Finite substructures of uncountable graphs and hypergraphs

Péter Komjáth

July 5, 2013

Péter Komjáth Finite substructures of uncountable graphs and hypergraphs

Introduction

Pál Erdős (1913–1996)

A graph is a pair (V, X) where V (the vertices) is an arbitrary set, X (the vertices) is some set of 2-element subsets of V (the edges). (V, X) is sometimes shortened to X

The cardinalities (=sizes) of infinite sets are $\aleph_0 < \aleph_1 < \aleph_2 < \cdots$.

Introduction

"Independence raised its ugly head."

個 と く き と く き と

(Blanche Descartes, aka W. T. Tutte) For every finite *n* there is a triangle-free, *n*-chromatic (finite) graph.

The chromatic number of a finite graph is the least number of colors in a *good coloring*: the vertices are colored $f: V \rightarrow C$ such that if $\{x, y\}$ is an edge then $f(x) \neq f(y)$.

Erdős: can we generalize this to infinite graphs?

- 4 回 ト 4 ヨ ト 4 ヨ ト

Chromatic number of a graph: the least cardinality of colors we can good color the vertices with. Notation: Chr(X)

(Galvin–K): The axiom of choice is equivalent to the statement that every graph has a chromatic number.

Chromatic number of a graph: the least cardinality of colors we can good color the vertices with. Notation: Chr(X)

(Galvin–K): The axiom of choice is equivalent to the statement that every graph has a chromatic number.

(Erdős–de Bruijn) If n is a natural number then an infinite graph X has chromatic number at most n iff this holds for all finite subgraphs of X.

(Erdős–Rado) If κ is an infinite cardinal, then there is a triangle-free graph X of cardinality 2^{κ} with $\operatorname{Chr}(X) > \kappa$. $|X| = \kappa^+$ is also possible.

向下 イヨト イヨト

(Erdős) If n, k are natural numbers, then there is a (finite) graph X with Chr(X) > n that does not contain C_3, C_4, \ldots, C_k .

向下 イヨト イヨト

(Erdős–Hajnal) If the graph X does not contain a C_4 (or any circuit of even length), then $Chr(X) \leq \aleph_0$.

(Erdős–Hajnal) If κ is an infinite cardinal, n is a natural number, then there is a graph X, omitting $C_3, C_5, \ldots, C_{2n+1}$ with $Chr(X) > \kappa$.

(Erdős-Hajnal) The obligatory finite graphs for uncountable chromatic number are exactly the bipartite graphs.

Same for $Chr(X) > \kappa$, any infinite κ .

(Erdős–Hajnal) If (V, X) is a graph, then its coloring number, $\operatorname{Col}(X)$ is the least cardinal μ such that the following holds: V has a well ordering < such that every vertex is joined into less than μ smaller vertices.

Then V can be good colored with μ colors with transfinite recursion by <, consequently $\operatorname{Chr}(X) \leq \operatorname{Col}(X)$.

(Erdős–Hajnal) If $\operatorname{Col}(X) > \aleph_0$, then X contains C_4 , even every C_{2k} , even every K_{n,\aleph_1} .

イロト イポト イヨト イヨト

Obligatory graph: occurs in every X with $Col(X) > \aleph_0$. What are the obligatory graphs?

(K) There are a countable graph Δ and a graph Γ of cardinality \aleph_1 such that Δ is the largest countable obligatory graph and Γ is the largest obligatory graph (for the coloring number).

Coloring number

(Erdős–Hajnal) Is it true that every graph with uncountable chromatic number contains an infinitely connected (countable) subgraph?

-Coloring number

(Erdős–Hajnal–Szemerédi) If $Chr(X) > \aleph_0$ let f_X be the following function. $f_X(n)$ is the largest chromatic number of an *n*-vertex subgraph of *X*. $f_X(n) \to \infty$ by Erdős-de Bruijn.

(Erdős–Hajnal–Szemerédi) Can f_X converge to infinity arbitrarily slowly?

(Shelah) It is consistent that for every divergent function $f : \mathbb{N} \to \mathbb{N}$ with $f(n) \ge 2$ $(n \in \mathbb{N})$ there is a graph X with $\operatorname{Chr}(X) = \aleph_1$ and $f_X(n) \le f(n)$.

イロト イポト イヨト イヨト

Taylor conjecture (Taylor, Erdős–Hajnal–Shelah) If X is a graph with $Chr(X) > \aleph_0$, then for every cardinal λ there is a graph Y with the same finite subgraphs and $Chr(Y) > \lambda$. (K) There consistently exists a graph X with $|X| = \operatorname{Chr}(X) = \aleph_1$ and if Y is a graph all whose finite subgraphs occur in X, then $\operatorname{Chr}(Y) \leq \aleph_2$.

(K) The following is consistent: if X is a graph with $Chr(X) \ge \aleph_2$, then there are arbitrarily large chromatic graphs with the same finite subgraphs as X.

||◆同 || ◆ 三 → || ● →

List-chromatic number

The *list-chromatic number* of a graph (V, X) is the least cardinal μ such that if F(v) is an arbitrary set with $|F(v)| = \mu$ $(v \in V)$ then there is a good coloring f such that $f(v) \in F(v)$ $(v \in V)$.

For every graph X we have the inequality

$$\operatorname{Chr}(X) \leq \operatorname{List}(X) \leq \operatorname{Col}(X)$$

List-chromatic number

(K) It is consistent that for every graph X of cardinality \aleph_1

$$\operatorname{List}(X) = \aleph_1 \iff \operatorname{Chr}(X) = \aleph_1.$$

(K) It is consistent that for every graph with $\operatorname{Col}(X)$ infinite, $\operatorname{List}(X) = \operatorname{Col}(X)$ holds.

(人間) とうり くうり

```
(Erdős–Hajnal) What is the situation for hypergraphs?
```

A hypergraph is (V, \mathcal{H}) where \mathcal{H} consists of finite subsets of V.

The *chromatic number* of (V, \mathcal{H}) is the least number of colors required to color V with no member of \mathcal{H} monocolored.

Restrict to triple systems.

Project: describe obligatory triple systems for uncountable chromatic number as was done for graphs.

(Erdős–Hajnal) If (V, \mathcal{H}) is a triple system with $|V| \leq \aleph_1$ and $|A \cap B| \leq 1$ for $A, B \in \mathcal{H}$, then $\operatorname{Chr}(\mathcal{H}) \leq \aleph_0$.

(Erdős–Hajnal–Rothschild) There is a triple system (V, \mathcal{H}) of cardinality c^+ with $Chr(\mathcal{H}) > \aleph_0$ with no $A, B \in \mathcal{H}$ s.t. $|A \cap B| = 2$.

P. Erdős, F. Galvin, A. Hajnal: On set systems having large chromatic numbers and not containing prescribed subsystems, *Coll. Math. Soc. J. Bolyai*, **10**, Infinite and Finite Sets, Keszthely (Hungary), 1973, 425–513. 1. Describe all finite obligatory triple systems.

2. Is it true that if S_0 and S_1 can be separately omitted then they can be simultaneously omitted. (True for the graph case.)

3. When does $\aleph_1 \to (\aleph_1, S)^3$ hold? (Read: if \mathcal{H} is a triple system on a set of size \aleph_1 with no independent set of cardinality \aleph_1 , then $S \leq \mathcal{H}$.)

(4月) (4日) (4日)

(K) A finite triple system is obligatory iff all its 2-connected components are.

(K) Every obligatory finite triple systems is tripartite but not vice versa.

Let \mathcal{T}_0 denote the triple system $\{A, B\}$ with $|A \cap B| = 2$.

(Hajnal–K) If $Chr(\mathcal{H}) > \aleph_0$, $\mathcal{T}_0 \not\leq \mathcal{H}$ then $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{11}, \dots \leq \mathcal{H}$.

(K) It is consistent that there is a triple system \mathcal{H} omitting \mathcal{T}_0 , \mathcal{C}_3 , and \mathcal{C}_5 , with $\operatorname{Chr}(\mathcal{H}) = \aleph_1$ (and $|\mathcal{H}| = \aleph_2$).

イロト イボト イヨト イヨト

Hypergraphs

Let \mathcal{T}_0 denote the triple system $\{A, B\}$ with $|A \cap B| = 2$. (Hajnal-K) If $Chr(\mathcal{H}) > \aleph_0$, $\mathcal{T}_0 \not\leq \mathcal{H}$ then $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{11}, \cdots \leq \mathcal{H}$.

(K) It is consistent that there is a triple system \mathcal{H} omitting \mathcal{T}_0 , \mathcal{C}_3 , and \mathcal{C}_5 , with $\operatorname{Chr}(\mathcal{H}) = \aleph_1$ (and $|\mathcal{H}| = \aleph_2$).

イロト イポト イヨト イヨト

Let
$$\mathcal{T}_0$$
 denote the triple system $\{A, B\}$ with $|A \cap B| = 2$.
(Hajnal–K) If $Chr(\mathcal{H}) > \aleph_0$, $\mathcal{T}_0 \not\leq \mathcal{H}$ then $\mathcal{C}_7, \mathcal{C}_9, \mathcal{C}_{11}, \cdots \leq \mathcal{H}$.

(K) It is consistent that there is a triple system \mathcal{H} omitting \mathcal{T}_0 , \mathcal{C}_3 , and \mathcal{C}_5 , with $\operatorname{Chr}(\mathcal{H}) = \aleph_1$ (and $|\mathcal{H}| = \aleph_2$).

(Hajnal–K) It is consistent that there are finite triple systems S_0 , S_1 such that either can be omitted but not both.

(K) It is consistent that I can describe those triple systems S for which $\aleph_1 \to (\aleph_1, S)^3$ holds.

向下 イヨト イヨト

(K) If the coloring number of some set system \mathcal{H} is greater than \aleph_0 , then \mathcal{H} contains...

(K) If V is a vector space over \mathbb{Q} , then there is, in V, a vector set $A \subseteq V$, $|A| = \aleph_2$, which is not the union of countably many linearly independent sets, yet each $B \subseteq A$, $|B| \leq \aleph_1$, is. (Question raised by Erdős.)

(人間) とうり くうり

(K) If the coloring number of some set system \mathcal{H} is greater than \aleph_0 , then \mathcal{H} contains...

(K) If V is a vector space over \mathbb{Q} , then there is, in V, a vector set $A \subseteq V$, $|A| = \aleph_2$, which is not the union of countably many linearly independent sets, yet each $B \subseteq A$, $|B| \leq \aleph_1$, is. (Question raised by Erdős.)

Hypergraphs

Happy birthday, Uncle Paul!

- 4 回 2 - 4 三 2 - 4 三 2