A generalization of Ramsey theory for linear forests

A. Khamseh ${ }^{\mathrm{a}}$, G.R. Omidi ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{a}$ Department of Mathematical Sciences, Isfahan University of Technology, Isfahan, 84156-83111, Iran
${ }^{\mathrm{b}}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box:19395-5746, Tehran, Iran
E-mails:khamseh@math.iut.ac.ir, romidi@cc.iut.ac.ir

Abstract

Chung and Liu defined the d-chromatic Ramsey numbers as a generalization of Ramsey numbers by replacing a weaker condition. Let $1<d<c$ and let $t=\binom{c}{d}$. Assume $A_{1}, A_{2}, \ldots, A_{t}$ are all d-subsets of a set containing c distinct colors. Let $G_{1}, G_{2}, \ldots, G_{t}$ be graphs. The d-chromatic Ramsey number denoted by $r_{d}^{c}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is defined as the least number p such that, if the edges of the complete graph K_{p} are colored in any fashion with c colors, then for some i, the subgraph whose edges are colored by colors in A_{i} contains a G_{i}. In this paper, we determine $r_{d}^{c}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ where G_{i} is a linear forest (disjoint union of paths) and $d=c-1 \leq 3$.

Keywords: d-chromatic Ramsey number, edge coloring.
AMS subject classification: 05C55, 05D10.

1 Introduction

In this paper all graphs will be undirected, finite, and have no loops or multiple edges. If G is a graph, V will denote its vertex set and E its edge set. The number of vertices of G is denoted by $|G|$. As usual K_{n} will denote the complete graph on n vertices. By P_{i} (respectively, C_{i}) we will mean a path (respectively, cycle) with i vertices. Moreover, $P_{i\left(c_{1}, c_{2}, c_{3}\right)}$ and $C_{i\left(c_{1}, c_{2}, c_{3}\right)}$ respectively denote a path and a cycle with i vertices whose edges are colored in c_{1}, c_{2}, or c_{3}. A graph L is a linear forest if it is the disjoint union of nontrivial paths. For linear forest L, the definition of $L_{\left(c_{1}, c_{2}, c_{3}\right)}$ is similar. It is assumed throughout the paper that $2 \leq i \leq j \leq k \leq l$.

Let $G_{1}, G_{2}, \ldots, G_{c}$ be graphs. The Ramsey number, $r\left(G_{1}, G_{2}, \ldots, G_{c}\right)$ is defined to be the least number p such that if the edges of the complete graph K_{p} are colored in any fashion with c colors, then for some i the spanning subgraph whose edges are colored with the i th color contains a G_{i}. Gerencsér
and Gyárfás in [4] found the value of $r\left(P_{i}, P_{j}\right)$. They proved that for $i \leq j$, $r\left(P_{i}, P_{j}\right)=j+[i / 2]-1$. For given linear forests L_{1} and L_{2}, Faudree and Schelp [3] showed that if the number of odd components of L_{i} is $j_{i}, 1 \leq i \leq 2$, then

$$
r\left(L_{1}, L_{2}\right)=\max \left\{\left|L_{1}\right|+\left(\left|L_{2}\right|-j_{2}\right) / 2-1,\left|L_{2}\right|+\left(\left|L_{1}\right|-j_{1}\right) / 2-1\right\} .
$$

More information about the Ramsey numbers of other graphs can be found in the survey [8].

Chung and Liu [2] defined the d-chromatic Ramsey numbers as a generalization of Ramsey numbers by replacing a weaker condition. Let $1<d<c$ and let $t=\binom{c}{d}$. Assume $A_{1}, A_{2}, \ldots, A_{t}$ are all d-subsets of a set containing c distinct colors. Let $G_{1}, G_{2}, \ldots, G_{t}$ be graphs. The d-chromatic Ramsey number denoted by $r_{d}^{c}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is defined as the least number p such that, if the edges of the complete graph K_{p} are colored in any fashion with c colors, then for some i, the subgraph whose edges are colored by colors in A_{i} contains a G_{i}. They also determined the values of $r_{2}^{3}\left(K_{i}, K_{j}, K_{l}\right)$ and $r_{2}^{3}\left(K_{1, i}, K_{1, j}, K_{1, l}\right)$, [1, 2].

Note that for graphs G_{1} and $G_{2}, r\left(G_{1}, G_{2}\right)=r_{1}^{2}\left(G_{1}, G_{2}\right)$. Moreover, for graphs G_{1}, G_{2}, and G_{3} with $\left|G_{1}\right| \leq\left|G_{2}\right| \leq\left|G_{3}\right|$ it is shown [2] that $r_{2}^{3}\left(G_{1}, G_{2}, G_{3}\right) \leq r\left(G_{1}, G_{2}\right)$ and the equality holds if $\left|G_{3}\right| \geq r\left(G_{1}, G_{2}\right)$.

In [7] Meenakshi and Sundararaghavan found the value of $r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$. In fact, they proved the following theorem.
Theorem 1.1 The value of $r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$ is equal to $\left[\frac{4 k+2 j+i-2}{6}\right]$ if $k<r\left(P_{i}, P_{j}\right)$ and is equal to $r\left(P_{i}, P_{j}\right)$, otherwise.

Harborth and Möller in [5] called a special case of d-chromatic Ramsey numbers, weakened Ramsey numbers. In their notation, $R_{s, t}(G)$ is the minimum p such that any coloring of the edges of K_{p} with t colors contains a copy of G with at most s colors. In [5] the value of $R_{t-1, t}\left(K_{n}\right)$ is identified. The values of $R_{t-1, t}\left(K_{1, n}\right)$ and $R_{t-2, t}\left(K_{1, n}\right)$ are determined in [6].

In this paper we are mainly concerned with the numbers $r_{t-1}^{t}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$, the smallest p such that if a complete graph K_{p} is colored with t colors, then there is a copy of G_{i} that avoids the color i for some i. We shall determine these numbers when $t=3$ or 4 , and the graphs G_{i} are linear forests.

2 Main results

Using Theorem 1.1, we are able to determine the exact value of $r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)$ as follows.

Theorem 2.1 Let L_{1}, L_{2}, and L_{3} be linear forests with $\left|L_{1}\right| \leq\left|L_{2}\right| \leq\left|L_{3}\right|$. Then $r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)=r_{2}^{3}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}, P_{\left|L_{3}\right|}\right)$ if $\left|L_{3}\right|<r_{1}^{2}\left(L_{1}, L_{2}\right) \leq r_{1}^{2}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}\right)$ and $r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)=r_{1}^{2}\left(L_{1}, L_{2}\right)$, otherwise.

As a special case, we have the following corollary for stripes, i.e. disjoint copies of a P_{2}.

Corollary 2.2 For integers n_{1}, n_{2}, and n_{3} with $n_{1} \leq n_{2} \leq n_{3}$, we have

$$
r_{2}^{3}\left(n_{1} P_{2}, n_{2} P_{2}, n_{3} P_{2}\right)=r_{2}^{3}\left(P_{2 n_{1}}, P_{2 n_{2}}, P_{2 n_{3}}\right) .
$$

We now try to determine the value of $r_{3}^{4}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)$. For this we shall find the value of $r_{3}^{4}\left(P_{i}, P_{j}, P_{k}, P_{l}\right)$.

Theorem 2.3 We have $r_{3}^{4}\left(P_{i}, P_{j}, P_{k}, P_{l}\right) \leq r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$ and the equality holds if $l \geq r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$.

Theorem 2.4 If $l<r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$, then $r_{3}^{4}\left(P_{i}, P_{j}, P_{k}, P_{l}\right) \leq\left[\frac{8 l+4 k+2 j+i-2}{14}\right]$.

Theorem 2.5 Let $L_{i}, 1 \leq i \leq 4$, be linear forests with $\left|L_{1}\right| \leq\left|L_{2}\right| \leq\left|L_{3}\right| \leq$ $\left|L_{4}\right|$. Then $r_{3}^{4}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)>\left[\frac{8\left|L_{4}\right|+4\left|L_{3}\right|+2\left|L_{2}\right|+\left|L_{1}\right|-2}{14}\right]-1$.

Proof. If $\left|L_{4}\right| \geq r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)$, then $r_{3}^{4}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)$. Thus we may assume that $\left|L_{4}\right|<r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right) \leq r_{2}^{3}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}, P_{\left|L_{3}\right|}\right)$. Let $s=$ $\left[\frac{8\left|L_{4}\right|+4\left|L_{3}\right|+2\left|L_{2}\right|+\left|L_{1}\right|-2}{14}\right], x_{1}=\left\lceil\frac{4\left|L_{4}\right|+2\left|L_{3}\right|+\left|L_{2}\right|-\left|L_{1}\right|-4 s-1}{3}\right\rceil, x_{2}=\left[\frac{2\left|L_{4}\right|+\left|L_{3}\right|-\left|L_{2}\right|+\left|L_{1}\right|-2 s-2}{3}\right]$,
$x_{3}=2 s-\left|L_{3}\right|-\left|L_{4}\right|$, and $x_{4}=s-\left|L_{4}\right|$. By $\left|L_{4}\right|<r_{2}^{3}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}, P_{\left|L_{3}\right|}\right)$ and the definition of s and x_{i} 's, it is straightforward to check that

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=s-1 \tag{1}\\
x_{1}+x_{2}+x_{3}=\left|L_{4}\right|-1 \\
x_{1}+x_{2}+2 x_{4}=\left|L_{3}\right|-1 \\
x_{1}+2 x_{3}+2 x_{4} \leq\left|L_{2}\right|-1 \\
2 x_{2}+2 x_{3}+2 x_{4}+1 \leq\left|L_{1}\right|-1 \\
x_{i} \geq 0,1 \leq i \leq 4
\end{array}\right.
$$

Now partition the vertices of K_{s-1} into four sets $X_{i}, 1 \leq i \leq 4$ with $\left|X_{i}\right|=x_{i}$. Paint with 1 all edges which are incident with two vertices of X_{1}. For $i=2,3,4$, paint with i the edges having two vertices in X_{i} or one vertex in X_{i} and one vertex in X_{j} where $j<i$. The conditions in 1 guarantee that K_{s-1} does not contain $L_{1(2,3,4)}, L_{2(1,3,4)}, L_{3(1,2,4)}$, and $L_{4(1,2,3)}$.
We can now summarize Theorems 2.3, 2.4, and 2.5 as follows.

Theorem 2.6 The value of $r_{3}^{4}\left(P_{i}, P_{j}, P_{k}, P_{l}\right)$ is equal to $\left[\frac{8 l+4 k+2 j+i-2}{14}\right]$ if $l<$ $r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$ and is equal to $r_{2}^{3}\left(P_{i}, P_{j}, P_{k}\right)$, otherwise.

Corollary 2.7 Let $L_{i}, 1 \leq i \leq 4$, be linear forests with $\left|L_{1}\right| \leq\left|L_{2}\right| \leq$ $\left|L_{3}\right| \leq\left|L_{4}\right|$. Then $r_{3}^{4}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=r_{3}^{4}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}, P_{\left|L_{3}\right|}, P_{\left|L_{4}\right|}\right)$ if $\left|L_{4}\right|<$ $r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right) \leq r_{2}^{3}\left(P_{\left|L_{1}\right|}, P_{\left|L_{2}\right|}, P_{\left|L_{2}\right|}\right)$ and $r_{3}^{4}\left(L_{1}, L_{2}, L_{3}, L_{4}\right)=r_{2}^{3}\left(L_{1}, L_{2}, L_{3}\right)$, otherwise.

3 Concluding remark

Theorem 2.5 gives a lower bound for $r_{3}^{4}\left(P_{i}, P_{j}, P_{k}, P_{l}\right)$. The method applied in Theorem 2.5 can be easily generalized to the case of t colors. Also in Theorem 2.4, the argument for the case $i<j$ is applicable in the more general case. However in the case $i=j$ for large t too much cases should be considered and this may be hard to verify. It is our conjecture that for each $t \geq 3$, and for $n_{1}, n_{2}, \ldots, n_{t}$ with $n_{1} \leq n_{2} \leq \cdots \leq n_{t}$,

$$
r_{t-1}^{t}\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t}}\right)=\left[\frac{\sum_{i=0}^{t-1} 2^{i} n_{i+1}-2}{\sum_{i=1}^{t-1} 2^{i}}\right],
$$

where $n_{t}<r_{t-2}^{t-1}\left(P_{n_{1}}, P_{n_{2}}, \ldots, P_{n_{t-1}}\right)$. It is an interesting result to find a proof for the upper bound that does not consider different cases.

References

[1] K.M. Chung, M.L. Chung and C.L. Liu, A generalization of Ramsey theory for graphs-with stars and complete graphs as forbidden subgraphs, Congr. Numer. 19 (1977) 155-161.
[2] K.M. Chung and C.L. Liu, A generalization of Ramsey theory for graphs, Discrete Math. 2 (1978) 117-127.
[3] R.J. Faudree and R.H. Schelp, Ramsey numbers for all linear forests, Discrete Math. 16 (1976) 149-155.
[4] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest Eötvös. 10 (1967) 167-170.
[5] H. Harborth and M. Möller, Weakened Ramsey numbers, Discrete Applied Math. 95 (1999) 279-284.
[6] A. Khamseh and R. Omidi, On weakened Ramsey numbers for stars, Submitted.
[7] R. Meenakshi and P.S. Sundararaghavan, Generalized Ramsey numbers for paths in 2-chromatic graphs, Internat. J. Math. Sci. 9 (1986) 273-276.
[8] S.P. Radziszowski, Small Ramsey numbers, Electronic J. Combin. 1 (1994) Dynamic Surveys, DS1.12 (August 4, 2009).

