting of triangles.

We do so by relating these sets to a game of pursuit on the cycle \mathbb{Z}_n introduced by Adler et al.
A. S. Besicovitch.
On Kakeya’s problem and a similar one.

Roy O. Davies.
Some remarks on the Kakeya problem.

Micah Adler, Harald Räcke, Naveen Sivadasan, Christian Sohler, and Berthold Vöcking.
Randomized pursuit-evasion in graphs.

Yakov Babichenko, Yuval Peres, Ron Peretz, Perla Sousi, and Peter Winkler.
Hunter, Cauchy Rabbit and Optimal Kakeya Sets.
Definition of the game G_n

Two players

Yuval Peres
Definition of the game G_n

Two players
Definition of the game G_n

Two players

Hunter
Definition of the game G_n

Two players

Hunter

Rabbit
Two players

Hunter

Rabbit
Definition of the game G_n

Two players

Hunter

Rabbit

Where?
Two players

Hunter

Rabbit

Where?

On \mathbb{Z}_n
Definition of the game

When?

At night – they cannot see each other...
Definition of the game

When?

At night – they cannot see each other....
Definition of the game

When?

At night – they cannot see each other....
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions. At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}^n.

When does the game end? At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}^n at the same time.

Goals

Hunter: Minimize “capture time”

Rabbit: Maximize “capture time”
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?

At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}_n at the same time.
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?

At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}_n at the same time.
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?

At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}_n at the same time.

Goals
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?

At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}_n at the same time.

Goals

Hunter: Minimize “capture time”
Definition of the game G_n

Rules

At time 0 both hunter and rabbit choose initial positions.

At each subsequent step, the hunter either moves to an adjacent node or stays put. Simultaneously, the rabbit may leap to any node in \mathbb{Z}_n.

When does the game end?

At “capture time”, when the hunter and the rabbit occupy the same location in \mathbb{Z}_n at the same time.

Goals

Hunter: Minimize “capture time”
Rabbit: Maximize “capture time”
Define a **zero sum** game G_n^* with payoff 1 to the hunter if he captures the rabbit in the first n steps, and payoff 0 otherwise.
The n-step game G_n^*

Define a **zero sum** game G_n^* with payoff 1 to the hunter if he captures the rabbit in the first n steps, and payoff 0 otherwise.

- G_n^* is finite \Rightarrow By the **minimax theorem**, \exists optimal randomized strategies for both players.
Define a zero sum game G^*_n with payoff 1 to the hunter if he captures the rabbit in the first n steps, and payoff 0 otherwise.

- G^*_n is finite \Rightarrow By the **minimax theorem**, \exists optimal randomized strategies for both players.
- The **value** of G^*_n is the probability p_n of capture under optimal play.
The \(n \)-step game \(G_n^* \)

Define a **zero sum** game \(G_n^* \) with payoff 1 to the hunter if he captures the rabbit in the first \(n \) steps, and payoff 0 otherwise.

- \(G_n^* \) is finite \(\Rightarrow \) By the **minimax theorem**, \(\exists \) optimal randomized strategies for both players.
- The **value** of \(G_n^* \) is the probability \(p_n \) of capture under optimal play.
- Mean capture time in \(G_n \) under optimal play is between \(n/p_n \) and \(2n/p_n \).
The n-step game G_n^*

Define a **zero sum** game G_n^* with payoff 1 to the hunter if he captures the rabbit in the first n steps, and payoff 0 otherwise.

- G_n^* is finite \Rightarrow By the **minimax theorem**, \exists optimal randomized strategies for both players.
- The **value** of G_n^* is the probability p_n of capture under optimal play.
- Mean capture time in G_n under optimal play is between n/p_n and $2n/p_n$.
- We will estimate p_n, and construct a Kakeya set of area $\asymp p_n$, that consists of $4n$ triangles.
Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.

- What if the rabbit jumps to a uniform random node in each step? Then, for any hunter strategy, he will capture the rabbit with probability $\frac{1}{n}$ at each step, so expected capture time is $n - 1$.

- Zig-Zag hunter strategy: He starts in a random direction, then switches direction with probability $\frac{1}{n}$ at each step.

- Rabbit counter-strategy: From a random starting node, the rabbit walks \sqrt{n} steps to the right, then jumps $2\sqrt{n}$ to the left, and repeats. The probability of capture in n steps is $\approx \frac{n}{2}$, so mean capture time is $n^{3/2}$.

Yuval Peres
Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is \(\leq n \).
- What if the rabbit jumps to a uniform random node in each step?
Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is \(\leq n \).

- What if the rabbit jumps to a uniform random node in each step?
 Then, for any hunter strategy, he will capture the rabbit with probability \(1/n \) at each step, so expected capture time is \(n - 1 \).
Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.
- What if the rabbit jumps to a uniform random node in each step?
 Then, for any hunter strategy, he will capture the rabbit with probability $1/n$ at each step, so expected capture time is $n - 1$.
- **Zig-Zag hunter strategy:** He starts in a random direction, then switches direction with probability $1/n$ at each step.
Examples of strategies

- If the rabbit chooses a random node and stays there, the hunter can sweep the cycle, so expected capture time is $\leq n$.

- What if the rabbit jumps to a uniform random node in each step? Then, for any hunter strategy, he will capture the rabbit with probability $1/n$ at each step, so expected capture time is $n - 1$.

- **Zig-Zag hunter strategy**: He starts in a random direction, then switches direction with probability $1/n$ at each step.

- **Rabbit counter-strategy**: From a random starting node, the rabbit walks \sqrt{n} steps to the right, then jumps $2\sqrt{n}$ to the left, and repeats. The probability of capture in n steps is $\asymp n^{-1/2}$, so mean capture time is $n^{3/2}$.
Zig-Zag hunter strategy

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
It turns out the best the hunter can do is start at a random point and continue at a random speed. More formally...

Let a, b be independent uniform on $[0, 1]$. Let the position of the hunter at time t be $H_t = \lceil an + bt \rceil \mod n$.

What capture time does this yield?

Let R_ℓ be the position of the rabbit at time ℓ and K_n the number of collisions, i.e. $K_n = n - 1 \sum_{i=0}^{1} (R_i = H_i)$.

Use second moment method – calculate first and second moments of K_n.

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
Hunter’s optimal strategy

It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.
It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally....
Hunter’s optimal strategy

It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally.... Let a, b be independent uniform on $[0, 1]$.
It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally.... Let a,b be independent uniform on $[0, 1]$. Let **the position of the hunter at time t be**

$$H_t = \lfloor an + bt \rfloor \mod n.$$
Hunter’s optimal strategy

It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally.... Let \(a, b\) be independent uniform on \([0, 1]\). Let the position of the hunter at time \(t\) be

\[H_t = \lceil an + bt \rceil \mod n.\]

What capture time does this yield?
Hunter’s optimal strategy

It turns out the best the hunter can do is start at a random point and continue at a random speed.

More formally.... Let a, b be independent uniform on $[0, 1]$. Let the position of the hunter at time t be

$$H_t = \lfloor an + bt \rfloor \mod n.$$

What capture time does this yield? Let R_ℓ be the position of the rabbit at time ℓ and K_n the number of collisions.
Hunter’s optimal strategy

It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally.... Let \(a, b \) be independent uniform on \([0, 1]\). Let the **position of the hunter at time** \(t \) be

\[
H_t = \lceil an + bt \rceil \mod n.
\]

What capture time does this yield? Let \(R_\ell \) be the position of the rabbit at time \(\ell \) and \(K_n \) the number of **collisions**, i.e.

\[
K_n = \sum_{i=0}^{n-1} 1(R_i = H_i).
\]
Hunter’s optimal strategy

It turns out the best the hunter can do is **start at a random point** and **continue at a random speed**.

More formally…. Let \(a, b\) be independent uniform on \([0, 1]\). Let the position of the hunter at time \(t\) be

\[
H_t = \lfloor an + bt \rfloor \mod n.
\]

What capture time does this yield? Let \(R_\ell\) be the position of the rabbit at time \(\ell\) and \(K_n\) the number of **collisions**, i.e.

\[
K_n = \sum_{i=0}^{n-1} \mathbb{1}(R_i = H_i).
\]

Use second moment method – calculate first and second moments of \(K_n\).
Hunter’s optimal strategy

We will show that $P(K_n > 0) \gtrsim 1 \log n$.

Recall $K_n = \sum_{n-1}^{0} i = \sum_{i=0}^{n-1} (R_i = H_i)$

$H_t = \lceil an + bt \rceil \mod n$

$E[K_n] = \sum_{i=0}^{n-1} P(H_i = R_i) = 1$

$E[K_{2n}] = E[K_n] + \sum_{i \neq \ell} P(H_i = R_i, H_\ell = R_\ell)$

Suffices to show $E[K_{2n}] \asymp \log n$

Then by Cauchy-Schwartz

$P(K_n > 0) \geq \frac{E[K_n]}{E[K_{2n}]} \gtrsim \frac{1}{\log n}$.
We will show that $P(K_n > 0) \gtrsim \frac{1}{\log n}$.
Hunter’s optimal strategy

We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} 1(R_i = H_i)$
We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} 1(R_i = H_i)$

$H_t = \lceil an + bt \rceil \mod n$
Hunter’s optimal strategy

We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} \mathbf{1}(R_i = H_i)$

$H_t = \lceil an + bt \rceil \mod n$

$\mathbb{E}[K_n] = \sum_{i=0}^{n-1} \mathbb{P}(H_i = R_i) = 1$
Hunter’s optimal strategy

We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} \mathbb{1}(R_i = H_i)$

$H_t = \lceil an + bt \rceil \mod n$

$$
\mathbb{E}[K_n] = \sum_{i=0}^{n-1} \mathbb{P}(H_i = R_i) = 1
$$

$$
\mathbb{E}[K_n^2] = \mathbb{E}[K_n] + \sum_{i \neq \ell} \mathbb{P}(H_i = R_i, H_\ell = R_\ell)
$$
Hunter’s optimal strategy

We will show that \(\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n} \).

Recall

\[
K_n = \sum_{i=0}^{n-1} \mathbb{1}(R_i = H_i)
\]

\[
H_t = \lceil an + bt \rceil \mod n
\]

\[
\mathbb{E}[K_n] = \sum_{i=0}^{n-1} \mathbb{P}(H_i = R_i) = 1
\]

\[
\mathbb{E}[K_n^2] = \mathbb{E}[K_n] + \sum \mathbb{P}(H_i = R_i, H_\ell = R_\ell)
\]

Suffices to show

\[
\mathbb{E}[K_n^2] \lesssim \log n
\]
We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} \mathbb{1}(R_i = H_i)$

$H_t = \lfloor an + bt \rfloor \mod n$

$$
\mathbb{E}[K_n] = \sum_{i=0}^{n-1} \mathbb{P}(H_i = R_i) = 1
$$

$$
\mathbb{E}[K_n^2] = \mathbb{E}[K_n] + \sum_{i \neq \ell} \mathbb{P}(H_i = R_i, H_\ell = R_\ell)
$$

Suffices to show $\mathbb{E}[K_n^2] \lesssim \log n$

Then by Cauchy-Schwartz

$$
\mathbb{P}(K_n > 0) \geq \frac{\mathbb{E}[K_n]^2}{\mathbb{E}[K_n^2]} \gtrsim \frac{1}{\log n}.
$$
Hunter’s optimal strategy

We will show that $\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}$.

Recall $K_n = \sum_{i=0}^{n-1} \mathbb{1}(R_i = H_i)$

$H_t = \lceil an + bt \rceil \mod n$

$$\mathbb{E}[K_n] = \sum_{i=0}^{n-1} \mathbb{P}(H_i = R_i) = 1$$

$$\mathbb{E}[K_n^2] = \mathbb{E}[K_n] + \sum_{i \neq \ell} \mathbb{P}(H_i = R_i, H_\ell = R_\ell)$$

Suffices to show $\mathbb{E}[K_n^2] \lesssim \log n$

Then by Cauchy-Schwartz

$$\mathbb{P}(K_n > 0) \geq \frac{\mathbb{E}[K_n]^2}{\mathbb{E}[K_n^2]} \gtrsim \frac{1}{\log n}.$$
Hunter’s optimal strategy

\[\text{Need to prove} \]

\[P(H_i = R_i, H_{i+1} = R_{i+1}) \lessapprox 1/n. \]

This is equivalent to showing that for fixed \(r, s \),

\[P(a_n + b_i \in (r - 1, r], na + b_i (i + j) \in (s - 1, s]) \lessapprox 1/n. \]

Subtract the two constraints to get

\[b_j \in [s - r - 1, s - r + 1] - \text{this has measure at most} \frac{2}{j}. \]

After fixing \(b \), the choices for \(a \) have measure \(1/n \).
Hunter’s optimal strategy

Need to prove

$$\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}.$$
Hunter’s optimal strategy

Need to prove

\[P(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

Recall \(a, b \sim U[0,1] \).
Hunter’s optimal strategy

Need to prove

\[\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

This is equivalent to showing that for \(r, s \) fixed

Recall \(a, b \sim U[0, 1] \)
Hunter’s optimal strategy

Need to prove

\[\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

This is equivalent to showing that for r, s fixed

Recall \(a, b \sim U[0, 1] \)

\[\mathbb{P}(an + bi \in (r - 1, r], na + b(i + j) \in (s - 1, s]) \lesssim \frac{1}{jn}. \]
Hunter’s optimal strategy

Need to prove

\[\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

This is equivalent to showing that for \(r, s \) fixed

Recall \(a, b \sim U[0, 1] \)

\[\mathbb{P}(an + bi \in (r - 1, r], na + b(i + j) \in (s - 1, s]) \lesssim \frac{1}{jn}. \]

Subtract the two constraints to get \(bj \in [s - r - 1, s - r + 1] \) – this has measure at most \(2/j \).
Hunter’s optimal strategy

Need to prove

\[\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

This is equivalent to showing that for \(r, s \) fixed

Recall \(a, b \sim U[0, 1] \)

\[\mathbb{P}(an + bi \in (r - 1, r], na + b(i + j) \in (s - 1, s]) \lesssim \frac{1}{jn}. \]

Subtract the two constraints to get \(bj \in [s - r - 1, s - r + 1] \) – this has measure at most \(2/j \).

After fixing \(b \), the choices for \(a \) have measure \(1/n \).
Hunter’s optimal strategy

Need to prove

\[\mathbb{P}(H_i = R_i, H_{i+j} = R_{i+j}) \lesssim \frac{1}{jn}. \]

This is equivalent to showing that for \(r, s \) fixed

Recall \(a, b \sim U[0, 1] \)

\[\mathbb{P}(an + bi \in (r - 1, r], na + b(i + j) \in (s - 1, s]) \lesssim \frac{1}{jn}. \]

Subtract the two constraints to get \(bj \in [s - r - 1, s - r + 1] \) – this has measure at most \(2/j \).

After fixing \(b \), the choices for \(a \) have measure \(1/n \).
Rabbit’s optimal strategy

With the hunter’s strategy above r,

Recall

$K_n = \sum_{i=0}^{n-1} (H_i = R_i) P(K_n > 0) \gtrsim \log n.$

This gave expected capture time at most $n \log n$.

What about the rabbit? Can he escape for time of order $n \log n$?

Looking for a rabbit strategy with $P(K_n > 0) \ll \log n$.

Extend the strategies until time $2n$ and define K_{2n} analogously.

Obviously $P(K_n > 0) \leq E[K_{2n}]$.

Yuval Peres
Rabbit’s optimal strategy

Recall \(K_n = \sum_{i=0}^{n-1} \mathbf{1}(H_i = R_i) \)

This gave expected capture time at most \(n \log n \).

What about the rabbit? Can he escape for time of order \(n \log n \)?

Looking for a rabbit strategy with \(\mathbb{P}(K_n > 0) \ll \frac{1}{\log n} \).

Extend the strategies until time \(2^n \) and define \(K_{2^n} \) analogously.

Obviously \(\mathbb{P}(K_n > 0) \leq \mathbb{E}[K_{2^n}] \mathbb{E}[K_{2^n} | K_n > 0] \)
Rabbit’s optimal strategy

With the hunter’s strategy above

Recall $K_n = \sum_{i=0}^{n-1} 1(H_i = R_i)$

This gave expected capture time at most $n \log n$.

What about the rabbit? Can he escape for time of order $n \log n$?

Looking for a rabbit strategy with $P(K_n > 0) \ll 1/\log n$.

Extend the strategies until time $2n$ and define K_{2n} analogously.

Obviously $P(K_n > 0) \leq E[K_{2n}] E[K_{2n}|K_n > 0]$.
Rabbit’s optimal strategy

With the hunter’s strategy above

Recall

\[K_n = \sum_{i=0}^{n-1} 1(H_i = R_i) \]

\[\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}. \]
Rabbit’s optimal strategy

With the hunter’s strategy above

Recall

\[K_n = \sum_{i=0}^{n-1} 1(H_i = R_i) \]

\[\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}. \]

This gave expected capture time at most \(n \log n \).
Rabbit’s optimal strategy

With the hunter’s strategy above

\[K_n = \sum_{i=0}^{n-1} \mathbf{1}(H_i = R_i) \]

Recall

\[\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}. \]

This gave expected capture time at most \(n \log n \).

What about the rabbit?

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
Rabbit’s optimal strategy

With the hunter’s strategy above

\[K_n = \sum_{i=0}^{n-1} \mathbb{1}(H_i = R_i) \]

\[\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}. \]

This gave expected capture time at most \(n \log n \).

What about the rabbit? Can he escape for time of order \(n \log n \)?
Rabbit’s optimal strategy

With the hunter’s strategy above

Recall \(K_n = \sum_{i=0}^{n-1} 1(H_i = R_i) \)

\[\mathbb{P}(K_n > 0) \gtrapprox \frac{1}{\log n}. \]

This gave expected capture time at most \(n \log n \).

What about the rabbit? Can he escape for time of order \(n \log n \)?

Looking for a rabbit strategy with

\[\mathbb{P}(K_n > 0) \lesssim \frac{1}{\log n}. \]
Rabbit’s optimal strategy

With the hunter’s strategy above, the expected capture time is at most $n \log n$.

What about the rabbit? Can he escape for time of order $n \log n$?

Looking for a rabbit strategy with

$$\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}.$$

Extend the strategies until time $2n$ and define K_{2n} analogously.
Rabbit’s optimal strategy

With the hunter’s strategy above

\[K_n = \sum_{i=0}^{n-1} 1(H_i = R_i) \]

\[\mathbb{P}(K_n > 0) \gtrsim \frac{1}{\log n}. \]

This gave expected capture time at most \(n \log n \).

What about the rabbit? Can he escape for time of order \(n \log n \)?

Looking for a rabbit strategy with

\[\mathbb{P}(K_n > 0) \lesssim \frac{1}{\log n}. \]

Extend the strategies until time \(2n \) and define \(K_{2n} \) analogously. Obviously

\[\mathbb{P}(K_n > 0) \leq \frac{\mathbb{E}[K_{2n}]}{\mathbb{E}[K_{2n} \mid K_n > 0]}. \]
If the rabbit starts at a uniform point and the jumps are independent, then $E[K^2_n] = 2r$. Recall $K^2_n = 2^n - \sum_{i=0}^{1} (R_i^2)$.

Idea: Need to make $E[K^2_n | K_n > 0]$ "big" so $P(K_n > 0) \leq (\log n)^{-1}$. This means that given the rabbit and hunter collided, we want them to collide "a lot". The hunter can only move to neighbours or stay put. So the rabbit should also choose a distribution for the jumps that favors short distances, yet grows linearly in time. This suggests a Cauchy random walk.
If the rabbit starts at a uniform point and the jumps are independent, then
Rabbit’s optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then

$$\mathbb{E}[K_{2n}] = 2$$

Recall

$$K_{2n} = \sum_{i=0}^{2n-1} 1(H_i = R_i)$$
Rabbit’s optimal strategy

If the **rabbit** starts at a *uniform point* and the jumps are independent, then

\[\mathbb{E}[K_{2n}] = 2 \]

Recall

\[K_{2n} = \sum_{i=0}^{2n-1} 1(H_i = R_i) \]

Idea: Need to make \(\mathbb{E}[K_{2n} | K_n > 0] \) “big” so \(\mathbb{P}(K_n > 0) \leq (\log n)^{-1} \).
Rabbit’s optimal strategy

If the **rabbit** starts at a *uniform point* and the jumps are independent, then

\[\mathbb{E}[K_{2n}] = 2 \]

Recall

\[K_{2n} = \sum_{i=0}^{2^n-1} \mathbb{1}(H_i = R_i) \]

Idea: Need to make \(\mathbb{E}[K_{2n} \mid K_n > 0] \) “big” so \(\mathbb{P}(K_n > 0) \leq (\log n)^{-1} \).

This means that given the **rabbit and hunter** collided, we want them to collide “a lot”. The hunter can only move to neighbours or stay put.
Rabbit’s optimal strategy

If the rabbit starts at a uniform point and the jumps are independent, then

\[\mathbb{E}[K_{2n}] = 2 \]

Recall \(K_{2n} = \sum_{i=0}^{2n-1} \mathbb{1}(H_i = R_i) \)

Idea: Need to make \(\mathbb{E}[K_{2n} \mid K_n > 0] \) “big” so \(\mathbb{P}(K_n > 0) \leq (\log n)^{-1} \).

This means that given the rabbit and hunter collided, we want them to collide “a lot”. The hunter can only move to neighbours or stay put.

So the rabbit should also choose a distribution for the jumps that favors short distances, yet grows linearly in time. This suggests a Cauchy random walk.
By time i, the hunter can only be in the set $\{ -i \mod n, \ldots, i \mod n \}$. We are looking for a distribution for the rabbit so that $P(R_i = \ell) \succ 1/i$ for $\ell \in \{ -i \mod n, \ldots, i \mod n \}$.

Then by the Markov property $E[K_{2n} | K_n > 0] \geq n - 1 \sum_{i=0}^{\infty} P_0(H_i = R_i) \succ \log n$.

Intuition: If X_1, \ldots are i.i.d. Cauchy random variables, i.e. with density $\left(\pi \left(1 + x^2 \right) \right)^{-1}$, then $X_1 + \ldots + X_n$ is spread over $(-n, n)$ and with roughly uniform distribution. This is what we want—but in the discrete setting...
By time i the **hunter** can only be in the set $\{-i \mod n, \ldots, i \mod n\}$. We are looking for a distribution for the rabbit so that...
By time i the **hunter** can only be in the set $\{-i \mod n, \ldots, i \mod n\}$. We are looking for a distribution for the rabbit so that

$$P(R_i = \ell) \geq \frac{1}{i} \quad \text{for } \ell \in \{-i \mod n, \ldots, i \mod n\}.$$
By time i the **hunter** can only be in the set $\{-i \mod n, \ldots, i \mod n\}$. We are looking for a distribution for the rabbit so that

$$
\mathbb{P}(R_i = \ell) \gtrsim \frac{1}{i} \quad \text{for } \ell \in \{-i \mod n, \ldots, i \mod n\}.
$$

Then by the **Markov property**

$$
\mathbb{E}[K_{2n} \mid K_n > 0] \geq \sum_{i=0}^{n-1} \mathbb{P}_0(H_i = R_i) \gtrsim \log n.
$$
Cauchy Rabbit

By time i the **hunter** can only be in the set $\{-i \mod n, \ldots, i \mod n\}$. We are looking for a distribution for the rabbit so that

$$\mathbb{P}(R_i = \ell) \gtrsim \frac{1}{i} \quad \text{for } \ell \in \{-i \mod n, \ldots, i \mod n\}.$$

Then by the **Markov property**

$$\mathbb{E}[K_{2n} \mid K_n > 0] \geq \sum_{i=0}^{n-1} \mathbb{P}_0(H_i = R_i) \gtrsim \log n.$$

Intuition: If X_1, \ldots are i.i.d. Cauchy random variables, i.e. with density

$$\left(\pi(1 + x^2)\right)^{-1},$$

then $X_1 + \ldots + X_n$ is spread over $(-n, n)$ and with roughly **uniform distribution**.
By time i the **hunter** can only be in the set $\{-i \mod n, \ldots, i \mod n\}$. We are looking for a distribution for the rabbit so that

$$\mathbb{P}(R_i = \ell) \gtrsim \frac{1}{i} \quad \text{for } \ell \in \{-i \mod n, \ldots, i \mod n\}.$$

Then by the **Markov property**

$$\mathbb{E}[K_{2n} \mid K_n > 0] \geq \sum_{i=0}^{n-1} \mathbb{P}_0(H_i = R_i) \gtrsim \log n.$$

Intuition: If X_1, \ldots are i.i.d. Cauchy random variables, i.e. with density $(\pi(1 + x^2))^{-1}$, then $X_1 + \ldots + X_n$ is spread over $(-n, n)$ and with roughly uniform distribution.

This is what we want—**But** in the discrete setting...
The Cauchy distribution can be embedded in planar Brownian motion.
The Cauchy distribution can be embedded in planar Brownian motion.

Let’s imitate that in the discrete setting:
The Cauchy distribution can be embedded in planar Brownian motion.

Let's imitate that in the discrete setting:
Let \((X_t, Y_t)_t\) be a simple random walk in \(\mathbb{Z}^2\). Define hitting times
\[
T_i = \inf\{t \geq 0 : Y_t = i\}
\]
and set \(R_i = X_{T_i} \mod n\).
Cauchy Rabbit

The Cauchy distribution can be embedded in planar Brownian motion.

Let’s imitate that in the discrete setting:
Let \((X_t, Y_t)_t\) be a simple random walk in \(\mathbb{Z}^2\). Define hitting times
\[
T_i = \inf\{t \geq 0 : Y_t = i\}
\]
and set \(R_i = X_{T_i} \mod n\).
The Cauchy distribution can be embedded in planar Brownian motion.

Let’s imitate that in the discrete setting:

Let \((X_t, Y_t)_t\) be a simple random walk in \(\mathbb{Z}^2\). Define hitting times

\[
T_i = \inf\{t \geq 0 : Y_t = i\}
\]

and set \(R_i = X_{T_i} \mod n\).

- With probability \(1/4\), SRW exits the square via the top side.

Of the \(2^i + 1\) nodes on the top, the middle node is the most likely hitting point: subdivide all edges, and condition on the (even) number of horizontal steps until height \(i\) is reached; the horizontal displacement is a shifted binomial, so the mode is the mean. Thus the hitting probability at \((0, i)\) is at least \(1/(8i + 4)\).
The Cauchy distribution can be embedded in planar Brownian motion.

Let’s imitate that in the discrete setting:
Let \((X_t, Y_t)_t\) be a simple random walk in \(\mathbb{Z}^2\). Define hitting times

\[T_i = \inf\{t \geq 0 : Y_t = i\} \]

and set \(R_i = X_{T_i} \mod n\).

- With probability \(1/4\), SRW exits the square via the top side.
- Of the \(2i + 1\) nodes on the top, the middle node is the most likely hitting point: subdivide all edges, and condition on the (even) number of horizontal steps until height \(i\) is reached; the horizontal displacement is a shifted binomial, so the mode is the mean.
The Cauchy distribution can be embedded in planar Brownian motion.

Let's imitate that in the discrete setting:
Let \((X_t, Y_t)_t\) be a simple random walk in \(\mathbb{Z}^2\). Define hitting times

\[T_i = \inf\{ t \geq 0 : Y_t = i \} \]

and set \(R_i = X_{T_i} \mod n\).

- With probability 1/4, SRW exits the square via the top side.
- Of the \(2i + 1\) nodes on the top, the middle node is the most likely hitting point: subdivide all edges, and condition on the (even) number of horizontal steps until height \(i\) is reached; the horizontal displacement is a shifted binomial, so the mode is the mean.
- Thus the hitting probability at \((0, i)\) is at least \(1/(8i + 4)\).
Suppose $0 < k < i$. With probability $1/4$, SRW exits the square $[-k, k]^2$ via the right side. Repeating the previous argument, the hitting probability at (k, i) is at least c/i.

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
Suppose $0 < k < i$.

![Diagram of Cauchy Rabbit]
Suppose $0 < k < i$.

With probability $1/4$, SRW exits the square $[-k, k]^2$ via the right side.
Suppose $0 < k < i$.

With probability $1/4$, SRW exits the square $[-k, k]^2$ via the right side.

Repeating the previous argument, the hitting probability at (k, i) is at least c/i.
Let \((R_t)_t\) be a **rabbit** strategy. Extend it to real times as a step function.
Let \((R_t)_t\) be a \textbf{rabbit} strategy. Extend it to real times as a step function.

Let \(a\) be uniform in \([-1, 1]\) and \(b\) uniform in \([0, 1]\) and \(H_t = an + bt\). There is a \textbf{collision} at time \(t \in [0, n)\) if \(R_t = H_t\).
Let \((R_t)_t\) be a rabbit strategy. Extend it to real times as a step function. Let \(a\) be uniform in \([-1, 1]\) and \(b\) uniform in \([0, 1]\) and \(H_t = an + bt\). There is a collision at time \(t \in [0, n)\) if \(R_t = H_t\).

What is the chance there is a collision in \([m, m + 1)\)?
Let \((R_t)_t\) be a **rabbit** strategy. Extend it to real times as a step function.

Let \(a\) be uniform in \([-1, 1]\) and \(b\) uniform in \([0, 1]\) and \(H_t = an + bt\). There is a **collision** at time \(t \in [0, n]\) if \(R_t = H_t\).

What is the chance there is a collision in \([m, m+1)\)?

It is \(\mathbb{P}(an + bm \leq R_m < an + b(m+1))\), which is half the area of the triangle...
Let \((R_t)_t\) be a rabbit strategy. Extend it to real times as a step function.
Let \(a\) be uniform in \([-1, 1]\) and \(b\) uniform in \([0, 1]\) and \(H_t = an + bt\). There is a collision at time \(t \in [0, n)\) if \(R_t = H_t\).

What is the chance there is a collision in \([m, m + 1)\)?

It is \(\mathbb{P}(an + bm \leq R_m < an + b(m + 1))\), which is half the area of the triangle.
Let \((R_t)_t\) be a \textbf{rabbit} strategy. Extend it to real times as a step function.
Let \(a\) be uniform in \([-1, 1]\) and \(b\) uniform in \([0, 1]\) and \(H_t = an + bt\). There is a \textbf{collision} at time \(t \in [0, n)\) if \(R_t = H_t\).

\textbf{What is the chance there is a collision in \([m, m+1)\)?}

It is \(\mathbb{P}(an + bm \leq R_m < an + b(m + 1))\), which is half the area of the triangle

\[
an + b(m + 1) = R_m
\]
Hence the probability of collision in $[0, n)$ is half the area of the union of all such triangles, which are translates of
Hence the probability of collision in $[0, n)$ is half the area of the union of all such triangles, which are translates of

$$\frac{1}{n} \quad \frac{1}{n}$$

$$T_n \quad T_{n-1} \quad \ldots \quad T_2 \quad T_1$$

In these triangles we can find a unit segment in all directions that have an angle in $[0, \pi/4]$
If the rabbit employs the Cauchy strategy, then

\[\mathbb{P}(\text{collision in the first } n \text{ steps}) \lesssim \frac{1}{\log n}. \]
If the rabbit employs the Cauchy strategy, then

$$\mathbb{P}(\text{collision in the first } n \text{ steps}) \lesssim \frac{1}{\log n}.$$

Hence, this gives a set of triangles with area of order at most $1/\log n$.
If the rabbit employs the Cauchy strategy, then

$$\mathbb{P}(\text{collision in the first } n \text{ steps}) \lesssim \frac{1}{\log n}.$$

Hence, this gives a set of triangles with area of order at most $1/\log n$.
The Cauchy process \(\{X_t\} \) can be embedded in planar Brownian motion.
The Cauchy process \(\{X_t\} \) can be embedded in planar Brownian motion.
The Cauchy process \(\{X_t\} \) can be embedded in planar Brownian motion.

\[
X_{t+s} - X_t \text{ has the same law as } tX_1 \text{ and } X_1 \text{ has the Cauchy distribution (density given by } (\pi(1 + x^2))^{-1}).
\]
Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let’s see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.
Motivated by the Cauchy strategy, let’s see a **continuum** analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let \((X_t)_t\) be a **Cauchy process**. Set

\[
\Lambda = \{(a, X_t + at) : a, t \in [0, 1]\}.
\]
Kakeya sets from the Cauchy process

Motivated by the Cauchy strategy, let’s see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let \((X_t)_t\) be a *Cauchy process*. Set

\[
\Lambda = \{(a, X_t + at) : a, t \in [0, 1]\}.
\]

\(\Lambda\) is a quarter of a *Kakeya set* – it contains all directions from 0 up to 45° degrees. *Take four rotated copies of \(\Lambda\) to obtain a Kakeya set.*
Motivated by the Cauchy strategy, let’s see a *continuum* analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let \((X_t)_t\) be a **Cauchy process**. Set

\[
\Lambda = \{(a, X_t + at) : a, t \in [0, 1]\}.
\]

\(\Lambda\) is a quarter of a Kakeya set – it contains all directions from 0 up to 45° degrees. *Take four rotated copies of \(\Lambda\) to obtain a Kakeya set.*

\(\Lambda\) is an optimal Kakeya set!
Motivated by the Cauchy strategy, let's see a continuum analog of the probabilistic Kakeya construction of the hunter and rabbit.

Let \((X_t)_t\) be a Cauchy process. Set

\[
\Lambda = \{(a, X_t + at) : a, t \in [0, 1]\}.
\]

\(\Lambda\) is a quarter of a Kakeya set – it contains all directions from 0 up to 45° degrees. Take four rotated copies of \(\Lambda\) to obtain a Kakeya set.

\(\Lambda\) is an optimal Kakeya set!

\(\text{Leb}(\Lambda) = 0\) and most importantly the \(\varepsilon\)-neighbourhood satisfies almost surely

\[
\text{Leb}(\Lambda(\varepsilon)) \asymp \frac{1}{|\log \varepsilon|}
\]
Keich in 1999 showed there is no Kakeya set which is a union of n triangles with area of smaller order than $1/\log n$. Bourgain earlier noted that the ε neighborhood of any Kakeya set has area at least $1/|\log \varepsilon|$.
Keich in 1999 showed there is no Kakeya set which is a union of \(n \) triangles with area of smaller order than \(1 / \log n \). Bourgain earlier noted that the \(\varepsilon \) neighborhood of any Kakeya set has area at least \(1 / |\log \varepsilon| \).

So the random construction is optimal.
Keich in 1999 showed there is no Kakeya set which is a union of n triangles with area of smaller order than $1/\log n$. Bourgain earlier noted that the ε neighborhood of any Kakeya set has area at least $1/|\log \varepsilon|$.

So the random construction is optimal.

Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.
Keich in 1999 showed there is no Kakeya set which is a union of n triangles with area of smaller order than $1/\log n$. Bourgain earlier noted that the ε neighborhood of any Kakeya set has area at least $1/|\log \varepsilon|$.

So the random construction is optimal.

Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.

It is a \emph{major open problem} whether Kakeya sets in dimensions $d > 2$ have Hausdorff dimension equal to d.
Keich in 1999 showed there is no Kakeya set which is a union of n triangles with area of smaller order than $1/\log n$. Bourgain earlier noted that the ε-neighborhood of any Kakeya set has area at least $1/|\log \varepsilon|$.

So the random construction is optimal.

Davies in 1971 showed that Kakeya sets in the plane have Hausdorff dimension equal to 2.

It is a major open problem whether Kakeya sets in dimensions $d > 2$ have Hausdorff dimension equal to d.
Consider a graph on \(n \) vertices.
Consider a graph on n vertices.

Pick a spanning tree.
Consider a graph on \(n \) vertices.

Pick a spanning tree.
General graphs

Consider a graph on \(n \) vertices.
Pick a spanning tree.
Depth first search yields

This is a closed path of length \(2n - 2 \).

The hunter can now employ his previous strategy on this path.
This will give \(O(n \log n) \) capture time.
Consider a graph on n vertices. Pick a spanning tree. Depth first search yields
Consider a graph on n vertices.

Pick a spanning tree.

Depth first search yields

This is a closed path of length $2n - 2$.

Yuval Peres

Coloring a graph arising from a lacunary sequence, Diophantine approximation, and constructing a Kakeya set: Applications of the probabilistic method
Consider a graph on \(n \) vertices.

Pick a spanning tree.

Depth first search yields

This is a closed path of length \(2n - 2 \).

The hunter can now employ his previous strategy on this path. This will give \(O(n \log n) \) capture time.
On any graph the hunter can catch the rabbit in time $O(n \log n)$.
On any graph the hunter can catch the rabbit in time $O(n \log n)$. Open Question: If the hunter and rabbit both walk on the same graph, is the expected capture time $O(n)$?