The sum-free set constant is $\frac{1}{3}$

Ben Green

Oxford

August 7, 2013

SUM-FREE SETS

A set $A \subset \mathbb{N}$ is *sum-free* if there do not exist $x, y, z \in A$ with x + y = z.

THEOREM (ERDŐS, 1965)

Let A be a set of n positive integers. Then A contains a sum-free subset of size at least n/3.

Proof. For any $\theta \in \mathbb{R}/\mathbb{Z}$, the set $A'_{\theta} := \{a \in A : \theta a \pmod{1} \subset [\frac{1}{3}, \frac{2}{3})\}$ is sum-free.

But if a is fixed and θ is selected uniformly at random then θa is uniformly distributed modulo 1, so the probability that $\theta a \pmod{1} \in \left[\frac{1}{3}, \frac{2}{3}\right)$ is $\frac{1}{3}$.

Hence the expected size of A'_{θ} is n/3.

Improving n/3.

Let A be a set of n natural numbers.

Erdős (1965): A contains a sum-free subset of size $\geq n/3$.

Alon and Kleitman (1990): A contains a sum-free subset of size $\geq (n+1)/3$.

Bourgain (1997): A contains a sum-free subset of size $\geqslant (n+2)/3$.

Open question: Does A contain a sum-free subset of size $\geqslant (n+1000)/3$, for large enough n?

I believe the answer is yes.

THE INVERSE LITTLEWOOD PROBLEM

Let A be a set of n natural numbers.

Bourgain (1997): A contains a sum-free subset of size at least

$$\frac{n}{3} + \frac{c\|A\|}{\log n},$$

where

$$\|A\|:=\int_0^1|\sum_{a\in A}e^{2\pi ia heta}|d heta.$$

THEOREM (KONYAGIN, McGehee-Pigno-Smith 1981)

 $||A|| \gg \log n$ for all sets A of n integers.

Open question: Suppose that $A \subseteq \mathbb{Z}$ is a set of size n and that $||A|| \le K \log n$. What structure does A have? Is A a union of $O_K(\log n)$ progressions*?

$\frac{1}{3}$ IS BEST POSSIBLE

THEOREM (EBERHARD-G.-MANNERS, 2013)

Let $\epsilon > 0$ be arbitrary. Then there is a set A of n natural numbers which does not contain a sum-free set of size greater than $(\frac{1}{3} + \epsilon)n$.

Previously: $\frac{11}{28}n$ (Erdős, Lewko). Note $\frac{11}{28}\approx 0.393$.

 $(\frac{11}{28} - 10^{-50000})n$ (Alon, unpublished).

The largest sum-free subset of $A = \{1, ..., n\}$ has size essentially n/2: take $\{1, 3, 5, ...\}$ or $\{a : n/2 < a \le n\}$.

Ways of making large sum-free subsets

Let A be a set of n integers.

- (mod Q) constructions. The sets $\{a \in A : a \equiv 1 \pmod{2}\}$ and $\{a \in A : a \equiv 2, 3 \pmod{5}\}$ are always sum-free.
- \mathbb{R} -constructions. The set $A \cap (X, 2X]$ is sum-free for any X.

When
$$A = \{1, ..., n\}$$
:

$$\begin{aligned} |\{a \in A : a \equiv 1 \pmod{2}\}| &\sim n/2; \\ |\{a \in A : a \equiv 2, 3 \pmod{5}\}| &\sim 2n/5; \\ |\{a \in A : a \equiv 3, 4, 5 \pmod{8}\}| &\sim 3n/8; \\ |\{a \in A : n/2 < a \leqslant n\}| &\sim n/2. \end{aligned}$$

We must defeat all these "local" methods of construction.

THE LOCAL PROBLEM

DEFINITION

Let $Q \in \mathbb{N}$. Say that a probability measure ν on $\mathbb{Z}/Q\mathbb{Z} \times [0,1]$ is δ -good if whenever $S \subset \mathbb{Z}/Q\mathbb{Z} \times [0,1]$ is open and sum-free then $\nu(S) \leqslant \frac{1}{3} + \delta$.

PROPOSITION

There is a δ -good probability measure on $\mathbb{Z}/Q\mathbb{Z} \times [0,1]$ for every $\delta>0$. Furthermore $\nu(S)=\int_S w(x,y) dx dy$ for some $O_\delta(1)$ -Lipschitz weight function $w:\mathbb{Z}/Q\mathbb{Z} \times [0,1] \to (0,\infty)$.

Local implies global: Let N be large, and choose a set $A \subset \{1, \ldots, N\}$ at random by selecting a to lie in A with probability proportional to w(a(mod Q), a/N), where $Q = Q(\epsilon)$ is some highly composite number and w is associated to some $\epsilon/2$ -good measure.

The details of checking that such an A almost surely works are not trivial.

Solving the local problem for [0,1]

Say that a probability measure ν on [0,1] is δ -good if whenever $S\subset [0,1]$ is open and sum-free then $\nu(S)\leqslant \frac{1}{3}+\delta$.

Crucial idea: open sum-free subsets of [0,1] with uniform measure $>\frac{1}{3}$ are "repelled from zero" and so we should choose ν to be concentrated near zero.

Proposition (Repulsion from 0)

Suppose that $S \subset [0,1]$ is open and sum-free and that $\mu(S) \geqslant \frac{1}{3} + \epsilon$. Then $S \cap [0,\epsilon'] = \emptyset$ for some $\epsilon' \gg_{\epsilon} 1$.

Easy observation: The uniform measure μ is $\frac{1}{6}$ -good.

Constructing good measures on [0,1]

Let ν be a δ -good measure and set

$$\nu' = \tfrac34 \pi_* \nu + \tfrac14 \mu$$

where $\pi:[0,1]\to [0,\epsilon']$ is the contraction map. $(\pi_*\nu(S):=\nu(\pi^{-1}(S))).$

We claim ν' is δ' -good, where $\delta' = \frac{3}{4}\delta + \frac{1}{4}\epsilon$. Let $S \subset [0,1]$ be open and sum-free: we must show that $\nu'(S) \leqslant \frac{1}{3} + \delta'$.

Case 1. $\mu(S)\geqslant \frac{1}{3}+\epsilon$. Then S is repelled from 0, i.e. is disjoint from $[0,\epsilon']$. So $\pi_*\nu(S)=0$, and $\nu'(S)=\frac{1}{4}\mu(S)<\frac{1}{3}$.

Case 2. $\mu(S) < \frac{1}{3} + \epsilon$. Then, since $\pi^{-1}(S)$ is sum-free, we have $\pi_*\nu(S) \leqslant \frac{1}{3} + \delta$. Thus

$$\nu'(S) \leqslant \frac{3}{4}(\frac{1}{3} + \delta) + \frac{1}{4}(\frac{1}{3} + \epsilon) = \frac{1}{3} + \delta',$$

as required.

Iterating, we can take δ as close to ϵ as we like.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$. $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus $\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S)$.

Proposition (Repulsion from 0)

Suppose that $S \subset [0,1]$ is open, sum-free and $\mu(S) \geqslant \frac{1}{3} + \epsilon$. Then $S \cap [0,\epsilon'] = \emptyset$ for some $\epsilon' \gg_{\epsilon} 1$.

$$S$$
 is sum-free implies $(S-S)\cap S=(S-S)\cap (-S)=\emptyset$.
 $(S-S):=\{s_1-s_2:s_1,s_2\in S\}$.) Note $S-S\subset [-1,1]$. Thus
$$\mu(S-S)\leqslant 2-2\mu(S)\leqslant \frac{4}{3}-2\epsilon<(4-\epsilon)\mu(S).$$

THEOREM (SETS OF DOUBLING LESS THAN 4)

Suppose that $S \subset [0,1]$ is open, $\mu(S) \geqslant \epsilon$ and $\mu(S-S) \leqslant (4-\epsilon)\mu(S)$. Then S-S contains $[0,\epsilon']$.

Proposition (Repulsion from 0)

Suppose that $S \subset [0,1]$ is open, sum-free and $\mu(S) \geqslant \frac{1}{3} + \epsilon$. Then $S \cap [0,\epsilon'] = \emptyset$ for some $\epsilon' \gg_{\epsilon} 1$.

S is sum-free implies
$$(S - S) \cap S = (S - S) \cap (-S) = \emptyset$$
.
 $(S - S) := \{s_1 - s_2 : s_1, s_2 \in S\}$.) Note $S - S \subset [-1, 1]$. Thus $\mu(S - S) \leqslant 2 - 2\mu(S) \leqslant \frac{4}{3} - 2\epsilon < (4 - \epsilon)\mu(S)$.

THEOREM (SETS OF DOUBLING LESS THAN 4)

Suppose that $S \subset [0,1]$ is open, $\mu(S) \geqslant \epsilon$ and $\mu(S-S) \leqslant (4-\epsilon)\mu(S)$. Then S has density $> \frac{1}{2}$ on some interval of length at least ϵ' .

A REGULARITY LEMMA

Structure theorem for arbitrary open sets $S \subset [0,1]$.

Rough definition: a set $B \subset [0,1]$ is of Bohr type if there is a homomorphism $\pi : \mathbb{R} \to (\mathbb{R}/\mathbb{Z})^d$,

$$\pi(t) = (X_1 t, \dots, X_d t) \pmod{1}$$

with the X_i large and highly independent over \mathbb{Q} , and an M such that

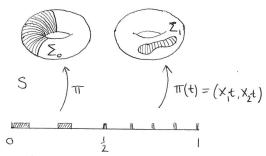
$$B = \pi^{-1}(\Sigma_i)$$
 on $[\frac{i}{M}, \frac{i+1}{M}), i = 0, 1, \dots, M-1,$

where $\Sigma_i \subset (\mathbb{R}/\mathbb{Z})^d$ is open.

An arbitrary open set $S\subset [0,1]$ is, up to set of measure $<\epsilon$, extremely well-approximated by sets of Bohr type with d,M and the complexity of each open set Σ_i being $O_\epsilon(1)$.

Suppose that $S \subset [0,1]$ is open, $\mu(S) \geqslant \epsilon$ and $\mu(S-S) \leqslant (4-\epsilon)\mu(S)$. Then S has density $> \frac{1}{2}$ on some interval of length at least $\epsilon' \gg_{\epsilon} 1$.

Applying the regularity lemma, we may assume that S is of Bohr type.

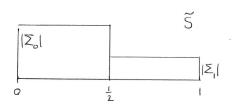


Density of S on $\left[\frac{i}{M}, \frac{i+1}{M}\right)$ is $\approx |\Sigma_i|$. M=2 in the picture.

If $|\Sigma_i| > \frac{1}{2}$ for any *i* then the theorem holds (with $\epsilon' = 1/M$).

THEOREM (MACBEATH, MATH. PROC. CAMB. PHIL. Soc. 1953)

Suppose that Σ_i, Σ_j are open subsets of a torus $(\mathbb{R}/\mathbb{Z})^d$ with $|\Sigma_i|, |\Sigma_j| \leq \frac{1}{2}$. Then $|\Sigma_i - \Sigma_j| \geq |\Sigma_i| + |\Sigma_j|$.



$$\begin{split} \tilde{S} \subset \mathbb{R}^2. \\ \tilde{S} \text{ is a compression of } S. \\ \mu(S) &= \mu_{\mathbb{R}^2}(\tilde{S}) \text{ and, by} \\ \text{Macbeath's Theorem,} \\ \mu(S-S) &\geqslant \mu_{\mathbb{R}^2}(\tilde{S}-\tilde{S}). \end{split}$$

THEOREM (BRUNN-MINKOWSKI)

Let $X,Y\subset\mathbb{R}^D$. Then $\mu_{\mathbb{R}^D}(X+Y)^{1/D}\geqslant \mu_{\mathbb{R}^D}(X)^{1/D}+\mu_{\mathbb{R}^D}(Y)^{1/D}$.

With $X = \tilde{S}$, $Y = -\tilde{S}$ we get $\mu_{\mathbb{R}^2}(\tilde{S} - \tilde{S}) \geqslant 4\mu_{\mathbb{R}^2}(\tilde{S})$. Thus $\mu(S - S) \geqslant 4\mu(S)$, contrary to assumption.

OPEN PROBLEMS

PROBLEM

We showed that if $n > n_0(\epsilon)$ then there is a set of positive integers of size n with no sum-free subset of size $(\frac{1}{3} + \epsilon)n$. Find a reasonable dependence of $n_0(\epsilon)$ on n.

PROBLEM

Do sets like $A := \bigcup_{j=1}^J \{j!, 2j!, \dots, Nj!\}$ have sum-free subsets of density much more than $\frac{1}{3}$?

PROBLEM

Suppose that $A\subseteq [0,1]$ is open. If $\mu(A)>\frac{1}{3}$, is it true that A has a solution to xy=z? Is the measure $\nu_N(S):=\int_S e^{-Nt}dt/\int_0^1 e^{-Nt}dt$ on [0,1] δ -good for sufficiently large N?

SOME MORE OPEN PROBLEMS

PROBLEM

If G is a group, what is the largest product-free subset $A \subset G$?

 $G={
m Alt}(n).$ Edward Crane's example: A consists of all even permutations π of $\{1,\ldots,n\}$ for which $\pi(1)\in\{2,\ldots,m\}$ and $\pi(2),\ldots,\pi(m)\in\{m+1,\ldots,n\}$ with $m\sim\sqrt{n/2}$ optimised to make $|A|\sim(2en)^{-1/2}|G|$ as big as possible. Is this optimal for large n?

Attack using representation theory and Gowers notion of quasirandomness (with Ellis, Menzies).

Kedlaya (1997) proved that every group G has a product-free subset of size at least $c|G|^{11/14}$. Can the constant $\frac{11}{14}$ be improved?

JUST ONE FURTHER OPEN PROBLEM

Question of Erdős and Moser (1965):

PROBLEM (SUM-AVOIDING SETS)

Let A be a set of n positive integers. What is the size of the largest $A' \subset A$ with no solutions to x + y = z with $x, y \in A'$, $z \in A$?

Sudakov, Szemerédi, Vu (2005): at least $\log n(\log \log \log \log \log n)^{1-o(1)}$.

Jehanne Dousse (2012): at least $\log n(\log \log \log n)^c$.

Ruzsa (2005): need not be more than $e^{C\sqrt{\log n}}$.