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Steinhaus (1950’s) :(1) Are there subsets A,S ⊂ R2 such that

card(S ∩ T (A)) = |S ∩ T (A)| = 1,

for all isometries T of R2?

Let’s call such a set S a Steinhaus set for A. The trivial case where
A = R2 and |S| = 1 is ruled out.

T.: Sierpinski (1958), Erdös (1985) Yes.

Steinhaus (1950’s): What if the set A is specified? In particular, A = Z
or A = Z2, i.e., Can S be a fundamental domain simultaneously for all
rotations of Z2?

Steinhaus’ questions appeared in Sierpinski’s 1958 paper on this subject.

T.: Komjath (1992) S exists if A = Z or A = Q× Q.

The problem remained: what if A = Z2? To get a feeling for the problem,
let’s check some other dimensions.
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T.: There is a Borel set which is a Steinhaus set for Z1 in R1, namely
[0,1). There is no Steinhaus set of any kind for Z4 in R4.

Let z1 = (a1, ..., a4) ∈ Z4 and z2 = (b1 + 1
2, ..., b4 + 1

2) ∈ Z4 + (1
2,

1
2,

1
2,

1
2).

Then ||z1 − z2||2 ∈ Z+ and is therefore the sum of four squares. Thus,
z1, z2 ∈ T (Z4), for some isometry T .

T.: (Jackson, Mauldin (2002)) There is a “Steinhaus set,” a set S ⊆ R2

such that for every isometric copy L of the integer lattice Z2 we have
|S ∩ L| = 1.

Equivalent to showing: There is some S ⊆ R2 such that:

(i) For every isometric copy L of Z2 we have S ∩ L 6= ∅.

(ii) For all distinct z1, z2 ∈ S, ||z1 − z2|| is not a lattice distance, i.e.,
||z1 − z2||2 is not the sum of two squares.

We actually show something stronger: there is some S such that
(ii’) if z1, z2 ∈ S,z1 6= z2, then ||z1 − z2||2 /∈ Z.
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NOTE: From this point on a set satisfying (i) and (ii’) will be called an
“S set”. Let d1 = 1 < d2 =

√
2 < d3... be the increasing sequence of

lattice distances and note that the gaps dn+1 − dn → 0 as n→∞.

T.: (Jackson, Mauldin (2003)(a variation of Croft’s argument for mea-
sure) No S set for any lattice in Rd, d > 1 can be a Borel set; or, more
generally can have Baire property.

Indication for Z2. Suppose S is an S set and has the Baire property.

(i) S is not meager: otherwise R2 = ∪z∈Z2 (S + z)

(ii) R2 \ S is not meager: otherwise (S + 1) ∩ S 6= ∅.

(iii) ∃ ball in which S is co-meager. So, S is essentially bounded: there is
a ball outside of which S is meager.

(iv) There is a category boundary point P and a lattice L containing P

such that all other points of the lattice are either category density
points of S or of R2 \ S.

(v) All points of L \ {P} are category density points of R2 \ S.

(vi) There is a lattice L′ which misses S.
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SOME RESULTS AND UNSOLVED PROBLEMS

1. Is there a Lebesgue measurable set S in R2? NOTE: Then m(S) = 1.

T.: (Croft (1982), Beck (1989)) No Lebesgue measurable S set for Z2

can be (essentially) bounded.

T.: (Kolountzakis, Wolff (1999)) If S is a Lebesgue measurable S set

in R2, then
∫
S |x|αdx = ∞, for all α > 46/27. Also, there is no Lebesgue

measurable S set for Zd, d > 2. (This is a deep paper and I unfortunately

will not have time to discuss it very much.)

T.: (Chan, Mauldin (2008)) There is no Lebesgue measurable S set for

any rational lattice in Rd, d > 2. Unsolved for other lattices.

These last 3 results use Fourier transform methods.

2. Is there a S set for Z3? This seems unlikely, but remains unsolved.

3. Is there a Steinhaus set for the rectangular lattices in R2?

For rational rectangular lattices the answer is yes.

4. Can a Steinhaus set for Z2 be bounded?

5. As far as I know nothing much is known about Steinhaus sets for

lattices in other geometries.
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Construction of S?

Usual approach: (1) Well order all the lattices - isometric copies of Z2:

L0, L1, ..., Lα, ...

(2) Carefully choose a point from each lattice with no two points at a
lattice distance apart.

There are several reasons why this approach might fail. The first of which
is:

There are finite obstructions

T.: There is a 17 point partial S set with each point at a lattice distance
from some point of Z2 :

(216/5,2/5) (107/5,4/5) (283/5,1/5) (174/5,3/5)
(677/13,5/13) (340/13,10/13) (744/13,2/13) (407/13,7/13)
(70/13,12/13) (474/13,4/13) (137/13,9/13) (541/13,1/13)
(204/13,6/13) (712/13,11/13) (271/13,3/13) (779/13,8/13)
(2601/65,57/65)

We were unable to find a smaller example. Does a smaller example exist?
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Repairing finite Obstructions: Retreat and be more careful

Let d > 1 be an integer. Let Xd = {(a, b) ∈ Z2 : 0 ≤ a, b < d}. S is an

d-partial S set means

(i) |S ∩ (xd + Z2)| = 1, ∀x ∈ Xd

(ii’) ||x− y||2 /∈ Z, ∀x, y ∈ Xd, x 6= y

i.e., S is a partial S set for the translations of Z2 by rationals with de-

nominator d.
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Given d, for any v ∈ Z2, we write

v = y(v) + dε(v),

where εi(v) ∈ Z is the quotient and yi(v) ∈ Xd is the remainder when vi is

divided by d.

T.: There is an d-partial Steinhaus set if and only if there is L : Xd → Xd
such that ∀x, z ∈ Xd, x 6= z,

(+) ||(zd + L(z))− (xd + L(x))||2 /∈ Z.

Moreover, if L has (+), then S = {xd + L(x)} is an d-partial S set.

Expanding (+) we see that if ||z − x||2 /∈ dZ, then (+) holds.

In particular,

T.: If p is a prime and p ≡ 3 (mod 4), then any function L produces a

p-partial S set.
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Consider a prime p ≡ 1 (mod 4) and n ≥ 1 and d = pn. Suppose

x = (i1, j1), z = (i2, j2) ∈ Xpn

and

||z − x||2 = (i2 − i1)2 + (j2 − j1)2 ≡ 0 (mod pn).

Let λ2 ≡ −1 (mod pn) with

j2 − j1 = λ(i2 − i1).

Let b ∈ {0,1, ..., pn − 1} with z = y(i2, b+ λi2) and x = y(i1, b+ λi1).

Define the function πλb : {0,1, ..., pn − 1} → {0,1, ..., pn − 1} by

πλb (i) ≡ i
(1 + λ2

2pn

)
+ 〈(1, λ) · [L(y((i, b+ iλ)))− ε(i, b+ iλ)]〉 (mod pn).

We find that

||
( z
pn

+ L(z)
)
−
( x
pn

+ L(x)
)
||2 /∈ Z

if and only if (
i2 − i1

)(
πλb (i2)− πλb (i1)

)
6≡ 0 (mod pn).
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Good families of permutations = Partial S sets for prime powers

T.: Let p be a prime, p ≡ 1 (mod 4), and n ≥ 1. Let L : Xpn → Xpn.

TFAE:

(i) ∀x, z ∈ Xpn with x 6= z,

||
( z
pn

+ L(y)
)
−
( x
pn

+ L(x)
)
||2 /∈ Z.

(ii) For each b ∈ pn, each λ with λ2 = −1 (mod pn) and all distinct

i, j ∈ pn: (
j − i

)(
πλb (j)− πλb (i)

)
6≡ 0 (mod pn).

(iii) ∀b ∈ pn and λ with λ2 ≡ 0, πλb is a permutation of pn and is ’good’:

if 0 ≤ i 6= j < pn and i− j = pru where (p, u) = 1, then πλb (i) 6= πλb (j)

(mod pn−r).
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T.: There is a good permutation of length pn.

Proof. For n = 1 take π = (0,1, . . . , p − 1). For n > 1, if i = b0 + b1p +

b2p
2 + · · ·+ bn−1p

n−1 where 0 ≤ bi < p, set π(i) = b0p
n−1 + b1p

n−2 + · · ·+
bn−1, the base p digit reversal permutation.This easily works.

We were able to continue with this procedure which becomes more tech-

nically involved to prove the following existence

T.: For each d ∈ Z+, there is a function L : Xd → Xd such that

(∗)d : {
x

d
+ L(x) : x ∈ Xd}

forms a partial Steinhaus set.

We also showed the following extension property is true.

T.: Let d|d′ and assume L : Xd → Xd satisfies (∗)d. Then L may be

extended to a function L′ : Xd′ → Xd′ satisfying (∗)d′.
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We immediately get:

T.: LEMMA [A] Let LQ denote the set of rational translations of Z2,
that is, lattices of the form Z2 + (r, s) where r, s ∈ Q. Then there is a set
S ⊆ R2 satisfying the following.

(i) For every lattice L ∈ LQ, S ∩ L 6= ∅.

(ii) For all distinct z1, z2 ∈ S, ρ(z1, z2)2 /∈ Z.

PROBLEM. If S is a partial Steinhaus set for all the rational translations
of Z2, then must S be unbounded?

One nice thing: We automatically get a partial Steinhaus set for the
rational rotations (meaning here the matrix has rational entries) from
one for rational translations.

DEF. We say L ∼ L′ if L′ is obtained from L by rational translations/rotations
(in the coordinate system of L).
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Another foiled Construction of S

Next approach: (1) Well order all the equivalence classes of lattices:

{Lα}α<2ω

(2) Successively build partial Steinhaus sets

S0 ⊆ S1 ⊆ · · · ⊆ Sα ⊆ ...

such that at step α, Sα ∩ L 6= ∅ for all L ∈ Lα. At limit stages we would

take unions and there would be no problem. But, there is

Another Geometric Obstruction

Problem. It may be that every point on some L ∈ Lα lies at a lattice

distance from some point of ∪β<αSβ, in which case the extension is im-

possible.

To investigate this, suppose z1 ∈ L, c1 ∈ Sα, and ρ2(c1, z1) ∈ Z. Let

us assume that c1 does not have rational coordinates with respect to L

(we comment on the general case below). The following lemma is easily

verified.
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T.: LEMMA [C] Let L be a lattice and suppose c1 does not have

rational coordinates with respect to L. Then there is a line l1 = l(c1, L)

such that if w ∈ L and ρ2(c1, w) ∈ Q, then w ∈ l1.

Thus, the point c1 ∈ Sα can only rule out a line l1 = l(c1, L) of points

on L. Choose z2 ∈ L \ l1. Suppose there is a c2 ∈ Sα with ρ2(c2, z2) ∈ Z.

Suppose again that c2 does not have rational coordinates with respect to

L. Let l2 = l(c2, L), and let z3 ∈ L \ (l1 ∪ l2). Finally, suppose there is a

c3 ∈ Sα with ρ2(c3, z3) ∈ Z. Let r1 = ρ(c1, z1) and likewise for r2, r3. Let

C1 be the circle with center c1 and radius r1, and likewise for C2, C3.
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Eliminating the obstruction.

We have the three circles with centers the points c1, c2, c3 of Sα each with

square radius in Q.

We would like to assert that there are only finitely many lattices L with

points z1, z2, z3 ∈ L and with z1 ∈ C1, . . . , z3 ∈ C3. This would then be

a contradiction if we assume the Lα is sufficiently closed and L is not

definable from the points of Sα. (Again, note that at most one point of

L can lie in Sα as L is definable from any two of its points).

Obvious exception to the above assertion. Namely, the case where r1 =

r2 = r3 and 4z1z2z3
∼= 4c1c2c3. This exceptional case does not arise in

the argument though, as in this case we would have ρ(c1, c2) = ρ(z1, z2)

is a lattice distance, contradicting Sα being a partial Steinhaus set. The

following geometric lemma says that this is the only exceptional case to

our assertion.
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4-bar linkages and coupler curves

T.: LEMMA [B] Let c1, c2, c3 be three distinct points in the plane, and

let r1, r2, r3 > 0 be real numbers. Let C1 be the circle in the plane with

center at c1 and radius r1, and likewise for C2 and C3. Let p1, p2, p3 be

three distinct points in the plane. Then, except for the exceptional case

described afterwards, there are only finitely many ( ≤ 48 ((6?)) triples

of points (z1, z2, z3) in the plane such that

(i) z1 ∈ C1, z2 ∈ C2, and z3 ∈ C3.

(ii) The triangle p1p2p3 is isometric with the triangle z1z2z3 (we allow the

degenerate case where the points z1z2z3 are colinear).

The exceptional case is when r1 = r2 = r3 and the triangle p1p2p3 is

isometric with c1c2c3.

So, if we ensure that our families of lattices in the inductive family are

sufficiently closed under lattices determined by 4-bar linkages, we can

continue the transfinite induction to produce a Steinhaus set.

MOVIE
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Construction of S in ZFC

The particular method used to prove the existence of an S set is perhaps

unusual. It is useful when one is closing up some objects under some

geometric, alegraic, combinatorial or logical operations.

First, we built a particular enumeration of sets of equivalence classes of

lattices. To begin, let κ(∅) = 2ω, and let

{Mα0 : α0 < κ(∅)}

be an increasing family of sets of equivalence classes with

M0 = ∅, |Mα0| < κ(∅)

and such that

every [L]∼ is in some Mα0.

We proceed inductively to build a well founded subtree T of ON<ω and

functions κ : T → cardinals and M : T → sets of equivalence classes

satisfying
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(i) If (α0, ..., αk) ∈ T , then (i) κ(α0, ..., αk−1) is an uncountable cardinal,

(ii) Mα0,...,αk−1,β
is defined ⇐⇒ β < κ(α0, ..., αk−1)

(ii) (α0, ..., αk) is a terminal node in T ⇐⇒ Mα0,...,αk+1 \ Mα0,...,αk is

countable.

(iii) If card(Mα0,...,αk+1 \Mα0,...,αk) := κ(α0, ..., αk) > ω0, then

Mα0,...,αk+1 \Mα0,...,αk = ∪Mα0,...,αk,αk+1

with

card(Mα0,...,αk,αk+1) < κ(α0, ..., αk).

(iv) If c1, c2, c3 ∈ ∪{L : [L] ∈Mα0,...,αk}, with ρ(ci, cj)
2 /∈ Q, then the finitely

many equiv classes determined by the linkage are in Mα0,...,αk.
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We construct by transfinite induction partial S-sets S~α, where ~α is a

terminal node of T and these nodes have the lexicographic well-ordering.

Finally, we set

S = ∪S~α
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Hueristic argument why there should not be an S set for Z3

Again, let p be a prime and let

Xp = {(a, b, c) ∈ Z3 : 0 ≤ a, b, c < d}.
Let L : Xp → Xp. For each λ ∈ Xp, with ||λ||2 is divisible by p, and for
each b ∈ {0, ..., p− 1}, define

πλb (t) =
td(λ)

2
+ λ · [L(y(x+ λt))− ε(x+ λt)] (mod p),

where d = d(λ) ∈ {0, ..., p− 1} with ||λ||2 ≡ dp (mod p)2

T.: TFAE:

(i) ∀x, z ∈ Xpn with x 6= z,

||
(z
p

+ L(y)
)
−
(x
p

+ L(x)
)
||2 /∈ Z.

(ii) There is a set Λ ⊂ Xp with card(Λ) = p + 1 such that for each
λ ∈ Λ, ||λ||2 is divisible by p and there is a subset Xλ of Xp with
card(Xλ) = p2, such that for each b ∈ Xλ, πλb is a permutation of
GF (p).
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For p large, perhaps p = 11 or even maybe p = 5 it doesn’t appear this
is possible:

(i) card(Xp) = p3.

(ii) There are p3p3
functions L from Xp to itself

(iii) The probability that a random function from {0, ..., p−1} is a permu-
tation is p!/pp.

(iv) So, if the p2(p + 1) functions associated to L were random and in-
dependent (which they are not),the expected number Np of p-partial
Steinhaus functions would be

Np = p3p3
(
p!

pp
)(p+1)p2

→ 0 as p→∞.

For p = 11, Np is already close to 0. Partial 3-Steinhaus sets have been
constructed, but none have been found for p = 5.
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Fourier transforms and Lebesgue measuable Steinhaus sets

T.: (Kolountzakis, Wolff (1999)) There does not exist a Lebesgue mea-
surable set S ⊂ R3 such that for every (orientation preserving) isometry
T of R3

card(S ∩ T (Z3)) = |S ∩ T (Z3)| = 1.

In fact, their method has been refined and generalized a bit as follows.
Let A be a non-singular matrix and consider the lattice Λ = ΛA = A(Zd).

T.: (Chan, Mauldin (2008)) Let Λ be a rational lattice in Rd, d > 2.
There does not exist a Lebesgue measurable set S ⊂ Rd such that for
every (orientation preserving) isometry T of Rd

card(S ∩ T (Λ)) = |S ∩ T (Λ)| = 1.
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REMARK. This Fourier transform approach completely fails in R2. The
problem in the plane seems to involve some as yet unknown aspects of
planar geometric measure theory and/or insufficient estimates of conver-
gence rates.

Observe that this property implies the following:

∑
n∈AZd

1TS(x− n) = 1, (a.e.) x ∈ Rd, (a.e.) rotation T. (1)

Integrating both sides of this equation over the fundamental domain D =
A([0,1)d) of the lattice, we find µ(S), the Lebesgue measure of such a
set S:

|detA| =
∫
D

1dx =
∫
D

∑
n∈AZd

1TS(x− n)dx =
∑

n∈AZd

∫
D
1TS(x− n)dx

=
∑

n∈AZd

∫
n+D

1TS(x)dx =
∫
Rd

1TS(x)dx = µ(T (S)) = µ(S).
(2)

23



So, if S is even “an almost sure measurable Steinhaus set for the lattice

AZd,” the Lebesgue measure of S is |detA|. More importantly, there is

a characterization of almost sure measurable Steinhaus sets by Fourier

transform methods.

Let L∗A = A−TZd be the dual lattice to LA.

T.: (Kolountzakis, Wolff (1999))Let f be an L1 function. Then there is

a constant C with ∑
λ∈LA

f(x− λ) = C, a.e. x (3)

if and only if the Fourier transform f̂ of f satisfies:

f̂(λ) = 0, ∀λ : λ ∈ L∗A \ {0}. (4)

Moreover, if (3) holds, then by integrating both sides of (3) over D, the

fundamental domain or parallelepiped spanned by the columns of A, we

find that C =
∫
f(x)dx/|det(A)|.

24



Thus, we can characterize an (even almost) Steinhaus set S for a lattice
L in terms of the properties of its Fourier transform.

T.: A measurable set S has the almost sure Steinhaus property for the
lattice LA if and only if it has Lebesgue measure µ(S) = |det(A)| and
the Fourier transform 1̂S vanishes on all points x, such that ‖x‖ = ‖λ‖
for some λ ∈ L∗A, λ 6= 0.

Sufficient conditions under which there is no measurable set with

the almost sure Steinhaus property for the lattice LB.

DEF. Given a matrix M , let

D(M) = {‖Mx‖2 : x ∈ Zd},

If

D(A) ⊆ D(B),

we say B norm dominates A, and write B � A or A ≺ B. If B � A and we
have det(A)/det(B) not an integer, we say B weakly norm dominates A,
and write B �w A. With this terminology in place, we have the following
theorem.
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T.: Let B ∈ GL(d,R) and suppose there exists a matrix A ∈ GL(d,R),

where B−T �w A−T . Then there is no measurable set with the almost

sure Steinhaus property on the lattice LB.

Proof. Suppose by way of contradiction, that there is a measurable set

S with the almost sure Steinhaus property on LB. By our calculations,∫
1S(x)dx = |det(B)|

and 1̂S vanishes on all nonzero points with norm square in D(B−T ). So, 1̂S
vanishes on all nonzero points with norm square in D(A−T ). In particular,

1̂S vanishes on L∗A \ {0}. Again, by our calculations,

∑
λ∈ΛA

f(x− λ) =

∫
1S(x)dx

|detA|
=
|det(B)|
|det(A)|

=
|det(A−T )|
|det(B−T )|

for almost all x. However, the left side must be an integer, whereas we

have supposed that the right side is not.
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T.: (Chan, Mauldin (2008)) Let d > 2, B ∈ GL(d,R) and suppose B(Zd)
is a rational lattice. Then there is a matrix A ∈ GL(d,R), where B−T �w
A−T . Thus, there is no Lebesgue measurable set with the (even almost

sure) Steinhaus property on the lattice LB.

As an immediate corollary let us have the following theorem.

T.: There is no measurable Steinhaus set for the lattices Zd for d > 2.

For d = 3 Kolountzakis and Papadimitrakis gave a simple example. They

showed

B−T =

 1
1

1

 �w

√

2 √
11 √

6

 = A−T .

So, there can be no measurable Steinhaus set for the lattice Z3.
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Growth rate for simultaneous tiles of finitely many lattices.

T.: (Kolountzakis and Wolff) For each d ≥ 1, ∃C = C(d) for which

the following is true: Suppose the lattices Ai(Zd) = Λi, i = 1, ..., n have

volume 1 and

Λi ∩ Λj = {0}, i 6= j.

Suppose S is “an almost simultaneous S set for these lattices”:∑
λ∈Λi

1S(x− λ) = 1

Then

diam(support(f)) ≥ Cn1/d.

In particular, for d = 2, if S is a measurable partial S set for these lattices,

then

λ(S \B(0, C
√
n) > 0.

THANK YOU FOR YOUR ATTENTION.
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P. Erdős, S. Jackson and R. D. Mauldin, On infinite partitions of lines

and space, Fund. Math. 152 (1997), 75-95.

Gibson, C. G., and Newstead, P. E., On the geometry of the planar 4-bar

mechanism, Acta Applicandae Mathematicae, 7 (1986), 113-135.

K. H. Hunt, Kinematic Geometry of Mechanisms, Oxford Engineering Sci-

ence Series, 7 Oxford Science Publications, The Clarendon Press, Oxford

University press, New York, 1990



M. Huxley, Exponential sums and lattice points, Proc. London Math.

Soc., (3) 66 (1993), 279-301.

S. Jackson and R. D. Mauldin, Sets meeting isometric copies of a lattice

in exactly one point, Proc. Natl. Acad. Sci, USA, 99 (2002), 15883-

15887.

S. Jackson and R. D. Mauldin, On a lattice problem of H. Steinhaus, J.

Amer. Math. Soc., 15 (2002), 817-856.

M. N. Kolountzakis, A problem of Steinhaus: Can all placements of

a planar set contain exactly one lattice point?, Analytic number theory,

Vol. 2 (Allerton Park, IL, 1995), 559-565, Progr. Math., 139, Birkhäuser
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