A generalization of Ramsey theory for linear forests

A. Khamseh?®, G.R. Omidi®P
aDepartment of Mathematical Sciences, Isfahan University of Technology,
Isfahan, 84156-83111, Iran
bSchool of Mathematics, Institute for Research in Fundamental Sciences (IPM),
P.O.Box:19395-5746, Tehran, Iran

E-mails:khamseh@math.iut.ac.ir, romidi@cc.iut.ac.ir

Abstract

Chung and Liu defined the d-chromatic Ramsey numbers as a gen-
eralization of Ramsey numbers by replacing a weaker condition. Let
1 <d<candlett= (). Assume Ay, Ay,..., A; are all d-subsets of
a set containing c distinct colors. Let G1,Gs,...,Gy be graphs. The
d-chromatic Ramsey number denoted by r5(G1,Ga,...,G;) is defined
as the least number p such that, if the edges of the complete graph K,
are colored in any fashion with ¢ colors, then for some 4, the subgraph
whose edges are colored by colors in A; contains a G;. In this paper, we
determine r§(G1,Go,...,Gy) where Gj is a linear forest (disjoint union
of paths) and d =c—1 < 3.
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1 Introduction

In this paper all graphs will be undirected, finite, and have no loops or multiple
edges. If G is a graph, V will denote its vertex set and F its edge set. The
number of vertices of G is denoted by |G|. As usual K, will denote the complete
graph on n vertices. By P; (respectively, C;) we will mean a path (respectively,
cycle) with i vertices. Moreover, Pic; ca,c5) and Cie, ey c5) Tespectively denote
a path and a cycle with ¢ vertices whose edges are colored in ¢y, ¢g, or 3. A
graph L is a linear forest if it is the disjoint union of nontrivial paths. For
linear forest L, the definition of L(c, ¢, ;) is similar. It is assumed throughout
the paper that 2 <i < j <k <.

Let G1,Gy,...,G. be graphs. The Ramsey number, r(G1,Gs,...,G.) is
defined to be the least number p such that if the edges of the complete graph
K, are colored in any fashion with c colors, then for some i the spanning
subgraph whose edges are colored with the ith color contains a ;. Gerencsér
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and Gyérfas in [4] found the value of 7(F;, Pj). They proved that for i < j,
r(P;, P;) = j+[i/2]—1. For given linear forests L; and Lo, Faudree and Schelp
[3] showed that if the number of odd components of L; is j;, 1 < i < 2, then

(L1, Ly) = max{|Li| + (|La| = j2)/2 — 1, |La| + (| L1| = j1)/2 — 1}.

More information about the Ramsey numbers of other graphs can be found in
the survey [8].

Chung and Liu [2] defined the d-chromatic Ramsey numbers as a general-
ization of Ramsey numbers by replacing a weaker condition. Let 1 < d < ¢
and let t = (2) Assume Aq, Ag, ..., A; are all d-subsets of a set containing ¢
distinct colors. Let G1,Ga, ..., G, be graphs. The d-chromatic Ramsey num-
ber denoted by r§(G1, Gs,. .., G;) is defined as the least number p such that,
if the edges of the complete graph K, are colored in any fashion with ¢ colors,
then for some ¢, the subgraph whose edges are colored by colors in A; contains
a G;. They also determined the values of rj(K;, K;, K;) and r3(Ky,;, K1 ;, K1,),
1, 2].

Note that for graphs G; and Gi, r(Gi,G2) = r3(Gy1,Gs). Moreover,
for graphs Gy, G5, and Gz with |G| < |G| < |Gs| it is shown [2] that
r3(Gy, Ga, G3) < 1r(G1,Gy) and the equality holds if |G3| > (G, Gs).

In [7] Meenakshi and Sundararaghavan found the value of 73(P;, P;, P;). In
fact, they proved the following theorem.

Theorem 1.1 The value of r3(P;, P;, Py) is equal to [*22=2] if |k < r (P, P;)
and is equal to r(P;, P;), otherwise.

Harborth and Moéller in [5] called a special case of d-chromatic Ramsey
numbers, weakened Ramsey numbers. In their notation, R,.(G) is the mini-
mum p such that any coloring of the edges of K, with ¢ colors contains a copy
of G with at most s colors. In [5] the value of R;_;.(kK,) is identified. The
values of R;_1+(K1,) and R;_9:(K,) are determined in [6].

In this paper we are mainly concerned with the numbers r!_|(Gy, Go, ..., Gy),
the smallest p such that if a complete graph K, is colored with ¢ colors, then
there is a copy of G; that avoids the color ¢ for some . We shall determine
these numbers when ¢ = 3 or 4, and the graphs G; are linear forests.

2 Main results

Using Theorem 1.1, we are able to determine the exact value of 73(Ly, Lo, L3)
as follows.

Theorem 2.1 Let Ly, Ly, and Ls be linear forests with |Li| < |Ls| < |Ls|.
Then T%(LI,L% L3) = T%(.P‘Ll‘, ‘P‘L2|’ P|L3|) Zf|L3| < T’%(Ll, Lg) < T%(P|L1|7P|L2|)
and r3(Ly, Ly, L3) = r2(Ly, Ly), otherwise.

As a special case, we have the following corollary for stripes, i.e. disjoint
copies of a Ps.



Corollary 2.2 For integers ni, no, and n3y with n1 < ny < n3, we have

Tg(nlp27n2p27n3p2> - 7,,g)(P2TL17 P2n27P2n3>-

We now try to determine the value of r§(Ly, Ly, L3, Ly). For this we shall
find the value of r3(P;, Pj, Py, P).

Theorem 2.3 We have r5(P;, P;, Py, P,) < r3(Pi, P, Py) and the equality holds
if 1 > r3(P;, Py, Py).

Theorem 2.4 Ifl < r3(P;, P}, Py), then ri(P;, Py, Py, By) < [SHAEE2002]

Theorem 2.5 Let L;, 1 < i < 4, be linear forests with |Ly| < |Ls| < |Ls| <
|La|. Then ri(Ly, Lo, L, Ly) > [l Allsllbabilal=21

P’I"OOf. If |L4| Z Tg(Ll,LQ,L3), then Tg(Ll,LQ,L3,L4) = Tg(L1,L2,L3). Thus

we may assume that |Ls| < r3(Ly, Lo, L3) < 73(Pp,|, Bryj, Pry)). Let s =
8|L4|+4|L3|+2|L2|+|L1| 2 _ 4|L4|+2|L3|+|L2| |L1|—4s—1 _ [2|La|+|Ls|—|Lo|+[L1]—-25—2
[ oy =] 1,22 = 3 ],

T3 = 28 — ‘L3| |L4’ and Ty = S — ‘L4| By |L4| < T2(HL1|7P|L2|7HL3|) and
the definition of s and x;’s, it is straightforward to check that

T1+ 2o+ a3+ 14 =5—1,

$1+$2+$3:|L4|—1,

1+ 29 + 224 = |L3| — 1, (1)
x1 + 223 + 224 < |Lo| — 1,

2x2—|—2x3+2x4+1§ |L1|—1,

x; > 0,1 <1<4.

Now partition the vertices of K into four sets X;, 1 <i <4 with | X;| = z;.
Paint with 1 all edges which are incident with two vertices of X;. For: = 2, 3,4,
paint with ¢ the edges having two vertices in X; or one vertex in X; and one
vertex in X; where j < 7. The conditions in 1 guarantee that K,_; does not
contain Li(o34y, Lo134), Laa24), and Lag23). .
We can now summarize Theorems 2.3, 2. 4 and 2.5 as follows.

Theorem 2.6 The value of r3(P;, Pj, Py, P)) is equal to [8”4’“4{#] if l <
r3(P;, P;, Py) and is equal to v3(P;, P;, Py.), otherwise.

Corollary 2.7 Let L;, 1 < i < 4, be linear forests with |Li| < |Lo| <
|Ls| < |Ls|. Then r3(Ly, Ly, Ls, Ly) = 73(PiL,|, PLo)s Pra), Pra) of |La] <
rg(L17L27L3) S TS(P|L1|7P\L2\7P\L2|) and T%(L17L27L37L4) - TQ(L17L27L3);
otherwise.
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3 Concluding remark

Theorem 2.5 gives a lower bound for 73(B;, P;, Py, P,). The method applied in
Theorem 2.5 can be easily generalized to the case of t colors. Also in Theorem
2.4, the argument for the case ¢ < j is applicable in the more general case.
However in the case ¢ = j for large ¢t too much cases should be considered and
this may be hard to verify. It is our conjecture that for each ¢ > 3, and for
ni,Na,...,ny with ng <ng <--- < ny,

S 2 — 2
rﬁl(Pm,PnQ,...,Pnt):[ 0= Tt ,

Y2

where n; < 71-5(Ppy, Pay, - -+, Pa,_,). Tt is an interesting result to find a proof
for the upper bound that does not consider different cases.
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