Chebychev’s problem for the twelfth cyclotomic polynomial

Erdős Centennial, Budapest July 1-5 2013
Cécile Dartyge
Institut Élie Cartan
Université de Lorraine
BP 239
54506 Vandœuvre Cedex
France
1. Introduction

Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial with no fixed divisor. Are there infinitely many integers n such that $f(n)$ is a prime number? If $\deg f = 1$: Dirichlet’s Theorem.
For $\deg f \geq 2$?
1978 : Iwaniec proved that there exists infinitely many n such that $n^2 + 1 = p$ or $n^2 + 1 = p_1p_2$.

For $n \in \mathbb{N}$, let $P^+(n)$ denote the greatest prime factor of n.

Chebychev (1895): $\lim_{x \to +\infty} \frac{1}{x} P^+ \left(\prod_{n \leq x} (n^2 + 1) \right) = +\infty$.

Nagell (1921): $f \in \mathbb{Z}[X]$ irreducible, $\deg f \geq 2$, $\vartheta \in [0, 1]$:

$P^+ \left(\prod_{n \leq x} f(n) \right) \gg_{f, \vartheta} x (\log x)^{\vartheta}$.
Let $f \in \mathbb{Z}[X]$ irreducible with $\deg f \geq 2$, Erdős (1952): there exists $A > 0$ such that
\[
P^+ \left(\prod_{n \leq x} f(n) \right) \gg_f x (\log x)^{A \log \log \log x}.
\]

Erdős and Schinzel (1990): there exists $c > 0$ such that
\[
P^+ \left(\prod_{n \leq x} f(n) \right) \gg_f x \exp \exp (c (\log \log x)^{2/3}).
\]

Tenenbaum (1990): for $\alpha \in]0, 2 - \log 4[,$ ($2 - \log 4 = 0.61..$)
\[
P^+ \left(\prod_{n \leq x} f(n) \right) > x \exp((\log x)^\alpha) \quad (x > x_0(f, \alpha)).
\]
\[
P^+ \left(\prod_{n \leq x} (n^2 + 1) \right) \gg x^{1.1} \quad \text{Hooley (1967)}
\]
\[
\gg x^{1.2} \quad \text{Deshouillers and Iwaniec (1982)}.
\]

Hooley (1978): if the hypothesis \((R^*)\) holds then
\[
P^+ \left(\prod_{n \leq x} (n^3 + 2) \right) \gg x^{31/30}.
\]

The hypothesis \((R^*)\) is (with the notations \(e(t) = \exp(2i\pi t)\) and \(r\bar{r} \equiv 1 \pmod{s}\)):
\[
\sum_{\substack{\zeta_1 < r < \zeta_2 \\
(r, s) = 1}} e\left(\frac{h\bar{r} + kr}{s} \right) \ll s^\varepsilon (1 + \zeta_2 - \zeta_1)^{1/2} (h, s)^{1/2}.
\]
Heath-Brown (2001): there exists a positive proportion of integers \(n \) such that \(P^+(n^3 + 2) > n^{1+10^{-303}} \). In particular we have

\[
P^+\left(\prod_{n \leq x} (n^3 + 2) \right) \gg x^{1+10^{-303}}.
\]

Let \(\Phi_{12}(n) = n^4 - n^2 + 1 \).

Theorem 1 (CD 2013). There exists \(c > 0 \) such that for \(X \) large enough we have:

\[
P^+\left(\prod_{X < n \leq 2X} \Phi_{12}(n) \right) \geq X^{1+c},
\]

the value \(c = 10^{-47016} \) is admissible.
2. How to detect polynomial values with a large prime factor?

Lemma 2. Let $A = \{ n \in [X, 2X] : \prod_{p \leq 4X} p^k \geq X \}$. We suppose that there exists $\alpha > 0$ such that $|A| \geq \alpha X$ for X large enough. Then we have:

\[
(1) \quad P^+ \left(\prod_{X < n \leq 2X} \Phi_{12}(n) \right) \geq X^{1+\frac{\alpha}{3-\alpha}}.
\]

The ideas of the proof are from Erdős. We evaluate in two different ways $V(X) = \sum_{X < n \leq 2X} \log(\Phi_{12}(n))$. First we have

\[
V(X) = 4X \log X + O(X).
\]
On the other hand we have:

\[V(X) = \sum_{X < n \leq 2X} \sum_{k \geq 1, p \leq X^4} k \log p \]

\[= X \left(\log X + O(1) \right) + \sum_{X < n \leq 2X} \sum_{p > 4X \atop p \mid \Phi_12(n)} \log p \]

\[= X \left(\log X + O(1) \right) + \sum_{X < n \leq 2X} \log^{(2)}(\Phi_12(n)), \]

say. Let \(P_X \) denote the greatest prime factor of the product in (1). We have:

\[\log^{(2)}(\Phi_12(n)) \leq \begin{cases}
2 \log(P_X) & \text{if } n \in \mathcal{A} \\
3 \log(P_X) & \text{if } n \notin \mathcal{A}.
\end{cases} \]
3. Exponential sums

Let $f \in \mathbb{Z}[X]$. We want to estimate the cardinality of the sets

$$A_d(f) = \{ n \in]X, 2X] : d \mid f(n) \}.$$

To detect this congruence we can use exponential sums. We have to find upper bounds of sums of type:

$$\sum_{D < d \leq 2D} \sum_{0 \leq v < d \atop f(v) \equiv 0 \pmod{d}} e\left(\frac{hv}{d} \right).$$

For $f(n) = n^2 + 1$, Hooley used the Gauss-Legendre correspondence

$$\{ 0 \leq v < d : v^2 + 1 \equiv 0 \pmod{d} \} \leftrightarrow \{ d = r^2 + s^2 : (r, s) = 1 \text{ and } |r| < s \}.$$

(2) ”becomes” $\sum_{s \ll D^{1/2}} \sum_{|r| < s \atop (r, s) = 1} e\left(\frac{hr}{s} \right) \ll D^{3/4+\varepsilon}$ by Weil.
For \(f(n) = n^3 + 2 \), Hooley proved the correspondence:

\[
\{ 0 \leq v < d : v^3 + 2 \equiv 0 \pmod{d} \} \leftrightarrow \{ \text{some representations } d = \varphi(a, b, c) \},
\]

with \(\varphi(a, b, c) = a^3 + 2b^3 + 4c^3 - 6abc = N_{\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}}(a + b\sqrt[3]{2} + c\sqrt[3]{4}). \)

This leads to sums of type:

\[
\sum_{b,c \ll D^{1/3}} \sum_{a \ll D^{1/3}} e\left(\frac{hc^2(b^2 - ac)}{b^3 - 2c^3} \right).
\]

Theorem 3 (Heath-Brown 2001). Let \(q = q_0 \cdots q_k \) be a square-free integer. Let \(f, g \in \mathbb{Z}[x] \) satisfying some conditions. Then we have for \((w, q) = 1 \):

\[
\sum_{A < n < A + B} \sum_{\substack{(q, g(n)) = 1}} e\left(\frac{w f(n) \overline{g(n)}}{q} \right) \ll q^{\varepsilon} \left(\frac{B}{q_0^{1/2(k+1)}} + B^{1 - \frac{1}{2k}} q_0^{\frac{1}{2k+1}} + \sum_{j=1}^{k} B^{1 - \frac{1}{2j}} q_j^{\frac{1}{2j}} \right).
\]
Another important ingredient of Heath-Brown’s method was to use the ideals of \(\mathbb{Z}[\sqrt[3]{2}] \).

4. The polynomial \(\Phi_{12} \)

Let \(\zeta_{12} = e^{i\pi/6} \). The integer ring \(\mathbb{Z}[\zeta_{12}] \) is principal and we have:

\[
N(n - \zeta_{12}) = \Phi_{12}(n), \quad \prod_{\substack{p \leq 4X \\mid \Phi_{12}(n) \\text{and} \quad p^k \parallel n - \zeta_{12}}} p^k = \prod_{\substack{\mathcal{P} \leq 4X \\mid \mathcal{P}^k \parallel (n - \zeta_{12})}} N(\mathcal{P})^k,
\]

where \(N(I) \) is the norm of the ideal \(I \). We are then interested by

\[
\mathcal{A}(\alpha) = \{ n \in]X, 2X] : (\alpha)\mid (n - \zeta_{12}) \}.
\]

For \(\alpha \in \mathbb{Z}[\zeta_{12}] \), \(\alpha = a + b\zeta_{12} + c\zeta_{12}^2 + d\zeta_{12}^3 \), let \(m_\alpha \) denote the matrix of the multiplication by \(\alpha \) in the basis \(1, \zeta_{12}, \zeta_{12}^2, \zeta_{12}^3 \). Let \(B_{ij}, 1 \leq i, j \leq 4 \) be the cofactors of this matrix.
Lemma 4. If \((B_{14}, N(\alpha)) = 1\) then for \(n \in \mathbb{Z}\) we have
\[(\alpha)| (n - \zeta_{12}) \iff n \equiv B_{13}B_{14} \pmod{N(\alpha)}.
\]

Proof. We use the fact that for \(\ell = 0, 1, 2, 3\), \(\zeta_{12}^\ell \alpha \in (\alpha)\). This gives the congruence system:
\[
\begin{pmatrix}
 b & c & d \\
 a & b+d & c \\
 -d & a+c & b+d \\
 -c & b & a+c
\end{pmatrix}
\begin{pmatrix}
 \zeta_{12} \\
 \zeta_{12}^2 \\
 \zeta_{12}^3 \\
 \zeta_{12}
\end{pmatrix}
\equiv
\begin{pmatrix}
 -a \\
 d \\
 c \\
 b+d
\end{pmatrix}
\pmod{(\alpha)}.
\]

We apply Cramer formula and use the fact that \(m_{\alpha^{-1}} = (m_\alpha)^{-1}\): this gives \(B_{14}\zeta_{12} \equiv B_{13} \pmod{(\alpha)}\).

With this Lemma and standard manipulations on exponential sums, we obtain sums of type:
\[
\sum_{(\alpha) \in \mathcal{J}} e\left(-\frac{hB_{13}\overline{B_{14}}}{N(\alpha)} \right), \text{where } \mathcal{J} \text{ is a set of ideals of } \mathbb{Z}[\zeta_{12}].
\]
If we apply again Cramer formula and use some facts from resultant theory we obtain

Lemma 5. Let \(q = (b^2 + c^2)(b^2 + db + d^2)(-3c^2 + (b + 2d)^2) \). If \((q, B_{14}) = 1\) then

\[
e\left(\frac{-hB_{13}B_{14}}{N(\alpha)}\right) = e\left(\frac{-hU\bar{B}_{14}}{q} + hR(a, b, c, d)\right),
\]

where \(U \in \mathbb{Z}[a, b, c, d] \) is a polynomial of degree five and \(R \) is a rational fraction.
5. Joint distribution of some values of binary forms

Let \(P =]B, B + M[\times]C, C + M[\times]D, D + M] \), \(f_1, f_2 \in \mathbb{Z}[x, y] \) two binary, primitive and irreducible forms with degree \(\geq 2 \). We define also for \(i = 1, 2 \):

\[
\varrho_{f_i}(m) = |\{0 \leq r, s < m : m|f_i(r, s) \text{ and } (r, s, m) = 1\}|.
\]

We suppose that there exists \(\vartheta > 0 \) such that

\[
M \geq \max(|A|, |B|, |C|)^{\vartheta}.
\]

We consider

\[
\mathcal{A}(m_1, m_2, m_3, u) = \{(b, c, d) \in P : m_1|f_1(b, c), m_2|f_2(b, d), (b, c, d) \equiv u \pmod{m_3}, (m_1, b, c) = 1 = (m_2, b, d)\}.
\]
We are interested by

$$E = \sum_{m_1 < Q_1}^{*} \left| A(m_1, m_2, m_3, u) - \frac{M^3 \varphi^*_1(m_1) \varphi^*_2(m_2)}{m_1^2 m_2^2 m_3^3} \right|,$$

where the star in the \sum indicates that some coprimality conditions are required.

Theorem 6. *With the above notations, we have:*

$$E \ll (\log M)^7 \left(Q_1 Q_2 + \frac{(Q_1 Q_2)^{1/2} M^{3/2}}{m_3^{3/4}} + \frac{(Q_1 Q_2)^{1/3} M^2}{m_3^2} \right)$$

$$+ M^{1+\varepsilon} (Q_1 + Q_2) + M^{2+\varepsilon} + \frac{M^{2+\varepsilon}}{m_3^2} (\sqrt{Q_1} + \sqrt{Q_2}).$$