Asymmetric exclusion: a way to anomalous scaling

Joint work with Timo Seppäläinen

Márton Balázs

Alfréd Rényi Institute of Mathematics
MTA-BME Stochastics Research Group

Erdős Centennial
July 1., 2013
An easy example

The totally asymmetric simple exclusion process

Exotic scaling

Proof
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.

\[\bullet \]

0 1 2 3 4 5 6 7

\[i \]
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, **counting** the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with "usual" behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.

![Diagram of particle movement](image)
An easy example

An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. \(\text{Exp}(1) \) waiting times. Its position at time \(t \) is \(S(t) \), counting the number of steps.

![Diagram showing a particle at position 1 on a line with positions 0 to 7 labeled.]
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.

\[\bullet \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

\[i \]
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.

![Diagram of particle position over time](image-url)
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. \(\text{Exp}(1) \) waiting times. Its position at time \(t \) is \(S(t) \), counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.

\begin{itemize}
 \item [\textbullet{}]
\end{itemize}
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time \(t \) is \(S(t) \), counting the number of steps.

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

\(i \)
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy example

TASEP Exotics Proof

An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. \(\text{Exp}(1) \) waiting times. Its position at time \(t \) is \(S(t) \), counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.

Continuous time Markov jump process with rate 1.
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. $\text{Exp}(1)$ waiting times. Its position at time t is $S(t)$, counting the number of steps.

\implies Continuous time Markov jump process with rate 1.

$\text{LLN: } \lim_{t \to \infty} \frac{S(t)}{t} = 1 \quad \text{a.s.}$
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. \(\text{Exp}(1) \) waiting times. Its position at time \(t \) is \(S(t) \), counting the number of steps.

\[\rightarrow \text{Continuous time Markov jump process with rate 1.} \]

LLN: \(\lim_{t \to \infty} \frac{S(t)}{t} = 1 \) a.s.

Fluctuations: \(\lim_{t \to \infty} \frac{\text{Var}S(t)}{t} = 1. \)
An easy Markov process with “usual” behavior

A particle jumps one step to the right with iid. Exp(1) waiting times. Its position at time t is $S(t)$, counting the number of steps.

\[\bullet \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \]

\[i \]

\[\rightsquigarrow \text{Continuous time Markov jump process with rate 1.} \]

LLN: $\lim_{t \to \infty} \frac{S(t)}{t} = 1$ a.s.

Fluctuations: $\lim_{t \to \infty} \frac{\text{Var} S(t)}{t} = 1$.

CLT: $\lim_{t \to \infty} \frac{S(t) - t}{\sqrt{t}} \sim \mathcal{N}(0, 1)$.
The totally asymmetric simple exclusion process

Bernoulli(ϱ) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(q\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(p\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(ρ) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(p\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(q\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Bernoulli(ρ) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(ρ) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(ρ) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(ρ) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(ρ) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(q\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Bernoulli(\(\rho\)) product distribution.

Particles step to the right with rate 1, unless the destination site is occupied.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

Bernoulli(\(\rho\)) product distribution.
The totally asymmetric simple exclusion process

Particles step to the right with rate 1, unless the destination site is occupied.

The Bernoulli(\(\varrho\)) distribution is stationary (and non-reversible) for all \(0 \leq \varrho \leq 1\).

These are the important (\(=\) ergodic) stationary distributions.
The totally asymmetric simple exclusion process

An observer starts from the origin, and moves with velocity V.
The totally asymmetric simple exclusion process

An observer starts from the origin, and moves with velocity \(V \).

The quantity of our interest is:

\[
J_V(t) = \# \{ \text{particles that pass the observer by time } t \} - \# \{ \text{particles the observer passes by time } t \}.
\]
The totally asymmetric simple exclusion process

An observer starts from the origin, and moves with velocity V.

The quantity of our interest is:

$$J_V(t) = \#\{\text{particles that pass the observer by time } t\} - \#\{\text{particles the observer passes by time } t\}.$$

Again, counting the number of steps of a given type.
The totally asymmetric simple exclusion process

An observer starts from the origin, and moves with velocity V.

The quantity of our interest is:

$$J_V(t) = \# \{ \text{particles that pass the observer by time } t \} - \# \{ \text{particles the observer passes by time } t \}.$$

Again, counting the number of steps of a given type.

$J_V(t) = \text{net flux of particles}$
The second class particle

Stochastic coupling: evolution as close as possible

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

$J_V(t) = \text{net flux of particles}$
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

$$J_V(t) = \text{net flux of particles}$$
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_N(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

\[J_V(t) = \text{net flux of particles} \]
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: $Q(t)$.

$J_V(t) = \text{net flux of particles}$
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: $Q(t)$.

Its velocity: $\lim_{t \to \infty} \frac{E_{Q(t)}}{t} = 1 - 2\varrho$

$J_V(t) = \text{net flux of particles}$
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

Its position at time t: $Q(t)$.

Its velocity: $\lim_{t \to \infty} \frac{E_{Q(t)}}{t} = 1 - 2\varrho = \text{characteristic velocity}$.

$J_V(t) = \text{net flux of particles}$
The second class particle

Stochastic coupling: evolution as close as possible

Second class particle

Its position at time \(t \): \(Q(t) \).

Its velocity: \(\lim_{t \to \infty} \frac{E_Q(t)}{t} = 1 - 2\rho = \text{characteristic velocity} \).

\(J_V(t) = \text{net flux of particles} \)
Exotic scaling

On the characteristics $V = 1 - 2\rho$:

$J_V(t) = \text{net flux of particles}$
Exotic scaling

On the characteristics $V = 1 - 2\varrho$:

Theorem (B. - Seppäläinen)

$$0 < \liminf_{t \to \infty} \frac{\text{Var}(J_{1-2\varrho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\text{Var}(J_{1-2\varrho}(t))}{t^{2/3}} < \infty.$$

$J_V(t) = \text{net flux of particles}$
Exotic scaling

On the characteristics $V = 1 - 2\rho$:

Theorem (B. - Seppäläinen)

\[
0 < \liminf_{t \to \infty} \frac{\text{Var}(J_{1-2\rho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\text{Var}(J_{1-2\rho}(t))}{t^{2/3}} < \infty.
\]

\[J_V(t) = \text{net flux of particles}\]
Exotic scaling

On the characteristics $V = 1 - 2\varrho$:

Theorem (B. - Seppäläinen)

\[
0 < \liminf_{t \to \infty} \frac{\text{Var}(J_{1-2\varrho}(t))}{t^{2/3}} \leq \limsup_{t \to \infty} \frac{\text{Var}(J_{1-2\varrho}(t))}{t^{2/3}} < \infty.
\]

\[J_V(t) = \text{net flux of particles} \]
1. An algebraic miracle

Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähöfer)

\[
\mathbb{E} Q(t) = (1 - 2\varrho)t,
\]

\[
\text{Var}(J_{1-2\varrho}(t)) = c \cdot \mathbb{E}|Q(t) - \mathbb{E}Q(t)| = c \cdot \mathbb{E}|\tilde{Q}(t)|.
\]
1. An algebraic miracle

Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähöfer)

\[E Q(t) = (1 - 2 \rho) t, \]
\[\text{Var}(J_{1-2\rho}(t)) = c \cdot E|Q(t) - E Q(t)| = c \cdot E|\tilde{Q}(t)|. \]

Proof by combinatorial tricks, partial summations, covariances, independence.
1. An algebraic miracle

Miracle: exact identities.

Theorem (B. - Seppäläinen; ideas also from B. Tóth, H. Spohn, and M. Prähöfer)

\[\mathbb{E} Q(t) = (1 - 2\varphi)t,\]
\[\text{Var}(J_{1-2\varphi}(t)) = c \cdot \mathbb{E} |Q(t) - \mathbb{E} Q(t)| = c \cdot \mathbb{E} |\tilde{Q}(t)|.\]

Proof by combinatorial tricks, partial summations, covariances, independence.

\[\mathbb{E} Q(t) = (1 - 2\varphi)t\]
\[\text{Var}(J_{1-2\varphi}(t)) = c \cdot \mathbb{E} |\tilde{Q}(t)|\]
2. Many second class particles

\[EQ(t) = (1 - 2\varrho)t \quad \text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)| \]
2. Many second class particles

Coupling three processes:

\[E[Q(t)] = (1 - 2\varrho)t \]

\[\text{Var}(J_{1-2\varrho}(t)) = c \cdot E[\tilde{Q}(t)] \]
2. Many second class particles

Coupling three processes:

\[\begin{array}{ccccccccc}
& & & & & & & & \\
\circ & \circ \\
-3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & i \\
\circ & \circ \\
\end{array} \]

Bernoulli(\(q\))
Bernoulli(\(\lambda\))

Push \(Q\) abnormally to the right: \(\tilde{Q}(t) \geq u\)
\(\Rightarrow\) abnormally many second class particles pass

\[
E(Q(t)) = (1 - 2q)t \\
Var(J_{1-2\varnothing}(t)) = c \cdot E|\tilde{Q}(t)|
\]
2. Many second class particles

Coupling three processes:

- Bernoulli(ρ)
- Bernoulli(λ)

Push Q abnormally to the right: $\tilde{Q}(t) \geq u$

\Rightarrow abnormally many second class particles pass
\Rightarrow abnormally large difference between J and J^λ

$\mathbb{E}Q(t) = (1 - 2\rho)t$

$\text{Var}(J_{1-2\rho}(t)) = c \cdot \mathbb{E}|\tilde{Q}(t)|$
2. Many second class particles

Coupling three processes:

Push Q abnormally to the right: $\tilde{Q}(t) \geq u$
⇒ abnormally many second class particles pass
⇒ abnormally large difference between J and J^λ
⇒ via Chebyshev’s inequality:

$$P\{\tilde{Q}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t))$$

after optimising in λ.

$$E_Q(t) = (1-2\varrho)t$$
$$\text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)|$$
2. Many second class particles

Coupling three processes:

Push Q abnormally to the right: $\tilde{Q}(t) \geq u$

\Rightarrow abnormally many second class particles pass

\Rightarrow abnormally large difference between J and J^λ

\Rightarrow via Chebyshev's inequality:

$$P\{\tilde{Q}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t))$$

after optimising in λ.

$$P\{\tilde{Q}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t)) \quad \text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)|$$
2. Many second class particles

Repeat to the left:

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t)). \]

\[P\{\tilde{Q}(t) \geq u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t)) \]

\[\text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)| \]
2. Many second class particles

Repeat to the left:

\[\mathbb{P}\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varnothing}(t)). \]

Recall the miracle:

\[\mathbb{P}\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot \mathbb{E}|\tilde{Q}(t)| = : c \cdot \frac{t^2}{u^4} \cdot \mathbb{E}. \]
2. Many second class particles

Repeat to the left:

\[P\{ |\widetilde{Q}(t)| > u \} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\ell}(t)). \]

Recall the miracle:

\[P\{ |\widetilde{Q}(t)| > u \} \leq c \cdot \frac{t^2}{u^4} \cdot \mathbb{E}|\widetilde{Q}(t)| = : c \cdot \frac{t^2}{u^4} \cdot \mathbb{E}. \]

Innocent as it looks... but already implies the 2/3 scaling.

\[P\{ \widetilde{Q}(t) \geq u \} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\ell}(t)) \quad \text{Var}(J_{1-2\ell}(t)) = c \cdot \mathbb{E}|\widetilde{Q}(t)| \]
2. Many second class particles

Repeat to the left:

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot \text{Var}(J_{1-2\varrho}(t)). \]

Recall the miracle:

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E|\tilde{Q}(t)| = : c \cdot \frac{t^2}{u^4} \cdot E. \]

Innocent as it looks... but already implies the 2/3 scaling.

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E \quad \text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)| \]
3. The calculation
\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]
3. The calculation

\[\mathbb{P}\{\left|\tilde{Q}(t)\right| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]

\[E = E|\tilde{Q}(t)| = \int_0^\infty \mathbb{P}\{\left|\tilde{Q}(t)\right| > u\} \, du \]
3. The calculation

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]

\[
E = E|\tilde{Q}(t)| = \int_0^\infty P\{|\tilde{Q}(t)| > u\} \, du
\]

\[
= E \int_0^\infty P\{|\tilde{Q}(t)| > uE\} \, du
\]

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E \quad \text{Var}(J_{1-2\eta}(t)) = c \cdot E|\tilde{Q}(t)| \]
3. The calculation

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]

\[
E = E|\tilde{Q}(t)| = \int_0^\infty P\{|\tilde{Q}(t)| > u\} \, du
\]

\[
= E \int_0^\infty P\{|\tilde{Q}(t)| > vE\} \, dv
\]

\[
\leq E \int_{1/2}^\infty P\{|\tilde{Q}(t)| > vE\} \, dv + \frac{1}{2} E
\]

\[
P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E \quad \text{Var}(J_{1-2\varnothing}(t)) = c \cdot E|\tilde{Q}(t)|
3. The calculation

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]

\[E = E|\tilde{Q}(t)| = \int_0^\infty P\{|\tilde{Q}(t)| > u\} \, du \]
\[= E \int_0^\infty P\{|\tilde{Q}(t)| > vE\} \, dv \]
\[\leq E \int_0^{1/2} P\{|\tilde{Q}(t)| > vE\} \, dv + \frac{1}{2} E \]
\[\leq c \cdot \frac{t^2}{E^2} + \frac{1}{2} E, \]

that is: \(E^3 \leq c \cdot t^2. \)
3. The calculation
\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E. \]

\[
E = E|\tilde{Q}(t)| = \int_0^\infty P\{|\tilde{Q}(t)| > u\} \, du
\]

\[= E \int_0^\infty P\{|\tilde{Q}(t)| > vE\} \, dv \]

\[\leq E \int_{1/2}^\infty P\{|\tilde{Q}(t)| > vE\} \, dv + \frac{1}{2}E \]

\[\leq c \cdot \frac{t^2}{E^2} + \frac{1}{2}E, \]

that is: \(E^3 \leq c \cdot t^2. \)

\[\text{Var}(J_{1-2\varrho}(t)) \stackrel{\text{Miracle}}{=} \text{const.} \cdot E \leq c \cdot t^{2/3}. \]

\[P\{|\tilde{Q}(t)| > u\} \leq c \cdot \frac{t^2}{u^4} \cdot E \quad \text{Var}(J_{1-2\varrho}(t)) = c \cdot E|\tilde{Q}(t)| \]
Lower bound

In the upper bound, the relevant orders were

\[u \equiv \text{(deviation of } Q(t) \text{)} \sim t^{2/3}, \quad \rho - \lambda \sim t^{-1/3}. \]
Lower bound

In the upper bound, the relevant orders were

\[u = \text{(deviation of } Q(t) \text{)} \sim t^{2/3}, \quad \rho - \lambda \sim t^{-1/3}. \]

The lower bound

\[\text{Var}(J_{1-2\rho}(t)) \geq c \cdot t^{2/3} \]

works with similar arguments: compare models of which the densities differ by \(t^{-1/3} \), and use connections between \(Q(t) \), the green second class particles, and heights.

Lower bounds tend to be more messy.
Lower bound

In the upper bound, the relevant orders were

\[u = \text{(deviation of } Q(t) \text{)} \sim t^{2/3}, \quad \varrho - \lambda \sim t^{-1/3}. \]

The lower bound

\[\text{Var}(J_{1-2\varrho}(t)) \geq c \cdot t^{2/3} \]

works with similar arguments: compare models of which the densities differ by \(t^{-1/3} \), and use connections between \(Q(t) \), the green second class particles, and heights.

Lower bounds tend to be more messy.

Thank you.