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Abstract

Chung and Liu defined the d-chromatic Ramsey numbers as a gen-
eralization of Ramsey numbers by replacing a weaker condition. Let
1 < d < c and let t =

(c
d

)
. Assume A1, A2, . . . , At are all d-subsets of

a set containing c distinct colors. Let G1, G2, . . . , Gt be graphs. The
d-chromatic Ramsey number denoted by rc

d(G1, G2, . . . , Gt) is defined
as the least number p such that, if the edges of the complete graph Kp

are colored in any fashion with c colors, then for some i, the subgraph
whose edges are colored by colors in Ai contains a Gi. In this paper, we
determine rc

d(G1, G2, . . . , Gt) where Gi is a linear forest (disjoint union
of paths) and d = c− 1 ≤ 3.
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1 Introduction

In this paper all graphs will be undirected, finite, and have no loops or multiple
edges. If G is a graph, V will denote its vertex set and E its edge set. The
number of vertices of G is denoted by |G|. As usual Kn will denote the complete
graph on n vertices. By Pi (respectively, Ci) we will mean a path (respectively,
cycle) with i vertices. Moreover, Pi(c1,c2,c3) and Ci(c1,c2,c3) respectively denote
a path and a cycle with i vertices whose edges are colored in c1, c2, or c3. A
graph L is a linear forest if it is the disjoint union of nontrivial paths. For
linear forest L, the definition of L(c1,c2,c3) is similar. It is assumed throughout
the paper that 2 ≤ i ≤ j ≤ k ≤ l.

Let G1, G2, . . . , Gc be graphs. The Ramsey number, r(G1, G2, . . . , Gc) is
defined to be the least number p such that if the edges of the complete graph
Kp are colored in any fashion with c colors, then for some i the spanning
subgraph whose edges are colored with the ith color contains a Gi. Gerencsér
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and Gyárfás in [4] found the value of r(Pi, Pj). They proved that for i ≤ j,
r(Pi, Pj) = j+[i/2]−1. For given linear forests L1 and L2, Faudree and Schelp
[3] showed that if the number of odd components of Li is ji, 1 ≤ i ≤ 2, then

r(L1, L2) = max{|L1|+ (|L2| − j2)/2− 1, |L2|+ (|L1| − j1)/2− 1}.
More information about the Ramsey numbers of other graphs can be found in
the survey [8].

Chung and Liu [2] defined the d-chromatic Ramsey numbers as a general-
ization of Ramsey numbers by replacing a weaker condition. Let 1 < d < c
and let t =

(
c
d

)
. Assume A1, A2, . . . , At are all d-subsets of a set containing c

distinct colors. Let G1, G2, . . . , Gt be graphs. The d-chromatic Ramsey num-
ber denoted by rc

d(G1, G2, . . . , Gt) is defined as the least number p such that,
if the edges of the complete graph Kp are colored in any fashion with c colors,
then for some i, the subgraph whose edges are colored by colors in Ai contains
a Gi. They also determined the values of r3

2(Ki, Kj, Kl) and r3
2(K1,i, K1,j, K1,l),

[1, 2].
Note that for graphs G1 and G2, r(G1, G2) = r2

1(G1, G2). Moreover,
for graphs G1, G2, and G3 with |G1| ≤ |G2| ≤ |G3| it is shown [2] that
r3
2(G1, G2, G3) ≤ r(G1, G2) and the equality holds if |G3| ≥ r(G1, G2).

In [7] Meenakshi and Sundararaghavan found the value of r3
2(Pi, Pj, Pk). In

fact, they proved the following theorem.

Theorem 1.1 The value of r3
2(Pi, Pj, Pk) is equal to [4k+2j+i−2

6
] if k < r(Pi, Pj)

and is equal to r(Pi, Pj), otherwise.

Harborth and Möller in [5] called a special case of d-chromatic Ramsey
numbers, weakened Ramsey numbers. In their notation, Rs,t(G) is the mini-
mum p such that any coloring of the edges of Kp with t colors contains a copy
of G with at most s colors. In [5] the value of Rt−1,t(Kn) is identified. The
values of Rt−1,t(K1,n) and Rt−2,t(K1,n) are determined in [6].

In this paper we are mainly concerned with the numbers rt
t−1(G1, G2, . . . , Gt),

the smallest p such that if a complete graph Kp is colored with t colors, then
there is a copy of Gi that avoids the color i for some i. We shall determine
these numbers when t = 3 or 4, and the graphs Gi are linear forests.

2 Main results

Using Theorem 1.1, we are able to determine the exact value of r3
2(L1, L2, L3)

as follows.

Theorem 2.1 Let L1, L2, and L3 be linear forests with |L1| ≤ |L2| ≤ |L3|.
Then r3

2(L1, L2, L3) = r3
2(P|L1|, P|L2|, P|L3|) if |L3| < r2

1(L1, L2) ≤ r2
1(P|L1|, P|L2|)

and r3
2(L1, L2, L3) = r2

1(L1, L2), otherwise.

As a special case, we have the following corollary for stripes, i.e. disjoint
copies of a P2.
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Corollary 2.2 For integers n1, n2, and n3 with n1 ≤ n2 ≤ n3, we have

r3
2(n1P2, n2P2, n3P2) = r3

2(P2n1 , P2n2 , P2n3).

We now try to determine the value of r4
3(L1, L2, L3, L4). For this we shall

find the value of r4
3(Pi, Pj, Pk, Pl).

Theorem 2.3 We have r4
3(Pi, Pj, Pk, Pl) ≤ r3

2(Pi, Pj, Pk) and the equality holds
if l ≥ r3

2(Pi, Pj, Pk).

Theorem 2.4 If l < r3
2(Pi, Pj, Pk), then r4

3(Pi, Pj, Pk, Pl) ≤ [8l+4k+2j+i−2
14

].

Theorem 2.5 Let Li, 1 ≤ i ≤ 4, be linear forests with |L1| ≤ |L2| ≤ |L3| ≤
|L4|. Then r4

3(L1, L2, L3, L4) > [8|L4|+4|L3|+2|L2|+|L1|−2
14

]− 1.

Proof. If |L4| ≥ r3
2(L1, L2, L3), then r4

3(L1, L2, L3, L4) = r3
2(L1, L2, L3). Thus

we may assume that |L4| < r3
2(L1, L2, L3) ≤ r3

2(P|L1|, P|L2|, P|L3|). Let s =

[8|L4|+4|L3|+2|L2|+|L1|−2
14

], x1 = d4|L4|+2|L3|+|L2|−|L1|−4s−1
3

e, x2 = [2|L4|+|L3|−|L2|+|L1|−2s−2
3

],
x3 = 2s − |L3| − |L4|, and x4 = s − |L4|. By |L4| < r3

2(P|L1|, P|L2|, P|L3|) and
the definition of s and xi’s, it is straightforward to check that





x1 + x2 + x3 + x4 = s− 1,
x1 + x2 + x3 = |L4| − 1,
x1 + x2 + 2x4 = |L3| − 1,
x1 + 2x3 + 2x4 ≤ |L2| − 1,
2x2 + 2x3 + 2x4 + 1 ≤ |L1| − 1,
xi ≥ 0, 1 ≤ i ≤ 4.

(1)

Now partition the vertices of Ks−1 into four sets Xi, 1 ≤ i ≤ 4 with |Xi| = xi.
Paint with 1 all edges which are incident with two vertices of X1. For i = 2, 3, 4,
paint with i the edges having two vertices in Xi or one vertex in Xi and one
vertex in Xj where j < i. The conditions in 1 guarantee that Ks−1 does not
contain L1(2,3,4), L2(1,3,4), L3(1,2,4), and L4(1,2,3). a
We can now summarize Theorems 2.3, 2.4, and 2.5 as follows.

Theorem 2.6 The value of r4
3(Pi, Pj, Pk, Pl) is equal to [8l+4k+2j+i−2

14
] if l <

r3
2(Pi, Pj, Pk) and is equal to r3

2(Pi, Pj, Pk), otherwise.

Corollary 2.7 Let Li, 1 ≤ i ≤ 4, be linear forests with |L1| ≤ |L2| ≤
|L3| ≤ |L4|. Then r4

3(L1, L2, L3, L4) = r4
3(P|L1|, P|L2|, P|L3|, P|L4|) if |L4| <

r3
2(L1, L2, L3) ≤ r3

2(P|L1|, P|L2|, P|L2|) and r4
3(L1, L2, L3, L4) = r3

2(L1, L2, L3),
otherwise.
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3 Concluding remark

Theorem 2.5 gives a lower bound for r4
3(Pi, Pj, Pk, Pl). The method applied in

Theorem 2.5 can be easily generalized to the case of t colors. Also in Theorem
2.4, the argument for the case i < j is applicable in the more general case.
However in the case i = j for large t too much cases should be considered and
this may be hard to verify. It is our conjecture that for each t ≥ 3, and for
n1, n2, . . . , nt with n1 ≤ n2 ≤ · · · ≤ nt,

rt
t−1(Pn1 , Pn2 , . . . , Pnt) =

[∑t−1
i=0 2ini+1 − 2

∑t−1
i=1 2i

]
,

where nt < rt−1
t−2(Pn1 , Pn2 , . . . , Pnt−1). It is an interesting result to find a proof

for the upper bound that does not consider different cases.
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