ORDERINGS OF SPARSE GRAPHS

JAROSLAV NEŠETŘIL
CHARLES UNIVERSITY
PRAGUE

ERDÖS 100
BUDAPEST
ORDERINGS OF SPARSE GRAPHS

JAROSLAV NEŠETRIL
CHARLES UNIVERSITY
PRAGUE

(REMEMBERING DĚDEČEK)

ERDŐS 100
BUDAPEST
A WARM UP

EVERY ORIENTATION OF A GRAPH G
$\chi(G) \geq n+1$ CONTAINS A MONOTONE
PATH \vec{P}_n OF LENGTH n.

(GALLAI, HASSE, VITAVER, ROY)
A Warm Up

Every orientation of a graph G $\chi(G) \geq n + 1$ contains a monotone path P_n of length n.

(Gallai, Hasse, Vitaver, Roy)

For every oriented tree \vec{T}, there exists oriented graph \vec{H} such that

$\vec{T} \rightarrow G$ iff $G \rightarrow \vec{H}$

For every oriented graph G.
Every orientation of a graph G with $\chi(G) \geq n + 1$ contains a monotone path \overrightarrow{P}_n of length n.

(GALLAI, HASSE, VITAVER, ROY)

For every oriented tree \overrightarrow{T}, there exists oriented graph \overrightarrow{H} such that $\overrightarrow{T} \rightarrow G$ iff $G \rightarrow \overrightarrow{H}$ for every oriented graph G.

(N., C. TARDIF)

Finite dualities studied by many

(HUBIČKA, KANTOR, P. ERDŐS, J. FONIOK, G. TARDOS, ...)
IN DUALITIES: TREES ONLY

IN RAMSEY CONTEXT: ALL ORDERINGS (~ACYCLIC ORIENTATIONS)

THM (ORDERING LEMMA)
FOR EVERY GRAPH $F = (V, E)$
THERE EXISTS GRAPH $G = (V', E')$
SUCH THAT:
FOR ARBITRARY ORDERINGS $(V_i \leq)$
$(V'_i \leq')$
THERE EXISTS A MONOTONNE (w.r.t. \leq, \leq')
EMBEDDING $F \hookrightarrow G$.

("ALL GRAPHS HAVE ORDERING PROPERTY")

(N. RÖDL)
I. \textbf{THM} \textsc{holds} for graphs with given girth:

\textbf{THM} (ordering lemma)

For every graph $F = (V,E), \text{girth}(F) > \ell$, there exists graph $G = (V',E'), \text{girth}(G) > \ell$, such that:

For arbitrary orderings $(V \leq) \quad (V' \leq')$

There exists a \textbf{monotonne} (w.r.t. \leq, \leq') embedding $F \hookrightarrow G$.

Random replacement constr.
I. THM holds for graphs with given girth:

THM (Ordering Lemma)

For every graph $F = (V, E), \text{girth}(F) > \ell$, there exists graph $G = (V', E'), \text{girth}(G) > \ell$, such that:

For arbitrary orderings $(V_i \leq) (V'_i \leq')$

There exists a **monotone** (w.r.t. \leq, \leq') embedding $F \hookrightarrow G$.

Random replacement constr.

("All graphs have ordering property")

Sparse
COROLLARY

1. \[F = \underbrace{\cdots}_{n+1} \Rightarrow \chi(G) \geq n+1 \quad \text{(Erdős)} \]

2. \[F = \underbrace{\cdots}_{n+1} \Rightarrow \text{Girth}(G) > n \quad \text{G NOT DIAGRAM OF A POSET} \quad \text{(Erdős-Ore Problem)} \]

More corollaries later
II. A class \mathcal{C} of graphs has ordering property if

holds for \mathcal{C}:

for every $F \in \mathcal{C}$ there exists $G \leq \mathcal{C}$

$$G \xrightarrow{\text{ord}} F$$

"almost every" class \mathcal{C} has ordering property

(e.g. every \mathcal{C} determined by forbidding finitely many 2-connected graphs)
Consequently orderings are natural obstacle for Ramsey properties.

(The original motivation of ordering property)
REMARK

(SHELAH) ORDERING PROPERTY OF \(\mathcal{C} \):
FOR EVERY \(n \) THERE EXISTS \(G \in \mathcal{C} \)
SUCH THAT IN \(G \) ONE CAN FO-DEFINE
A LINEAR ORDERING OF \(n \)-TUPLE

\(\mathcal{C} \) IS [STABLE] IF \(\mathcal{C} \) HAS NO
ORDERING PROPERTY
THM

For a monotone class \mathcal{C}

1. \mathcal{C} is stable

2. \mathcal{C} is nowhere dense

(N., Possona de Mendez)

Adler, Adler
THM FOR A MONOTONE CLASS \mathcal{C}

1. \mathcal{C} is stable
2. \mathcal{C} is nowhere dense

(N., Possona de Mendez)
Adler, Adler

Nowhere dense \equiv doesn't contain all K_n with s & subdivision points on every edge.
NOWHERE DENSE \supseteq BOUNDED EXPANSION

THM

ANY BOUNDED EXPANSION CLASS \mathcal{E} HAS ALL RESTRICTED DUALITIES (CONNECTED)

FOR EVERY $F_1, \ldots, F_t \in \mathcal{E}$ THERE EXIST D SUCH THAT

1) $F_i \rightarrow D$, $i = 1, \ldots, t$

2) FOR EVERY $G \in \mathcal{E}$

$F_i \rightarrow G$, $i = 1, \ldots, t$ \iff $G \rightarrow D$.
NOWHERE DENSE \supset BOUNDED EXPANSION

THM

ANY BOUNDED EXPANSION CLASS \mathcal{C} HAS **ALL RESTRICTED DUALITIES**

(CONNECTED)

FOR EVERY $F_1, \ldots, F_t \in \mathcal{C}$ THERE EXIST D SUCH THAT

1) $F_i \rightarrow D \quad i = 1, \ldots, t$

2) FOR EVERY $G \in \mathcal{C}$

$F_i \rightarrow G, \quad i = 1, \ldots, t \iff G \rightarrow D.$

"ABSENCE OF ORDERINGS LEADS TO DUALITIES"
\[\mathcal{N} = \{1, 2, \ldots, N\} \]

\[k \ll N \]

\[\pi_1, \pi_2, \ldots, \pi_k! \]

Fixed enumeration of all permutations of \([k]\).

\(\sigma \) - permutation of \([N]\).

\(k \)-profile of \(\sigma \) - \((s_1^\sigma, \ldots, s_k^\sigma)\)

k-statistics

\[s_i = \left| \{ k \in \mathcal{N} \setminus \mathcal{N}_k | \pi_k = \pi_i \} \right| \]

\[\frac{1}{N^k} \]
For every 2-connected F, $|F| = k$, there exists G such that

(1) For any σ on $V(G) = [N]$:

$$\text{Emb}((F_\alpha, \sigma), (G, \sigma)) = (S_\alpha^\sigma + o(1)).$$

$$\text{Emb}(F, G)$$

(2) $\text{girth}(F) = \text{girth}(G)$.

"Sparsification Lemma"
For every 2-connected F, $|F| = k$, there exists G, $V(G) = [N]$, such that for any σ on $[N]$

$$\text{Emb}((F, \pi_i)_1 (G, \sigma)) = \left(\frac{1}{k!} + o(1)\right).$$

$$\text{Emb}(F, G)$$

and $\text{girth}(F) = \text{girth}(G)$.

N. Rödl

Generalizes O. Angel, A. Kechris, R. Lyons

(in context of topological dynamics)
FOR STRUCTURES WITH CANONICAL ORDERINGS?

(N., PROMEL, RODL, VOIGT)

HOMOMORPHISMS OF ORDERED GRAPHS?

::
THANK YOU
FOR YOUR ATTENTION