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Discrete Mathematics Research Group, FU Berlin, Germany

Introduction

I For a graph G, we call S ∈ V(G) a dominating set if for all x ∈ V \ S
there is an s ∈ S such that xs ∈ E(G). We denote by D(G) the
domination number of G, the smallest possible size of a dominating set.

I Throughout, we work in the random graph model G(n, p), that is, in the
space of all graphs where edges are inserted with probability p, all choices
being made independently.

I We show that for G ∼ G(n, p), D(G) is sharply concentrated for a
certain range of p.

I Notation. We denote by ln n the natural logarithm, and for p ∈ [0, 1),
set q = 1

1−p
.

Related work

I In the article On the Domination Number of a Random Graph (2001) B.
Wieland and A.P. Godbole prove that the domination number is
concentrated on two points asymptotically almost surely (a.a.s.): let p0(n)
be the smallest p for which

p2

40
≥

ln
(
ln2 n/p

)
ln n

.

Let p = p(n) be either constant, or tend to 0 with p(n) ≥ p0(n). For
Gn ∼ G(n, p), a.a.s.

D(Gn) = blogq n− logq(logq n · ln n)c+ 1 or

D(Gn) = blogq n− logq(logq n · ln n)c+ 2.

Result 1: 2-point-concentration

We extend the result of Wieland and Godbole to a wider range of p: We
show a 2-point-concentration of the domination number even if p tends to
0 almost as fast as n−1/2.

I Theorem 1. Let K < 1/2 be a constant, p = n−K, and let
Gn ∼ G(n, p). Then there exists r = r(n) ∈ R such that a.a.s.
D(Gn) = brc+ 1 or D(Gn) = brc+ 2. One can check that r is of the
form

r = logq n− logq

(
logq n · ln n · (1− K)2(1 + o(1))

)
.

I Proof (sketch). For r ∈ N, consider the expected number of dominating
sets of size r and form its continuous extension to R. That is, consider the
function E(x) :=

(n
x

)
· (1− (1− p)x)n−x. Set r to be the unique

positive solution of E(x) = 1 (E is inreasing).
It follows by standard first moment arguments that a.a.s.
D(Gn) ≥ brc+ 1. Second moment methods and careful analysis of the
asymptotics yield that a.a.s. D(Gn) ≤ brc+ 2.

Remarks

I The calculations carry through even when K tends to 1/2 from below
sufficiently slowly. That is, we can actually push p down to p(n) = lnc n√

n
,

or K(n) = 1
2
− c·ln ln n

ln n
respectively, where c is some small constant.

I When p tends to 1, then the asymptotics of logq n change drastically.
However, adjusting the estimates to this case, we get the same result: Let
p(n) = 1− o(1) and Gn ∼ G(n, p). Then a.a.s.

D(Gn) = blogq n− logq

(
logq n · ln n

)
c+ 1 or

D(Gn) = blogq n− logq

(
logq n · ln n

)
c+ 2.

Result 2: Tight concentration for p < n−1/2

I Theorem 2. Let 1/2 < K < 1 be a constant, let p = n−K, and
Gn ∼ G(n, p). Then there exists r = r(n) ∈ R such that a.a.s.
D(Gn) = r +O∗

(
r exp(nK−1)

)
. As in Theorem 1, r is of the form

r = logq n− logq

(
logq n · ln n · (1− K)2(1 + o(1))

)
.

I The proof essentially uses Talagrands inequality and was inspired by the
concentration results for the independence number, as it has been done in
Random graphs by Janson,  Luczak and Ruciński.

Result 3: Non-concentration on intervals of constant length

I Theorem 3. Let 2/3 < K < 1 be a constant, let p = n−K, and
Gn ∼ G(n, p). Then for all (constants) C ∈ R, there exists ε > 0 such
that for any interval I of length C and for any n ∈ N large enough:

Pr(D(Gn) ∈ I) < 1− ε.

I Proof sketch. Assume the opposite and suppose that a.a.s. d := D(Gn)
lies in an interval I of constant length C. From Theorem 2 we know that I
must lie in r +O∗

(
r exp(nK−1)

)
. For a dominating set S of size d, we

call e = xs ∈ E(Gn) (for x ∈ V \ S, s ∈ S) crucial w.r.t. S if for all
s′ ∈ S− s, xs′ /∈ E(Gn). That is, in Gn − e, S is not dominating
anymore.

Consider the graph Fn ∼ G(n, p′), where p′ = p−√p/n. Note that
we obtain the same distribution if in Gn, we delete every edge with
probability 1√

pn
. It can be shown that under those assumptions, a.a.s.

D(Fn) lies in I, as well. Hence, our strategy is to delete edges in Gn with
probability 1√

pn
, and to show that with (at least) constant positive

probability a crucial edge has been destroyed for every dominating set of
size d. That is, with positive probability, the domination number has gone
up. We repeat the process C times, and finally get

Pr(D(Fn) /∈ I) > ε

for some absolute constant ε > 0.

Remarks and open problems

I For p = n−4/3

ln n
, there is a simpler argument on concentration. Now, Gn is

a.a.s. a collection of stars (since a.a.s. no triangles and no paths of length
3). In that case, D(Gn) = n− e(G). But e(Gn) enjoys a binomial

distribution, and so its variance is n1/3
√

2 ln n
.

I There is still an enormous gap between the values of p where we can show
a 2-point-concentration, and where we can show ’non-concentration’ (on
an interval of constant length). It is desirable to close this gap. We
conjecture that for p = o(n−1/2), the domination number is not
concentrated on two values anymore.
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