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GRAPHORUM ALEATORIORUM DEFINITIO

DEFINITION OF G(n, p)

G(n, p) is a random graph with vertex set {1, 2, . . . , n} in which
each edge is generated with probability p, independently for
each of

(n
2

)

pairs.

DEFINITION OF G(n,M)

G(n,M) is a random graph with vertex set {1, 2, . . . , n} chosen
uniformly at random from the family of all graphs with M edges.
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RANDOM GRAPHS

Pr(G = G(n, p)) = pe(G)(1 − p)(
n
2)−e(G).

Pr(G = G(n,M) =







((n
2)
M

)

−1
if e(G) = M

0 if e(G) 6= M.



THRESHOLD FUNCTIONS

DEFINITION ERDŐS, RENYI ’60

f (n, p) is a threshold function for a (monotone) property A if

lim
n→∞

Pr(G(n, p) has A) =

{

1 if p
f (n,p) → ∞,

0 if p
f (n,p) → 0.
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DEFINITION ERDŐS, RENYI ’60

f (n, p) is a threshold function for a (monotone) property A if

lim
n→∞

Pr(G(n, p) has A) =

{

1 if p
f (n,p) → ∞,

0 if p
f (n,p) → 0.

We will call this type of thresholds as ‘coarse’ thresholds.
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THRESHOLD FUNCTIONS: EXAMPLE

THEOREM ERDŐS, RENYI ’60

lim
n→∞

Pr(G(n, p) ⊇ Kr ) =

{

1 if nr p(
r
2) → ∞,

0 if nr p(
r
2) → 0.

Thus, p(n) = n−2/(r−1) is the threshold function for the property
that a graph contains Kr .

Bollobás’81 found the (coarse) thresholds for the property that
a graph contains copy of a given graph H.



EARLY PERIOD OF RANDOM GRAPH THEORY

It was the best of times, it was the worst of times.
“The tales of two models”

Main Objective:
Take your favorite property, guess the threshold function,
prove that it is the threshold.
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EARLY PERIOD IN RANDOM GRAPH THEORY

Take your favorite property, guess the threshold function,
prove that it is the threshold.

Two ways of identifying the threshold function
◮ find a necessary local condition;
◮ compute the expectation of an appropriate random

variable.



CONNECTIVITY THRESHOLD

THEOREM ERDŐS, RENYI ’59

If p(n) = log n
n + ω(n)

n , then

lim
n→∞

Pr(G(n, p) is connected)

= lim
n→∞

Pr(δ(G(n, p)) ≥ 1) =

{

1 if ω(n) → ∞,

0 if ω(n) → −∞.



CONNECTIVITY THRESHOLD

THEOREM ERDŐS, RENYI ’59

If p(n) = log n
n + ω(n)

n , then

lim
n→∞

Pr(G(n, p) is connected)

= lim
n→∞

Pr(δ(G(n, p)) ≥ 1) =

{

1 if ω(n) → ∞,

0 if ω(n) → −∞.

Note that this is a sharp threshold function, where the term
which affects the limit probability ω/n is smaller than the
leading term log n/n.



HAMILTONICITY THRESHOLD

THEOREM KOMLÓS, SZEMERÉDI’83, BOLLOBÁS’84,
AJTAI, KOMLÓS, SZEMERÉDI’85

The hitting times for Hamiltonicity and for the property that the
minimum degree is at least 2 a.a.s. coincide.
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n
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Thus, for instance, we may view G(n,M) as a subgraph of
G(n,M + 1).
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AJTAI, KOMLÓS, SZEMERÉDI’85

The hitting times for Hamiltonicity and for the property that the
minimum degree is at least 2 a.a.s. coincide.

G(n,M) can be viewed as a state of the random graph process

G =
{

G(n,M) : 0 ≤ M ≤
(

n
2

)

}

.

Thus, for instance, we may view G(n,M) as a subgraph of
G(n,M + 1).

In fact G(n, p) can also be considered as a state of Markov
process Ĝ = {G(n,M) : 0 ≤ p ≤ 1}.



WHAT HAVE BEEN LEFT

Two ways of guessing the threshold function
◮ find a necessary local condition;
◮ compute the expectation of an appropriate random

variable.

The most difficult properties are those without obvious local
necessary condition for which it is hard to compute the
expectation, such as k-colorability (Bollobás’88, Łuczak’90,
Achlioptas, Naor’05), or Ramsey properties (Rödl, Ruciński’95,
Friedgut, Hán, Person, Schacht’+13)



TOWARDS A THEORY OF THRESHOLD FUNCTIONS

THEOREM BOLLOBÁS, THOMASON’87

Each monotone property A has a threshold function. More
precisely, for every ǫ > 0, there exists k such that if

Pr(G(n, p) hasA) ≥ ǫ ,

then
Pr(G(n, kp) hasA) ≥ 1 − ǫ .
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precisely, for every ǫ > 0, there exists k such that if

Pr(G(n, p) hasA) ≥ ǫ ,

then
Pr(G(n, kp) hasA) ≥ 1 − ǫ .

Proof G(n, kp) is roughly the union of k independent copies of
G(n, p), so

Pr(G(n, kp) hasA) ≥ 1 − (1 − ǫ)k ≥ 1 − ǫ .



TOWARDS A THEORY OF THRESHOLD FUNCTIONS

THEOREM BOLLOBÁS, THOMASON’87

Each monotone property A has a threshold function. More
precisely, for every ǫ > 0 there exists k such that if

Pr(G(n, p) hasA) ≥ ǫ ,

then
Pr(G(n, kp) hasA) ≥ 1 − ǫ .

Note that k depends only of ǫ not on the property A.



CLASSIFICATIONS OF PROPERTIES

QUESTION 1

Given a function p = p(n), can we decide if it is a threshold
function for some property A in G(n, p)?

QUESTION 2

Given a property A, can we decide if its threshold function in
G(n, p) is sharp?



0-1 LAWS – WHAT (SOME) PEOPLE HAVE BEEN DOING

BACK IN 1990’S

Main Objective:
For your favourite class of properties A identify all
functions p = p(n) for which the 0-1 law holds, i.e.

lim
n→∞

Pr(G(n, p) has A) = 0 or 1.



0-1 LAWS – WHAT (SOME) PEOPLE HAVE BEEN DOING

BACK IN 1990’S

Main Objective:
For your favourite class of properties A identify all
functions p = p(n) for which the 0-1 law holds, i.e.

lim
n→∞

Pr(G(n, p) has A) = 0 or 1.

Typically, A is characterized by the language in which
properties are described. The first order language, where
we can quantify only over vertices (and not over sets of
vertices) has been the most popular choice.



0-1 LAWS: HOW IT WORKS

Main Objective: For your favourite class of properties A identify
all functions p = p(n) for which the 0-1 law holds, i.e.

lim
n→∞

Pr(G(n, p) has A) = 0 or 1.

To this end, for a given p = p(n):
◮ Find an axiom system A1,A2, . . . , which is complete (i.e.

for each formula φ one can prove either φ or ¬φ);
◮ Show that each of yours axioms holds a.a.s. for G(n, p).



0-1 LAWS: EXAMPLES

THEOREM SHELAH , SPENCER’88

If p(n) = n−α+o(1), where α ∈ (0, 1) is irrational, then
the probability of each first order property of graphs
tends either to 0, or to 1.
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If p(n) = n−α+o(1), where α ∈ (0, 1) is irrational, then
the probability of each first order property of graphs
tends either to 0, or to 1.

What about p(n) = n−α+o(1), with rational α?



0-1 LAWS: EXAMPLES

THEOREM ŁUCZAK , SPENCER’91

There exists a function p(n) = n−1/7+o(1), p(n) < n−1/7, such
that the probability of each first order property of graphs tends
either to 0, or to 1.

THEOREM ŁUCZAK , SPENCER’91

For every recursive function p(n) = n−1/7+o(1), p(n) < n−1/7,
there exists a first order property ψ such that

lim inf
n→∞

Pr(G(n, p) hasψ) = 0,

but
lim sup

n→∞

Pr(G(n, p) hasψ) = 1.
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SHARP THRESHOLDS

(META)THEOREM

If A has a coarse threshold in G(n, p), then, basically, the
minimum graphs with property A are small.

If thresholds are coarser, then the graphs from the critical family
can be made smaller.

The upper bounds for sizes of the critical graphs are better for
properties A which is highly symmetric.
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(META)THEOREM

If A has a coarse threshold in G(n, p), then, basically, the
minimum graphs with property A are small.

If thresholds are coarser, then the graphs from the critical family
can be made smaller.

The upper bounds for sizes of the critical graphs are better for
properties A which is highly symmetric.

Kahn, Kalai, Linial’88,
Bourgain, Kahn, Kalai, Katznelson, Linial’92
Friedgut, Kalai’96
Bourgain, Kalai’97
Friedgut with Bourgain’99



SHARP THRESHOLDS

(META)THEOREM

If A has a coarse threshold in G(n, p), then, basically the
minimum graphs with property A are small.

Coarser thresholds result in smaller critical graphs.

The symmetry of A helps.

The bounds for the ‘sharpness’ of the thresholds which follows
from a general theory are usually quite weak (typically
logarithmic). But how sharp ‘natural’ thresholds can be?



SHARP THRESHOLDS

(META)THEOREM

If A has a coarse threshold in G(n, p), then, basically the
minimum graphs with property A are small.

Coarser thresholds result in smaller critical graphs.

The symmetry of A helps.

The bounds for the ‘sharpness’ of the thresholds which follows
from a general theory are usually quite weak (typically
logarithmic). But how sharp ‘natural’ thresholds can be?

And does it really matter?!?



SOMETIMES THE ‘ SHARPNESS’ DOES MATTER!

THEOREM BOLLOBÁS’84, ŁUCZAK ’90

Let A be the property that G(n, p) contains a subgraph with
more edges than vertices. If np = 1 + ω(n)n−1/3, then

lim
n→∞

Pr(G(n, p) hasA) =

{

1 if ω(n) → ∞,

0 if ω(n) → −∞.



SOMETIMES THE ‘ SHARPNESS’ DOES MATTER!

THEOREM BOLLOBÁS’84, ŁUCZAK ’90

Let A be the property that G(n, p) contains a subgraph with
more edges than vertices. If np = 1 + ω(n)n−1/3, then

lim
n→∞

Pr(G(n, p) hasA) =

{

1 if ω(n) → ∞,

0 if ω(n) → −∞.

It matters because this determines the width of ‘the phase
transition window’.



TWO REMARKS

REMARK 1

Note that there are no theory of monotone first order properties.
Thus, we do not know if, say, p(n) = n−1/2 + ω(n)n−2/π, is a
threshold function for such a property.

REMARK 2

Are properties of type G has more than M edges sharpest
among all properties? It is not the case in other models.
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CLUSTER-SCALED MODEL Gq(n, p)

Pr
(

G(n, p) = G
)

= pe(G)(1 − p)(
n
2)−e(G)

Pr
(

Gq(n, p) = G
)

= qc(G)pe(G)(1 − p)(
n
2)−e(G)/Z (n, p),

where c(G) denotes the number of components of G and
Z (n, p) is a scaling factor.



AN EXAMPLE OF A VERY SHARP THRESHOLD

THEOREM LUCZAK , ŁUCZAK ’06,
GANDOLFO, RUIZ , WOUTS’10

For every q > 2 there exists a constant cq such that the
following holds. Let A be the property that Gq(n, p) contains a
subgraph with more edges than vertices. If p = cq/n + a/n2,
then

lim
n→∞

Pr(G(n, p) hasA) = pa;

where
lim

a→−∞
pa = 0 while lim

a→∞
pa = 1.



BACK TO THE RANDOM PROCESS

The random graph process

G =
{

G(n,M) : 0 ≤ M ≤
(

n
2

)

}

.

is a Markov chain which starts with the empty graph and each
time we add to a graph a randomly chosen edge.
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BACK TO THE RANDOM PROCESS

The random graph process

G =
{

G(n,M) : 0 ≤ M ≤
(

n
2

)

}

.

is a Markov chain which starts with the empty graph and each
time we add to a graph a randomly chosen edge.

There are properties which can be defined for the random
graph process and does not make sense for G(n,M).

One of Erdős favorite properties of this kind was the race of
components



RACE OF COMPONENTS

DEFINITION

Let u(n,M) denote the minimum number u such that the largest
component L of G(n,M + u) does not contain the largest
component of G(n,M). If such u does not exists we put
u(n,M) = 0.

Thus, u(n,M) is the time we need to wait until the largest
component of a graph G(n,M) will be overpassed by some
other component of subsequent graphs.



RACE OF COMPONENTS

THEOREM ERDŐS, ŁUCZAK ’94

For every function M = M(n) a.a.s. we have

u(n,M) = O(n/ ln n) .

Furthermore, a.a.s. u(n, n/4) = Ω(n/ ln n).

THEOREM ERDŐS, ŁUCZAK ’94

A.a.s. the random graph process is such that

max
M

u(n,M) = Θ
(n ln ln n

ln n

)

.



RACE OF COMPONENTS

THEOREM ERDŐS, ŁUCZAK ’94

For every function M = M(n) a.a.s. we have

u(n,M) = O(n/ ln n) .

Furthermore, a.a.s. u(n, n/4) = Ω(n/ ln n).

THEOREM ERDŐS, ŁUCZAK ’94

A.a.s. the random graph process is such that

max
M

u(n,M) = Θ
(n ln ln n

ln n

)

.

It is an ‘iterated logarithm’ type result!



LAW OF THE ITERATED LOGARITHM

LAW OF ITERATED LOGARITHM

Let v(n) denote the difference between the number of tails and
heads after n flips of a coin. Then a.a.s. for every n we have

u(n) = O(
√

n) ,

but a.a.s.
max
m≤n

u(m) = O(
√

n ln ln n).



RACE OF COMPONENTS

THEOREM ERDŐS, ŁUCZAK ’94

For every function M = M(n) a.a.s. we have

u(n,M) = O(n/ ln n) .

Furthermore, a.a.s. u(n, n/4) = Ω(n/ ln n).

THEOREM ERDŐS, ŁUCZAK ’94

A.a.s. the random graph process is such that

max
M

u(n,M) = Θ
(n ln ln n

ln n

)

.



BOOTSTRAP PERCOLATION ONG(n,M)

For a graph G(n,M) let us define the epidemic process in
the following way.
First we infect vertices 1, 2, . . . , ln n.
Then, in each step a vertex which is adjacent to at least
two infected vertices gets infected.
There are no cure for the disease, so everybody infected
remains infected until the end of the process.



BOOTSTRAP PERCOLATION ONG(n,M)

Let τ(n,M) be the number of steps
the infection takes on G(n,M).

THEOREM JANSON, ŁUCZAK , TUROVA, VALLIER ’12

For every M a.a.s. τ(n,M) = Õ(n1/4), and the estimate is
sharp.

CONJECTURE

A.a.s. the random process is such that

maxMτ(n,M) = Θ̃(n1/3).



FUTURE OF RANDOM STRUCTURES

I will briefly present two possible directions where the
random graph fans may want to look at

◮ geometric (random groups)
◮ topological (random simplicial complexes)



GROUP PRESENTATIONS

G = 〈S|R〉

is a group which consists of words with letters a1, a2, . . .

(as well as a−1
1 , a−1

2 , . . . ) from an alphabet S in which

all words from set R are equivalent to the empty word.



EXAMPLES

EXAMPLE 1

G = 〈{a, b}|aba−1b−1〉 = {anbm : a, b ∈ Z} ∼= Z
2 .

since aba−1b−1 = e implies ab = ba.

EXAMPLE 2

〈{a, b, c}|aba−1cb−1a2〉 ∼= 〈{a, b}|∅〉
since in every word we may replace c by ab−1a−3b.



EXAMPLES

EXAMPLE 1

G = 〈{a, b}|aba−1b−1〉 = {anbm : a, b ∈ Z} ∼= Z
2 .

since aba−1b−1 = e implies ab = ba.

EXAMPLE 2

〈{a, b, c}|aba−1cb−1a2〉 ∼= 〈{a, b}|∅〉
since in every word we may replace c by ab−1a−3b.

Note that both above groups are infinite



RANDOM GROUPS

In late 80’s, Gromov proposed to define random groups
using their presentations.

DEFINITION

Γ(k , ℓ, d) is a group 〈{a1, a2, . . . , ak}|R〉 where R is a set of
(2k − 1)dℓ words chosen at random from all irreducible words of
length ℓ.
The parameter d , 0 ≤ d ≤ 1 , is called the density of Γ(k , ℓ, d).
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In late 80’s, Gromov proposed to define random groups
using their presentations.

DEFINITION

Γ(k , ℓ, d) is a group 〈{a1, a2, . . . , ak}|R〉 where R is a set of
(2k − 1)dℓ words chosen at random from all irreducible words of
length ℓ.
The parameter d , 0 ≤ d ≤ 1 , is called the density of Γ(k , ℓ, d).

Gromov’s model: k is fixed, ℓ→ ∞,

Żuk’s model: ℓ is fixed, k → ∞.



RANDOM GRAPHS AND RANDOM GROUPS

I feel, random groups altogether may grow up as healthy as random
graphs, for example.

M.Gromov, Spaces and questions



RANDOM GRAPHS AND RANDOM GROUPS

I feel, random groups altogether may grow up as healthy as random
graphs, for example.

M.Gromov, Spaces and questions

The definition of a random group appeared in early 1980’s.
Note by the way that ‘the Stone Age period’ of random graphs
1959-1984 lasted 25 years.



RANDOM GROUPS: CRITICAL DENSITIES

KNOWN CRITICAL DENSITIES FOR RANDOM GROUPS

The critical density for Γ(k , ℓ, d) to be trivial is 1/2,
in both Gromov and Żuk models.

The critical density for having Kazdan’s property (T)
is 1/3 for Żuk’s model.

For the critical density dT for having property (T)
in Gromov’s model we have 1/5 ≤ dT ≤ 1/3
(at this moment it is conjectured that dT = 1/4).



RANDOM GROUPS: CRITICAL DENSITIES

KNOWN CRITICAL DENSITIES FOR RANDOM GROUPS

The critical density for Γ(k , ℓ, d) to be trivial is 1/2,
in both Gromov and Żuk models.

The critical density for having Kazdan’s property (T)
is 1/3 for Żuk’s model.

For the critical density dT for having property (T)
in Gromov’s model we have 1/5 ≤ dT ≤ 1/3
(at this moment it is conjectured that dT = 1/4).

All of the above are density thresholds, which are even
‘coarser’ than the coarse thresholds for random graphs. Only a
handful of sharp thresholds for Γ(k , l , d) are known so far (cf.
Antoniuk, Łuczak, Świa̧tkowski’13+).



RANDOM GROUPS: 0-1 LAWS

QUESTION

Do there exist any natural group properties with irrational
critical densities?



RANDOM GROUPS: 0-1 LAWS

QUESTION

Do there exist any natural group properties with irrational
critical densities?

Comments: It is well known that in general the problem of
deciding if a word from 〈S|R〉 is empty is undecidable, but this
is not the case for random groups. Each such group is a.a.s.
hyperbolic. It means that a modification of Dehn’s algorithm can
decide it basically in a linear time.



FUTURE OF RANDOM STRUCTURES

I will briefly present two possible directions where the
random graph fans may want to look at

◮ geometric (random groups)
◮ topological (random simplicial complexes)



RANDOM SIMPLICIAL COMPLEXES

MAIN IDEA

Study topological properties of a random hypergraph Gk (n, p),
where we generate k-element subsets of {1, 2, . . . , n}
independently with probability p.



EXAMPLE

THEOREM BABSON, HOFFMAN, KAHLE ’11

If
p(n) =

√

(3 ln+ω(n))/n

where ω(n) → ∞, then a.a.s. π1(G2(n, p)) is trivial.
On the other hand, if for some ǫ > 0,

p(n) ≤ n−1/2−ǫ,

then a.a.s. π1(G2(n, p)) is infinite and hyperbolic.



EXAMPLE

THEOREM BABSON, HOFFMAN, KAHLE ’11

If
p(n) =

√

(3 ln+ω(n))/n

where ω(n) → ∞, then a.a.s. π1(G2(n, p)) is trivial.
On the other hand, if for some ǫ > 0,

p(n) ≤ n−1/2−ǫ,

then a.a.s. π1(G2(n, p)) is infinite and hyperbolic.

Note that the density 1/2 was critical for random groups to
collapse to trivial groups. Possibly, there is a common
generalization for both these statements.



HYPERGRAPHS, SIMPLICIAL COMPLEXES AND MATRICES

Instead of random hypergraph Gk(n, p) we may consider
its incidence matrix Mk(n, p) whose columns are the
indicator functions of its (k + 1)-element sets and rows
correspond to all subsets of {1, 2, . . . , n} size k .
Note that the number of columns is a random variable.



HYPERGRAPHS, SIMPLICIAL COMPLEXES AND MATRICES

Instead of random hypergraph Gk(n, p) we may consider
its incidence matrix Mk(n, p) whose columns are the
indicator functions of its (k + 1)-element sets and rows
correspond to all subsets of {1, 2, . . . , n} size k .
Note that the number of columns is a random variable.

Thus, for example, M1(n, p) is the incidence matrix of
G(n, p).



ANOTHER EXAMPLE
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QUESTION ON VANISHING TOP HOMOLOGY

QUESTION ON VANISHING TOP HOMOLOGY GROUP

Find the threshold for the property that some subset columns of
Mk (n, p) sum up to a zero vector in group Z/2Z.



QUESTION ON VANISHING TOP HOMOLOGY

QUESTION ON VANISHING TOP HOMOLOGY GROUP

Find the threshold for the property that some subset columns of
Mk (n, p) sum up to a zero vector in group Z/2Z.

A short dictionary of topological terms:
homology – we look at the dependence of columns
top homology – rows of the matrix are labeled by d − 1
dimensional subsets



QUESTION ABOUT COLLAPSIBILITY

QUESTION ON COLLAPSIBILITY

Find the threshold for the property that there exists a subset of
columns of Mk (n, p) in which no row contains exactly one
non-zero term.



QUESTION ABOUT COLLAPSIBILITY

QUESTION ON COLLAPSIBILITY

Find the threshold for the property that there exists a subset of
columns of Mk (n, p) in which no row contains exactly one
non-zero term.

Collapsibility implies vanishing of homology group.



RANDOM GRAPHS

QUESTION ON VANISHING TOP HOMOLOGY GROUP

Find the threshold for property that G(n, p) contains a subgraph
with all degrees even.

QUESTION ON COLLAPSIBILITY

Finb the threshold for the property that there exists a subgraph
of G(n, p) with all degrees larger than one.



RANDOM GRAPHS

QUESTION ON VANISHING TOP HOMOLOGY GROUP

Find the threshold for property that G(n, p) contains a subgraph
with all degrees even.

QUESTION ON COLLAPSIBILITY

Finb the threshold for the property that there exists a subgraph
of G(n, p) with all degrees larger than one.

These properties are equivalent in dimension one (and mean
that a graph contains a cycle); for larger dimensions it is not the
case.



RESULTS AND CONJECTURES

ARONSHTAM, L INIAL , LUCZAK , MESHULAM

The collapsibility of Gk (n, p) has a sharp threshold for
p = (ck + o(1))/n, where the constant ck can be explicitly
computed.
For every c > 0 there exists d > 0 such that a.a.s. Gk (n, c/n),
contains no collapsible subcomplexes of size smaller than dnk ;
i.e. each subset of columns of Mk (n, p) of size smaller than dnk

contains a row with only one 1.
It is conjectured that the threshold for vanishing top homology
is of the order p = (c′

k + o(1))/n, with c′
k > ck .



APPLICATIONS

Both questions on vanishing top homology and collapsibility
can have potential applications in constructions of error
correcting codes.
Indeed, let us recall that the parity check matrix of error
correcting codes should not contain small sets of dependent
columns, precisely as it is the case of Mk (n, p).




