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Departament d’Enginyeria Informàtica i Matemàtiques,
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Abstract

A set of vertices S of a graph G is a geodetic set of G if every vertex v 6∈ S lies on
a shortest path between two vertices of S. A Steiner set of G is a set of vertices
W of G such that every vertex of G belongs to the set of vertices of a connected
subgraph of minimum size containing the vertices of W . In this work we show that
if G is a graph of diameter two, then every Steiner set of G is also a geodetic set of
G. Moreover, we also study some classes of graphs with diameter greater than two
in which every Steiner set is a geodetic set.

Keywords: Geodetic sets, Steiner sets, corona graph.

1 Introduction

The Steiner distance of a set of vertices of a graph was introduced as a gen-
eralization of the distance between two vertices [3]. In this sense, Steiner sets
in graphs could be understood as a generalization of geodetic sets in graphs.
Nevertheless, its relationship is not exactly obvious. Some of the primary re-
sults in this topic were presented in [4], where the authors tried to show that
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every Steiner set of a graph is also a geodetic set. Fortunately, the author
of [9] showed by a counterexample that not every Steiner set of a graph is a
geodetic set, and it was pointed out an open question related to character-
izing those graphs satisfying that every Steiner set is geodetic or vice versa.
Some relationships between Steiner sets and geodetic sets were obtained in
[1,2,4,7,8,9]. For instance, [2] was dedicated to obtain some families of graphs
in which every Steiner set is a geodetic set, but the problem of characterizing
such a graphs remains open.

We begin by stating some terminology and notation. In this paper G =
(V,E) denotes a connected simple graph of order n = |V |. The diameter D(G)
of G is the maximum among all distances between any two vertices of G.

A shortest u − v path is called u − v geodesic. We define IG[u, v] to be
the set of all vertices lying on some u− v geodesic of G, and for a nonempty
set S ⊆ V , IG[S] =

⋃
u,v∈S IG[u, v] (I[S] for short). A set S ⊆ V is a geodetic

set of G if IG[S] = V and a geodetic set of minimum cardinality is called a
minimum geodetic set [6]. The cardinality of a minimum geodetic set of G is
called the geodetic number of G and it is denoted by g(G). A vertex v ∈ V is
geodominated by a pair x, y ∈ V if v lies on an x− y geodesic of G.

For an integer k ≥ 2, a vertex v of a graph G is k-geodominated by a pair
x, y of vertices in G if d(x, y) = k and v lies on an x−y geodesic of G. A subset
S ⊆ V is a k-geodetic set if each vertex v in S = V − S is k-geodominated by
some pair of vertices of S. The minimum cardinality of a k-geodetic set of G
is its k-geodetic number gk(G). It is clear that g(G) ≤ gk(G) for every k.

For a nonempty set W of vertices of a connected graph, the Steiner distance
of W is the minimum size of a connected subgraph of G containing W [3].
Necessarily, such a subgraph is a tree and it is called a Steiner tree with
respect to W or a Steiner W -tree, for short. For a set W ⊆ V , the set of
all vertices of G lying on some Steiner W -tree is denoted by SG[W ] (or by
S[W ], if there is no ambiguity). If SG[W ] = V , then W is called a Steiner set
of G. The Steiner number of a graph G, denoted by s(G), is the minimum
cardinality among the Steiner sets of G.

2 Results

We begin by proving that every Steiner set of a graph with diameter two is
also a geodetic set.

Theorem 2.1 If G is a graph of diameter two, then every Steiner set for G
is a geodetic set for G.



Corollary 2.2 If G is a graph of diameter two, then g(G) ≤ s(G).

Next we will present some results about geodetic sets and Steiner sets of
corona product graphs in order to show that in every corona product graph it
is satisfied that every Steiner set is also a geodetic set. Notice that, there are
infinite number of corona product graphs with diameter greater than two.

Let G and H be two graphs and let n be the order of G. The corona
product G�H is defined as the graph obtained from G and H by taking one
copy of G and n copies of H and then joining by an edge, all the vertices from
the ith-copy of H with the ith-vertex of G.

2.1 Geodetic number of corona product graphs

Proposition 2.3 Let G be a connected graph of order n1 and let H be a graph
of order n2. If n1 ≥ 2 or (n1 = 1 and H is a non-complete graph), then

n1g(H) ≤ g(G�H) ≤ n1n2.

The upper bound is achieved if and only if H is isomorphic to a graph in which
every connected component is isomorphic to a complete graph.

Moreover, if no connected component of H is isomorphic to a complete
graph, then g(G�H) ≤ n1(n2 − 1).

Theorem 2.4 Let G be a connected graph of order n and let H be a non-
complete graph. Then, g(G�H) = ng(K1 �H).

The geodetic number of wheel graphs and fan graphs were studied in [2]
and [5].

Remark 2.5 [2] If n ≥ 4, then g(W1,n) =
⌈
n
2

⌉
.

Remark 2.6 [2,5] If n ≥ 3, then g(F1,n) =
⌈
n+1
2

⌉
.

As a particular cases of Theorem 2.4 and by using the above remarks we
obtain the following results.

Corollary 2.7 Let G be a connected graph of order n1.

(i) If n2 ≥ 4, then g(G� Cn2) = n1g(W1,n2) = n1

⌈
n2

2

⌉
.

(ii) If n2 ≥ 3, then g(G� Pn2) = n1g(F1,n2) = n1

⌈
n2+1
2

⌉
.

Now we are interested in those graphs in which g(H) = g(K1 �H).

Theorem 2.8 For a connected graph H, the following statements are equiv-
alent:



• g(H) = g(K1 �H).

• g(H) = g2(H).

Theorem 2.9 Let G be a connected graph of order n and let H be a connected
non-complete graph. Then the following statements are equivalent:

• g(G�H) = ng(H).

• g(H) = g2(H).

Since for every graph H of diameter two we have g(H) = g2(H), Theorem
2.9 leads to the following result.

Corollary 2.10 Let G be a connected graph of order n and let H be a graph.
If D(H) = 2, then g(G�H) = ng(H).

Another consequence of Theorem 2.8 is the following result.

Corollary 2.11 Let G and H be two connected graphs of order n1 and n2,
respectively. Let Nk be the empty graph of order k ≥ 2. Then g(G � (H �
Nk)) = n1n2k.

The following result improves the lower bound in Proposition 2.3 for those
graphs whose geodetic number is different from its 2-geodetic number.

Theorem 2.12 Let G be a connected graph of order n and let H be a non-
complete graph. If g(H) 6= g2(H), then g(G�H) ≥ n (g(H)− 1) .

2.2 Steiner number of corona product graphs

Proposition 2.13 Let G be a connected graph of order n1 and let H be a
graph of order n2. If n1 ≥ 2 or (n1 = 1 and H is a non-complete graph), then

n1s(H) ≤ s(G�H) ≤ n1n2.

The upper bound is achieved if and only if H is isomorphic to a graph in which
every connected component is isomorphic to a complete graph.

Moreover, if no connected component of H is isomorphic to a complete
graph, then s(G�H) ≤ n1(n2 − 1).

Note that an example of corona graph where s(G � H) = n1(n2 − 1) is
showed in Corollary 2.17.

Theorem 2.14 Let G be a connected graph of order n ≥ 2 and let H be any
non complete graph. Then, s(G�H) = ns(K1 �H).



Notice that the above theorem leads to the lower bound of Proposition
2.13.

The Steiner number of wheel graphs and fan graphs were studied in [2]
and [5].

Remark 2.15 [2] If n ≥ 4, then s(W1,n) = n− 2.

Remark 2.16 [2,5] If n ≥ 3, then g(F1,n) = n− 1.

As a particular cases of Theorem 2.14 and by using the above remarks we
obtain the following results.

Corollary 2.17 Let G be a connected graph of order n1 ≥ 2. Then,

(i) s(G�Nn2) = n1s(S1,n2) = n1n2.

(ii) If n2 ≥ 4, then s(G� Cn2) = n1s(W1,n2) = n1(n2 − 2).

(iii) If n2 ≥ 3, then s(G� Pn2) = n1s(F1,n2) = n1(n2 − 1).

Theorem 2.18 Let H be a connected non complete graph. Then the following
statements are equivalent:

• s(K1 �H) = s(H).

• D(H) = 2.

By Theorem 2.14 and Theorem 2.18 we obtain the following result.

Theorem 2.19 Let H be a connected non complete graph and let G be a graph
of order n. Then the following statements are equivalent:

• s(G�H) = ns(H).

• D(H) = 2.

2.3 Relationships between the geodetic number and the Steiner number of
corona graphs

Now, from Theorem 2.4, Theorem 2.14 and Corollary 2.2 we obtain the fol-
lowing interesting result in which we give an infinite number of graphs G
satisfying that g(G) ≤ s(G).

Theorem 2.20 Let G be a connected graph of order n ≥ 2 and let H be any
non complete graph. Then, g(G�H) ≤ s(G�H).

As a consequence of almost all the previous results we obtain the following
theorem on corona product graphs whose second factor has diameter two.



Theorem 2.21 Let G be a connected graph and H be any graph of diameter
two. Then the following statements are equivalent:

• s(G�H) = g(G�H).

• s(H) = g(H).
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