Multiplicative Functions and Small Divisors

by

Krishnaswami Alladi
Department of Mathematics
University of Florida
Gainesville, FL 32611
USA

e-mail: alladik@ufl.edu

* A report of joint work of \{ k. Alladi
P. Erdős
J. D. Vaaler

and later work of
K. Soundararajan
S. Srinivasan
P. Suryamohan
& R. Munshi
Let $S \subseteq \mathbb{Z}^{+}$ and

$$g(n) = \prod_{p|n, \ p=\text{prime}} g(p) \quad (\text{strongly mult.}), \quad g \geq 1$$

Problem: Obtain upper bound for

$$S(g; x) = \sum_{n \leq x, \ n \in S} g(n)$$

Idea: Write

$$g(n) = \sum_{d|n} h(d)$$

Then h is multiplicative, $0 \leq h$,

$$h(p) = g(p) - 1, \quad h(p^a) = 0, \quad \text{for } a \geq 2.$$

Thus

$$S(g; x) = \sum_{n \leq x, \ n \in S} \sum_{d|n} h(d) \cdot \ln$$

$$= \sum_{d \leq x} h(d) \sum_{n \in S, \ n \equiv 0 \pmod{d}} 1 = \sum_{d|S_d(x)} h(d) \left| S_d(x) \right|$$

where

$$S_d(x) = \{ m \in S \mid m \equiv 0 \pmod{d}, \ m \leq x \}$$
Suppose we have the estimate
\[
\left| S_d(x) \right| \leq \frac{1}{\log x} \sum_{d \mid x} \frac{h(d)}{d}, \ \text{\(\omega \)-mult. (1)}
\]
then we would get (with \(x = \left| S_d(x) \right| \))
\[
S(g; x) \leq x \sum_{d \leq x} \frac{h(d) \omega(d)}{d} \leq x \prod_{p \leq x} \left(1 + \frac{\omega(p) \log p}{p} \right)
\]
It turns out that (1) usually holds only for \(d \leq x^\beta \), with some \(\beta < 1 \).

For example
a) if \(S = \{ p + a \mid p \leq x \} \), shifted primes,
then \(\beta = \frac{1}{2} \) (Brun-Titchmarsh)
b) if \(S = \{ P(n) \mid P(n) \leq x \} \), \(P(t) \in \mathbb{Z}^+ [t] \),
then \(\beta = \frac{1}{\deg P} \)

So what we require are inequalities like
\[
\sum_{d \leq n} h(d) \ll \sum_{d \leq n^\beta} h(d), \quad (2)
\]
with \(0 < \beta < 1 \).
To lead us to such estimates, we formulate

Meta theorem: "Large divisors of an integer are more composite than the smaller ones."

We will characterize this meta theorem in various ways.

On the basis of the meta theorem, I made

Weak conjecture (Alladi, 1983 Asilomar Conf.)

For each integer \(k \geq 2 \), there exists \(c_k \)

such that if \(0 \leq h(p) \leq c_k \), then

\[
\sum_{d \mid n} h(d) \ll_k \sum_{d \leq n^{1/k}} h(d) \dfrac{d}{\ln n}, \quad d \leq n^{1/k}
\]

An example:

Let \(r \) be large & \(p_1 \sim p_2 \sim \ldots \sim p_r \) primes.

Let \(n = p_1 p_2 \ldots p_r \). Then \(d \mid n \) satisfies

\[d \leq n^{1/k} \iff \nu(d) \leq \frac{r}{k} \]
Suppose $h(p) = c$, \forall p. Then

$$\sum' h(d) = (1+c)^r$$

and

$$\sum' h(d) \approx \sum' \binom{r}{k} c^l$$

d $\leq n^{\frac{1}{k}}$, $l \leq \frac{c}{k}$

The peak of $\binom{r}{k} c^l$ occurs when $l \sim \frac{rc}{1+c}$.

So $\frac{rc}{1+c} > \frac{c}{k} \iff c > \frac{1}{k-1}$,

Then the sum in (3) is $o((1+c)^r)$. This example shows that $c_k \leq \frac{1}{k-1}$.

Strong Conjecture: (Alladi, 1983)

$$c_k = \frac{1}{k-1}, \text{ for } k = 2, 3, \ldots$$

Remark: For purpose of applications to Probabilistic Number Theory that I had, I needed only inequalities like (2) for $0 \leq h(p) \leq \delta$, with some $\delta > 0$, and so the truth of the weak conjecture was sufficient.
A mapping for sets and divisors

If \(n \neq 0 \), then trivially we have that half the divisors of \(n \) are \(< \sqrt{n} \) and half are \(> \sqrt{n} \), as seen by the correspondence

\[
d/n \leftrightarrow \frac{n}{d} \mid n.
\]

A more interesting (deeper) mapping

Conjecture (Alladi, 1982)

There exists a mapping \(m \) from the set \(S^< \) of divisors of \(n \) which are \(< \sqrt{n} \) to the set \(S^> \) of divisors of \(n \) which are \(> \sqrt{n} \) such that

(i) \(m \) is a bijection

(ii) If \(d' = m(d) \) for \(d \in S^< \) and \(d' \in S^> \), then \(m(d) = d' \equiv 0 \pmod{d} \).

Remark (i) The conjecture, if true, would immediately imply
Lemma 1: Let \(n \) be sq. free and \(h \) mult. such that \(0 \leq h \leq 1 \). Then
\[
\sum_{d \in S^<_{\sqrt{n}}} h(d) \leq 2 \sum_{d \in S^<_{\sqrt{n}}} h(d), \quad d < \sqrt{n}
\]

Proof: Write
\[
\sum_{d \in S^<_{\sqrt{n}}} h(d) = \sum_{d \in S^<_{\sqrt{n}}} h(d) + \sum_{d \in S^>_{{\sqrt{n} \atop \sqrt{n}}}} h(d')
\]

The second sum is less than the first because
\[h(d') = h(dd'') \leq h(d) \]

(ii) One does not need the conj. To prove Lemma 2, which follows from a monotonicity principle namely

Lemma 2: If \(n \) is sq. free & \(h, h' \) mult. such that
\[0 \leq h' \leq h \]

then
\[
\frac{\sum_{d \in S^<_{\sqrt{n}}} h'(d)}{\sum_{d \in S^<_{\sqrt{n}}} h'(d)} \leq \frac{\sum_{d \in S^<_{\sqrt{n}}} h(d)}{\sum_{d \in S^<_{\sqrt{n}}} h(d)}
\]

and the fact that the conj. holds when \(h = 1 \).
Lemma 1 was precisely what I needed to establish the Erdős–Kac–Kubilius thm. on the set of shifted primes (KA, Pac. J. Math., 1983). I informed Erdős about my conjecture and said that I could not prove it. He replied that if we strengthen the conjecture, it could be proved by induction on the number of prime factors:

Theorem (Erdős, 1982) — private communication.

Let \(n \) be sq. free, and \(t \in [1, \sqrt{n}] \). Then there exists a mapping \(m_t = m_{t,n} \) from the set \(S^<_t \) of the divisors of \(n \) which are \(< t \) to the set \(S^>_t \) of the divisors of \(n \) that are \(> n/t \) such that

(i) \(m_t \) is a bijection

(ii) If \(d' = m_t(d) \), \(d \in S^<_t \), \(d' \in S^>_t \), then \(m_t(d) = d' \equiv 0 \) (mod \(d \)).
At this stage Vaaler noticed that this could be formulated more generally in terms of sets and measures:

Theorem': Let S be a finite set and λ a finite measure on the set of all subsets of S. For each $t \geq 0$, define

$$A(t, S) = \{ E \subseteq S | \lambda(E) \leq t \}$$

Then there is a permutation

$$\pi_{t, S} : A(t, S) \rightarrow A(t, S)$$

such that

$$\pi_{t, S}(E) \cap E = \emptyset, \forall E \in A(t, S).$$

Cor: Let S, λ as above. Define

$$B(t, S) = \{ E \subseteq S | \lambda(S) - t \leq \lambda(E) \}$$

Then there is a bijection

$$\sigma_{t, S} : A(t, S) \rightarrow B(t, S)$$

s.t. $E \subseteq \sigma_{t, S}(E), \forall E \in A(t, S)$.
In that same paper, we prove

Theorem 1:

Let \(h \) be sub-multiplicative and satisfy

\[
0 \leq h(p) \leq c < \frac{1}{k-1}.
\]

Then

\[
\sum' h(d) \leq \left\{1 - \frac{k c}{1+c}\right\}^{-1} \sum' h(d) \quad \text{dln, } d \leq n^{1/k}
\]

(This settles the weak conjecture with any \(c < \frac{1}{k-1} \))

Proof: Begin with the decomposition

\[
\sum' h(d) = \sum h(d) + \sum h(pd) \quad \text{dln, } \text{dln/p, dln/p}
\]

for any \(p|n, \ p = \text{prime} \). Consequently

\[
h(p) \sum' h(d) = h(p) \sum h(d) + h(p) \sum' h(pd) \quad \text{dln/p, dln/p}
\]

\[
\geq \sum' h(pd) \quad \text{dln/p, (1+h(p)) \sum' h(pd) \quad dln/p}
\]

Thus

\[
\sum' h(pd) \leq \frac{h(p)}{1+h(p)} \sum' h(d). \quad (4)
\]
Next write

\[\sum h(d) \geq \sum h(d) \frac{\log(n^{\frac{1}{k}}/d)}{\ln n}, \quad d \leq n^{\frac{1}{k}} \] \hspace{\textwidth}

\[= \sum h(d) - \frac{k}{\ln n} \sum h(d) \log d \tag{5} \]

Note that (4) implies

\[\sum h(d) \log d = \sum h(d) \sum \log p = \sum \log p \sum h(p)_{\text{odd}} \] \hspace{\textwidth}

\[\leq \left(\sum h(d) \right) \left(\sum \frac{h(p) \log p}{\ln p + h(p)} \right) \leq \frac{c \log n \sum h(d)}{1 + c} \tag{6} \]

Theorem 1 follows from (5) & (6).

\[
\text{Theorem 2: (Alladi-Erdős-Vaaler, J.N.T. 1989)}
\]

If \(k \geq 2 \) is an integer and \(0 \leq h(p) \leq \frac{1}{k-1} \), where \(h \) is \(k \)-strongly multiplicative, then for all squarefree \(n \)

\[\sum h(d) \leq (2k + o(1)) \sum h(d) \] \hspace{\textwidth}

\[\frac{\ln n}{\ln n}, \quad d \leq n^{\frac{1}{k}}, \] \hspace{\textwidth}

where \(o(1) \to 0 \) as \(n \to \infty \).

(This settles the strong conjecture.)
To prove this we use a powerful theorem on hypergraphs due to Baranyai (1973):

Baranyai's Thm: Let \(k, m \) be positive integers.

Let \(S \) be a set with \(km \) elements. Then the \(\binom{km}{m} \) subsets of \(S \) having \(m \) elements each, can be grouped \(k \) at a time such that in every such group, the \(k \) subsets of size \(m \) generate a partition of \(S \).

Proof of Thm 2: In view of the monotonicity, it suffices to prove Thm 2 in the case \(h(\rho)=c = \frac{1}{k-1} \).

Let \(v(n) = km + l, \quad 0 \leq l \leq k-1 \).

For \(j \leq m \) consider a divisor \(N \) of \(n \) with \(v(N) = k(m-j) \). By Baranyai's Thm, the divisors \(d \) of \(N \) having \(v(d)=m-j \), can be grouped \(k \) at a time such that they are mutually coprime and the product is \(N \). In every such group, one of these \(k \) divisors is \(\leq n^{1/k} \).
So there are
\[\geq \frac{1}{k} \binom{k(m-j)}{m-j} \]

divisors of \(N \) which are \(\leq n^{\frac{1}{k}} \).

The number of ways of choosing such \(N \) is
\[\binom{km+l}{k(m-j)} \]

Every such divisor \(d \) can be the divisor of at most
\[\binom{km+l-m+j}{(k-1)(m-j)} \]
such numbers \(N \). Thus we have at least
\[\frac{1}{k} \binom{k(m-j)}{m-j} \binom{km+l}{k(m-j)} \]

\[\geq \frac{1}{k} \sum_{j=0}^{k-1} \binom{km+l}{m-j} \binom{1}{k-1} \]

divisors of \(n \) with \(v(d) = m-j \) \& \(d \leq n^{\frac{1}{k}} \). Thus
\[\sum_{d \leq n^{\frac{1}{k}}} h(d) \geq \frac{1}{k} \sum_{j=0}^{k-1} \binom{km+l}{m-j} \binom{1}{k-1} \]

\[\approx \frac{1}{k \cdot 2} (1+c)^{\nu(n)} = \frac{1}{2k} \sum_{d \leq n^{\frac{1}{k}}} h(d) \]

and this proves Theorem 2.
Question: Can the implicit "constant" $2k + o(1)$ in Thm 2 be replaced effectively by an expression (possibly depending on n) so that the inequality is valid for all n?

Theorem 1 has an expression valid for all n, but $\left\{1 - \frac{k \varepsilon}{1+c}\right\}^{-1} = \infty$ when $c = \frac{1}{k-1}$.

An answer to the above question is given by Theorem 3: (Alladi- Erdös-Vaaler, JNT 1989)

Let $k \geq 2$, let h be multiplicative, and satisfy $0 \leq h(p) \leq \frac{1}{k-1}$. Then for all sq. free n:

$$\sum\frac{h(d)}{d \ln n} \leq \frac{k \nu(n)}{k-1} \sum\frac{h(d)}{d \ln n, d \leq n^{1/k}}$$

To prove Thm 3, we use the more general monotonicity given by Lemma M: Let n be sq. free & $0 < \alpha < 1$. For fixed α and n the quantity

$$R_{\alpha, n}(h) = \left(\sum\frac{h(d)}{d \ln n, d \leq n^{\alpha}}\right)/\sum\frac{h(d)}{d \ln n}$$

decreases as n increases.
Proof of Lemma M: The lemma is trivial when \(v(n) = 1 \). So let \(v(n) \geq 2 \).

Define

\[\chi_\alpha(x) = \begin{cases} 1, & \text{if } x \leq \alpha \\ 0, & \text{if } x > \alpha. \end{cases} \]

Then

\[R_{\alpha, n}(h) = \sum_{\substack{d | n, \; q | n \implies q \text{ prime} \quad d \cdots \quad \pi(1 + h(d)) \quad d \cdots \quad \pi(1 + h(q)) \quad q \cdots \quad \pi(1 + h(q))}} \]

\[= \sum_{p | n, \; q \neq p} \left\{ \chi_\alpha \left(\frac{\log d}{\log n} \right) \frac{h(d)}{1 + h(p)} + \chi_\alpha \left(\frac{\log p + \log d}{\log n} \right) \frac{h(pd)}{1 + h(p)} \right\} \times \]

\[\frac{1}{\pi(1 + h(q))}, \quad q \mid n, \; q \neq p \]

\[= \sum_{p | n, \; q \neq p} \left\{ \chi_\alpha \left(\frac{\log d}{\log n} \left(1 - \frac{h(p)}{1 + h(p)} \right) + \chi_\alpha \left(\frac{\log p + \log d}{\log n} \right) \frac{h(pd)}{1 + h(p)} \right\} \times \]

\[\frac{h(d)}{\pi(1 + h(q))}, \quad q \mid n, \; q \neq p \]

for some \(p | n \). Note that

\[\chi_\alpha \left(\frac{\log d}{\log n} \right) \geq \chi_\alpha \left(\frac{\log p + \log d}{\log n} \right) \]
and so $R_{x, n}(h)$ decreases by increasing $h(p)$, and by not changing $h(q)$ for $q
eq p$.

Then by increasing $h(q)$ in succession for other primes q, we get Lemma M.

Proof of Theorem 3: let $F(x, c, n)$ denote the value of $R_{x, n}(h)$ when $h(p) = c$, $q = p$.

To get a lower bound for F we consider bounding $\chi_{\alpha}(x)$ from below, where $x = \frac{\log 2}{\log n}$.

$\chi_{\alpha}(x)$ in blue

$1 - \frac{x}{\alpha}$ in green

One possibility is to take $y = 1 - \frac{x}{\alpha}$. This was the choice in the proof of Thm 1.

So we now seek a quadratic polynomial.

To this end, let

$-\frac{1}{\alpha} \leq t \leq \frac{1}{\alpha}$
Then

\[x(x) \equiv f(x) = tx^2 - (at + \frac{1}{\alpha})x + 1 \]

With this choice

\[F(d, c, n) \geq \frac{1}{H(n)} \sum_d \left\{ \frac{t \log^2 d}{\log^2 n} \log \frac{d}{\log n} - (at + \frac{1}{\alpha}) \log \frac{d}{\log n} \right\} + h(d) \]

where

\[H(n) = \sum_d h(d) \]

Note that

\[\frac{1}{\log n} \sum_d h(d) \log d = \sum_d \frac{h(d)}{\log n} \sum_p \log p \]

\[= \sum_p \frac{\log p}{\log n} \sum_d h(pd) = \frac{H(n)}{\log n} \sum_p \frac{h(p) \log p}{1 + h(p)} = \frac{c + H(n)}{1 + c} \]

(9)

Similarly, it can be shown that

\[\frac{1}{\log^2 n} \sum_d h(d) \log^2 d \]

\[= H(n) \left\{ \left(\frac{c}{1+c}\right)^2 + \frac{c}{(1+c)^2} \log^2 n \sum_p \log^2 p \right\} \]

(10)

By writing

\[\log^2 d = \left(\sum_{p|d} \log p\right)^2 \]

and expanding the square
Thus (9) & (10) yield

\[F(\alpha, c, \gamma, n) \geq f\left(\frac{\gamma}{\alpha + \gamma} \right)^2 + \frac{\epsilon c}{(\alpha + \gamma)^2} \sum_{p} \log^2 p. \] (11)

By the Cauchy-Schwarz inequality

\[1 = \sum_{p \leq n} \frac{\log p}{\log n} \leq \sqrt{\nu(n)} \left(\sum_{p \leq n} \frac{\log^2 p}{\log^2 n} \right)^{1/2} \]

and so

\[\sum_{p \leq n} \frac{\log^2 p}{\log^2 n} \geq \frac{1}{\nu(n)}. \]

Therefore

\[F(\alpha, c, \gamma, n) \geq f\left(\frac{\gamma}{\alpha + \gamma} \right)^2 + \frac{\epsilon c}{(\alpha + \gamma)^2} \cdot \nu(n). \]

Obviously we wish to make \(t \) maximal.

Since \(\alpha = \frac{1}{k} \) in Thm. 2, we take \(t = k, c = \frac{t}{\nu(n)} \).

With these choices it turns out that

\[f\left(\frac{c}{\alpha + \gamma} \right) = 0 \quad (!) \]

Thus

\[F\left(\frac{1}{k}, \frac{1}{k-1}, \gamma, n \right) \geq \frac{k-1}{k \cdot \nu(n)}. \]

and this proves Theorem 2.
Remarks:

(i) One would expect to get better bounds by increasing the degree of the minorizing polynomial. This would involve expressions

\[\frac{1}{\log n} \sum_{j=3}^{\infty} \log^j p \]

These would be complicated for large \(m \) and might yield worse bounds unless the cancellation among the higher moments are calculated properly.

(ii) In Thm 3., we do not require \(k \) to be an integer.
Improvements and simplification by later authors

(1) What we needed to prove Theorem 2 was inequality (7) which we deduced as a consequence of Baranyai's theorem. Suryamohan (Glasgow Math. J., 2004) showed that (7) could be deduced directly by a simple counting argument without appeal to Baranyai's theorem. We show his proof now:

Proposition: Let \(k, \ell \geq 1 \) be integers and let \(N = p_1 p_2 \ldots p_{k \ell} \) where \(p_1 < p_2 < \ldots < p_{k \ell} \) are primes. Then the number of \(d | N \) with \(d \leq N^{\frac{1}{k \ell}} \) and having exactly \(\ell \) prime divisors is

\[
\geq \frac{1}{k \ell} \binom{k \ell}{\ell}.
\]

Note: The proposition is our inequality (7) with \(\ell \) in place of \(m-j \).
Proof (Suryamohan)

Let \(S_{ke} = \{1, 2, 3, \ldots, kl\} \) and \(\pi = (\sigma_1, \sigma_2, \ldots, \sigma_{ke}) \) be any permutation of \(S_{ke} \). We set
\[
\xi_{\pi} = \{A_1, A_2, \ldots, A_k\},
\]
where
\[
A_j = (\sigma_i - (i-1)e+1, \sigma_i - (i-1)e+2, \ldots, \sigma_i) .
\]
For each set \(B \) with \(|B| = l \), let
\[
\delta_{\pi}(B) = \begin{cases}
1, & \text{if } B \in \xi_{\pi} \\
0, & \text{otherwise}
\end{cases}
\]
For each \(A \subseteq S_{ke} \), let \(d_A \) be the associated divisor of \(N \) given by the product \(\prod_{i \in A} \pi_i \).

Let
\[
\xi_1 = \left\{ A \subseteq S_{ke} \mid |A| = l, \ d_A \leq N^{\frac{1}{2}} \right\}
\]
\[
\xi_2 = \left\{ B \subseteq S_{ke} \mid |B| = l, \ d_B > N^{\frac{1}{2}} \right\}
\]
Clearly if \(C \subseteq S_{ke}, \ |C| = l \), then \(C \) belongs exactly to one of \(\xi_1 \) or \(\xi_2 \). Thus
\[
|\xi_1| + |\xi_2| = \binom{ke}{l} \tag{12}
\]
Note that
\[\prod_{i=1}^{k} d_i = N \]
Thus \(\exists \) some \(i \) such that \(d_{A_i} \leq N^{1/k} \). Thus
\[|\mathcal{S}_2 \cap \mathcal{S}_\pi| \leq (k-1) |\mathcal{S}_1 \cap \mathcal{S}_\pi|, \quad \forall \pi \]
Consequently
\[\sum_{B \in \mathcal{S}_2} \delta_{\pi}(B) \leq (k-1) \sum_{A \in \mathcal{S}_1} \sum_{\pi} \delta_{\pi}(A). \quad (13) \]
If we sum the expressions in (13) over all \(\pi \), we get
\[\sum_{B \in \mathcal{S}_2} \sum_{\pi} \delta_{\pi}(B) \leq (k-1) \sum_{A \in \mathcal{S}_1} \sum_{\pi} \delta_{\pi}(A) \quad (14) \]
It is now crucial to note that
\[\sum_{\pi} \delta_{\pi}(C) = k \times \mathcal{L}!(kl-k)! \quad \forall C \text{ with } |C| = l \]
(15)
is independent of \(C \). Thus (14) & (15) imply
\[|\mathcal{S}_2| \leq (k-1) |\mathcal{S}_1|, \]
which together with (12) yields
\[k |\mathcal{S}_1| \geq (k^l) \]
which is the assertion of the proposition.
Just as our Theorem 1 holds for all sub-multiplicative functions satisfying suitable bounds, S. Srinivasan (Glasgow Math. J., 1994) showed that our Theorem 2 holds for sub-multiplicative functions as well.

K. Soundararajan (J. N. T., 1992) achieved several improvements of our results in JNT, 1989 paper.

First Improvement: In Theorem 2, with h multiplicative, $0 \leq h(p) \leq \frac{1}{k-1}$, for $k \geq 2$, he showed

$$\sum_{d|m} h(d) \leq (k + o(1)) \sum_{d|m} h(d)$$

where $o(1) \to 0$ as $v(n) \to \infty$.

Remark: Thus Soundararajan cut the implicit constant in Thm. 2 by half. This is crucial because when $k = 2$ it corresponds better with the bound

$$\sum_{d|m} h(d) \leq 2 \sum_{d|m} h(d)$$

for $0 \leq h \leq 1$.
Second Improvement: In Theorem 3 for \(k \geq 2 \), and \(h \) multiplicative satisfying \(0 \leq h(p) \leq \frac{1}{k-1} \), he showed that

\[
\sum h(d) \ll \sqrt{\nu(n)} \sum_{n \leq \sqrt{n}} h(d), \quad \text{for sq. free,}
\]

\[
d \ln \]

where the implicit constant is absolute.

Third Improvement: He extended Theorem 2 to rational values \(k \) as follows: Let \(k \geq 2 \) be rational, \(h \) mult., and \(0 \leq h(p) \leq \frac{1}{k-1} \). Then

\[
\sum h(d) \leq (\gamma_k + o(1)) \sum h(d)
\]

\[
d \ln \]

\[
d \ln, \quad d \leq n^{\frac{1}{k}},
\]

for sq. free \(n \), where

\[
\gamma_k = 1 + a_0 + a_1 + \ldots + a_r,
\]

with \(k-1 = [a_0, a_1, \ldots, a_r] \) being the continued fraction of \(k-1 \). Here also \(o(1) \to 0 \) as \(\nu(n) \to \infty \).

Remark: If \(k \geq 2 \) is an integer, then \(r = 0 \), and \(a_0 = k-1 \). Thus \(1 + a_0 = k \) which is what one has in the First Improvement of Thm. 2.
For \(t \geq 0 \), let \(F_t \) denote the set of multiplicative functions \(F : \mathbb{Z}^+ \to [0, \infty) \) such that \(F(p) \geq t \) for all primes \(p \).

Let \(G_t \) denote the set of multiplicative functions \(G : \mathbb{Z}^+ \to [0, \infty) \) such that \(0 \leq G(p) \leq t \), \(\forall p \).

For square-free \(n \), put
\[
q(t, n) = \inf \left\{ \left(\sum_{d \mid n} F(d) \frac{d \ln d}{\ln n} \right) \middle| F \in F_t \right\}
\]
and
\[
b(t, n) = \sup \left\{ \left(\sum_{d \mid n} G(d) \frac{t/(t+1)}{\ln n} \right) \middle| G \in G_t \right\}
\]
Also, let
\[
A(t) = \inf \left\{ q(t, m) \mid m \text{ sq. free} \right\}
\]
\[
B(t) = \sup \left\{ b(t, m) \mid m \text{ sq. free} \right\}
\]

For \(F \in F_t \), we have by definition
\[
\sum_{d \mid n, \ d \geq n^{t/(t+1)}} F(d) \frac{d \ln d}{\ln n} \geq A(t) \sum_{d \mid n} F(d) \frac{d \ln d}{\ln n}
\]
Our Theorem 2 is equivalent to

\[A(k) \approx \frac{1}{2k+2 + o(1)} \]

for integers \(k \geq 1 \).

(Note: Soundararajan has replaced \(k \) in our Theorem 2 by \(k+1 \)).

He establishes three results:

Theorem S₁: For all \(t \geq 0 \)

\[A(t+1) \geq \frac{A(t)}{A(t)+1} \]

In particular,

\[A(k) \geq \frac{1}{k+1} \quad \forall \ k \geq 0, \ k \in \mathbb{Z}. \]

Theorem S₂: For all \(t \geq 0 \),

\[B(t+1) \leq \frac{1}{2-B(t)} \]

In particular,

\[B(k) = \frac{k}{k+1} \quad \forall \ k \in \mathbb{Z}^+. \]

Theorem S₃: For all \(t \geq 0 \),

\[A\left(\frac{1}{t}\right) + B(t) = 1. \]
Using Theorem 3, he extends our Theorem (more specifically the assertion \(A(k) > \frac{1}{k+1} \) in his Theorem 5_1) to rational \(k \) as follows:

Theorem 5_4: Let \(k > 0 \) be rational and \(k = [a_0, a_1, \ldots, a_r] \) its continued fraction expansion. Then

\[
A(k) \geq \frac{1}{1 + a_0 + a_1 + \ldots + a_r}
\]

and

\[
B(k) \leq \frac{a_0 + a_1 + \ldots + a_r}{1 + a_0 + a_1 + \ldots + a_r}
\]

Note: Even if we write

\[
k = [a_0, a_1, \ldots, a_{r-1}, a_r-1, 1]
\]

we have

\[
1 + a_0 + \ldots + a_{r-1} + a_r - 1 + 1 = 1 + a_0 + \ldots + a_r
\]

and so the above inequalities for \(A(k) \) and \(B(k) \) do not change.
Ritabrata Munshi (Ramanujan J., 2011) considered the problem of obtaining bounds of the type

\[\Omega(n) \ll \sum_{d \leq n^{\delta}} \tau(d)^{1/2}, \]

where \(\tau(n) \) is the divisor function. He was motivated by applications of such inequalities in analytic number theory.

Landreau (Bull. LMS, 1989) had shown

\[\Omega(n) \leq k/k-1 \sum_{d \leq \sqrt[1/k]{n}} \tau(d)^k \cdot \frac{1}{\ln d}, \]

(related to earlier work of Wolke (JLMS 1972))

For certain small \(k \), Friedlander & Iwaniec improved on Landreau by showing

\[\Omega(n) \leq 9 \sum_{d \leq n^{1/3}} \tau(d) \cdot \frac{1}{\ln d}, \]

\[\Omega(n) \leq 256 \sum_{d \leq n^{1/4}} \tau(d)^{\log_2 9} \cdot \frac{1}{\ln d}, \]

\[\Omega(n) \leq 256 \sum_{d \leq n^{1/4}} \tau(d)^{\log_2 9} \cdot \frac{1}{\ln d}, \]

\[\Omega(n) \leq 256 \sum_{d \leq n^{1/4}} \tau(d)^{\log_2 9} \cdot \frac{1}{\ln d}, \]

\[\Omega(n) \leq 256 \sum_{d \leq n^{1/4}} \tau(d)^{\log_2 9} \cdot \frac{1}{\ln d}, \]
Munshi (2011) improves these results as follows.

For \(\delta \in (0, \frac{1}{2}) \), define

\[
\beta(\delta) = \frac{\log \delta}{\log 2} + \frac{1}{\delta} \left\{ 1 + (1-\delta) \frac{\log (1-\delta)}{\log 2} \right\}
\]

Then \(\beta(\delta) \) is a strictly decreasing function of \(\delta \).

Moreover

\[
\mathcal{E}(n) \ll \delta, \beta \sum_{\delta, \beta} \tau(d)^{\beta} \text{dln}, \ d \leq n^\delta
\]

Remark: Munshi observes that (16) is optimal by taking \(n = p_1 p_2 \ldots p_r \), with \(p_1, p_2, \ldots, p_r \) large primes, as we did. Then

\[
\sum_{\delta, \beta} \tau(d)^{\beta} = \left(\frac{r}{r/k} \right)^{\beta r/k} \text{dln}, \ d \leq n^{1/k}
\]

This leads to the requirement

\[
\frac{\beta r}{k} - \frac{r}{k} \log_2 \left(\frac{1}{k} \right) - (r - \frac{r}{k}) \log_2 \left(1 - \frac{1}{k} \right) > r
\]

\(\iff \beta > \beta(\delta). \)
For $S \leq \mathbb{Z}^+$, define

$$S_d(x) = \sum_{\substack{n \leq x, \ n \in S \\ n \equiv 0 \ (\text{mod} \ d)}} 1$$

Write

$$S_d(x) = \frac{x \omega(d)}{d} + R_d(x), \quad x = S_d(x),$$

where $\omega(d)$ is multiplicative.

Assumptions:

(i) $|R_d(x)| \ll \frac{x \omega(d)}{d}, \quad 1 \leq d \leq x^{\beta}$, for some $\beta < 1$

(ii) **Bombieri Type condition**

$$\sum_{d \leq x^{\beta} / \log x} |R_d(x)| \ll \frac{x}{\log x}$$

Next, let f be a strongly additive function:

$$f(n) = \sum_{p \mid n} f(p)$$

We will focus on real valued f and even $f > 0$.
Consider

\[A(x) = \sum_{p \leq x} \frac{f(p) \omega(p)}{p} \]
(mean of \(f(n), n \in S \))

and

\[B(x) = \sum_{p \leq x} \frac{|f^2(p) \omega(p)|}{p} \]
(variance of \(f(n), n \in S \))

Problem: Obtain bounds for the moments

\[\sum_{n \leq x, n \in S} |f(n) - A(x)|^2 \]

Elliott (Canadian J. Math. 1980) has considered and solved this problem elegantly when \(S = \mathbb{Z}^+ \).

Reductions: Use \(|a + b|^2 \leq |a|^2 + |b|^2 \)

So we assume \(f \geq 0 \) because, if \(f \) is real, we may write

\[f = f^+ - f^- \]

where

\[f^+(p) = \max(0, f(p)) \]

\[f^-(p) = \min(0, f(p)) \]
Consider the distribution function

\[F_x(x) = \frac{1}{X} \sum_{n \leq x, n \in S} \frac{1}{f(n) - A(x)} < \lambda \sqrt{B(x)} \]

Then

\[\frac{1}{B(x)^{\ell/2}} \sum_{n \leq S, n \leq x} (f(n) - A(x))^\ell = \int \lambda^\ell dF_x(\lambda) \] (1)

Next consider the bilateral Laplace transform

\[T_u(x) = \int e^{u\lambda} dF_x(\lambda) \]

If \(|T_u(x)| \ll 1 \) for \(|u| \leq R \) for some \(R > 0 \), then we can say the expression in (1) is bounded for each \(\ell \).

Note that

\[T_u(x) = \frac{1}{X} \sum_{n \leq x, n \in S} e^{u(f(n) - A(x))/\sqrt{B(x)}} \]

\[= \frac{1}{X} \sum_{n \leq x, n \in S} g(n) \]

where

\[g(n) = e^{uf(n)/\sqrt{B(x)}} \] is strongly multiplicative.
Case 1: \(u \leq 0 \). Here \(0 \leq g \leq 1 \).

I used sieve methods (Springer Lecture Notes, # 1122, (1984)) to show

\[
S(g, x) = \sum_{n \leq x, n \in S} g(n) \ll x \prod_{p \leq x} \left(1 - \frac{(1-g(p))\omega(p)}{p} \right)
\]

uniformly for \(0 \leq g \leq 1 \).

Case 2: \(u \geq 0 \). Here \(g \geq 1 \).

Assumption: \(\max_{p \leq x} f(p) \ll \sqrt{B(x)} \)

With \(R \) chosen sufficiently small, we can make

\[
1 \leq g(p) \leq 1 + \frac{1}{2(k-1)}
\]

\(\Rightarrow \) \(0 \leq h(p) = g(p) - 1 \leq \frac{1}{2(k-1)} \).

Thus we will have

\[
g(n) = \sum_{d \mid n} h(d) \ll k \sum_{d \leq n^{1/k}} h(d) \frac{d \ln n}{\ln d}
\]

This will lead to the estimate

\[
S(g, x) \ll x \prod_{p \leq x} \left(1 + \frac{h(p)\omega(p)}{p} \right)
\]
All these estimates lead to

Theorem A: If f is strongly additive and

$$0 \leq |f(p)| \ll \sqrt{B(x)},$$

then

$$\sum |f(n) - A(x)|^l \ll x^{l/2} B(x)^{l/2}, \quad \text{for } l > 0, \ n \leq x, \ n \in S$$

This extends Elliott's result for \mathbb{Z} to more general sets S.

Remark: We have indicated only bounds for moments here. The bilateral Laplace Transform approach along with sieve methods yields asymptotic estimates for the moments of additive functions in special sets of integers S, and this in turn leads to Erdős-kac-Kubilius type theorems. (See KA, Springer Lecture Notes, #1122 (1984), or #1375 (1989)).
Open Problems

(New) Weak Conjecture: The implicit constant in Theorem 2 is absolute.

(New) Strong Conjecture: For $k = 2, 3, \ldots$, the implicit constant in Theorem 2 is

$$\left(1 + \frac{1}{k-1}\right)^{k-1}.$$