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Abstract

For an ordered set W = {w1, w2, . . . , wk} of vertices and a vertex v in a connected
graph G, the ordered k-vector r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk)) is called
the (metric) representation of v with respect to W , where d(x, y) is the distance
between the vertices x and y. The set W is called a resolving set for G if distinct
vertices of G have distinct representations with respect to W . The minimum cardi-
nality of a resolving set for G is its metric dimension. In this paper, we study the
metric dimension of the composition product of graphs G and H, G[H]. First, we
introduce a new parameter which is called adjacency metric dimension of a graph.
Then, we obtain the metric dimension of G[H] in terms of the order of G and the
adjacency metric dimension of H.

Keywords: Composition Product, Resolving set, Metric dimension, Basis,
Adjacency metric dimension.

1 Introduction

Throughout this paper, G = (V,E) is a finite simple graph. We use G for the
complement of graph G. The distance between two vertices u and v, denoted
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by dG(u, v), is the length of a shortest path between u and v in G. Also, NG(v)
is the set of all neighbors of vertex v in G. We write these simply d(u, v) and
N(v), when no confusion can arise. The notations u ∼ v and u � v denote
the adjacency and non-adjacency relation between u and v, respectively.

For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G) and a vertex v of G, the
k-vector

r(v|W ) := (d(v, w1), d(v, w2), . . . , d(v, wk))

is called the (metric) representation of v with respect to W . The set W is
called a resolving set for G if distinct vertices have different representations.
A resolving set W for G with minimum cardinality is called a basis of G, and
its cardinality is the metric dimension of G, denoted by β(G). The concept
of (metric) representation is introduced by Slater [6] (see [3]).

Two distinct vertices u, v are said twins if N(v)\{u} = N(u)\{v}. It is
called that u ≡ v if and only if u = v or u, v are twins. In [4], it is proved that
“≡” is an equivalent relation. The equivalence class of vertex v is denoted
by v∗. Hernando et al. [4] proved that v∗ is a clique or an independent set
in G. As in [4], we say v∗ is of type (1), (K), or (N) if v∗ is a class of size
1, a clique of size at least 2, or an independent set of size at least 2. We
denote the number of equivalence classes of G with respect to “≡” by ι(G).
We mean by ι

K
(G) and ι

N
(G), the number of classes of type (K) and type (N)

in G, respectively. We also use a(G) and b(G) for the number of all vertices
in G which have at least an adjacent twin and a non-adjacent twin vertex in
G, respectively. On the other way, a(G) is the number of all vertices in the
classes of type (K) and b(G) is the number of all vertices in the classes of type
(N). Clearly, ι(G) = n(G) − a(G) − b(G) + ι

N
(G) + ι

K
(G).

Lemma 1.1 [1,2]

(i) If n /∈ {3, 6}, then β(Cn ∨ K1) = b2n+2

5
c,

(ii) If n /∈ {1, 2, 3, 6}, then β(Pn ∨ K1) = b2n+2

5
c.

The metric dimension of cartesian product of graphs is studied by Caseres et
al. in [2]. They obtained the metric dimension of cartesian product of graphs
G and H, G�H, where G,H ∈ {Pn, Cn, Kn}.

The composition product of graphs G and H, denoted by G[H], is a graph
with vertex set V (G) × V (H) := {(v, u) | v ∈ V (G), u ∈ V (H)}, where two
vertices (v, u) and (v′, u′) are adjacent whenever, v ∼ v′, or v = v′ and u ∼ u′.
When the order of G is at least 2, it is easy to see that G[H] is a connected
graph if and only if G is a connected graph.

This paper is aimed to investigate the metric dimension of composition
product of graphs. The main goal of Section 2 is introducing a new parameter,
which we call it adjacency metric dimension. In Section 3, we prove some
relations to determine the metric dimension of composition product of graphs,
G[H], in terms of the order of G and the adjacency metric dimension of H.
As a corollary of our main theorems, we obtain the exact value of the metric
dimension of G[H], where G = Cn(n ≥ 5) or G = Pn(n ≥ 4), and H ∈
{Pm, Cm, Pm, Cm, Km1,...,mt

, Km1,...,mt
}.



2 Adjacency Resolving Sets

S. Khuller et al. [5] have considered the application of the metric dimension
of a connected graph in robot navigation. In that sense, a robot moves from
node to node of a graph space. If the robot knows its distances to a sufficiently
large set of landmarks, its position on the graph is uniquely determined. This
suggests the problem of finding the fewest number of landmarks needed, and
where should be located, so that the distances to the landmarks uniquely
determine the robot’s position on the graph. The solution of this problem is
the metric dimension and a basis of the graph.

Now let there exist a large number of landmarks, but the cost of computing
distance is much for the robot. In this case, robot can determine its position
on the graph only by knowing landmarks which are adjacent to it. Here,
the problem of finding the fewest number of landmarks needed, and where
should be located, so that the adjacency and non-adjacency to the landmarks
uniquely determine the robot’s position on the graph is a different problem.
The answer to this problem is one of the motivations of introducing adjacency
resolving sets in graphs.

Definition 2.1 Let G be a graph and W = {w1, w2, . . . , wk} be an ordered
subset of V (G). For each vertex v ∈ V (G) the adjacency representation of v
with respect to W is k-vector

r2(v|W ) := (aG(v, w1), aG(v, w2), . . . , aG(v, wk)),

where

aG(v, wi) =



















0 if v = wi,

1 if v ∼ wi,

2 if v � wi.

If all distinct vertices of G have distinct adjacency representations, W is called
an adjacency resolving set for G. The minimum cardinality of an adjacency
resolving set is called adjacency metric dimension of G, denoted by β2(G). An
adjacency resolving set of cardinality β2(G) is called an adjacency basis of G.

By the definition, if G is a connected graph with diameter 2, then β(G) =
β2(G). The converse is false; it can be seen that β2(C6) = 2 = β(C6) while,
diam(C6) = 3.

In the following, we obtain some useful results on the adjacency metric
dimension of graphs.

Proposition 2.2 For every connected graph G, β(G) ≤ β2(G).

Proposition 2.3 For every graph G, β2(G) = β2(G).

Let G be a graph of order n. It is easy to see that, 1 ≤ β2(G) ≤ n − 1.
In the following proposition, we characterize all graphs G with β2(G) = 1 and
all graphs G of order n and β2(G) = n − 1.

Proposition 2.4 If G is a graph of order n, then



(i) β2(G) = 1 if and only if G ∈ {P1, P2, P3, P 2, P 3}.

(ii) β2(G) = n − 1 if and only if G = Kn or G = Kn.

Proposition 2.5 For every graph G, β(G ∨ K1) − 1 ≤ β2(G) ≤ β(G ∨ K1).
Moreover, β2(G) = β(G ∨ K1) if and only if G has an adjacency basis for
which no vertex has adjacency representation entirely 1 with respect to it.

Proposition 2.6 If n ≥ 4, then β2(Cn) = β2(Pn) = b2n+2

5
c.

Proposition 2.7 If Km1,m2,...,mt
is the complete t-partite graph, then

β2(Km1,m2,...,mt
) = β(Km1,m2,...,mt

) =







m − r − 1 if r 6= t,

m − r if r = t,

where m1,m2, . . . ,mr are at least 2, mr+1 = · · · = mt = 1, and
∑t

i=1
mi = m.

3 Composition Product of Graphs

Throughout this section, G is a connected graph of order n, and H is an
arbitrary graph of order m.

Lemma 3.1 Let G be a connected graph of order n and H be an arbitrary
graph. Then, β(G[H]) ≥ nβ2(H).

Theorem 3.2 Let G be a connected graph of order n and H be an arbitrary
graph. If there exist two adjacency bases W1 and W2 of H such that, there
is no vertex with adjacency representation entirely 1 with respect to W1 and
no vertex with adjacency representation entirely 2 with respect to W2, then
β(G[H]) = β(G[H]) = nβ2(H).

In the following three theorems, we obtain β(G[H]), when H does not satisfy
the assumption of Theorem 3.2.

Theorem 3.3 Let G be a connected graph of order n and H be an arbitrary
graph. If for each adjacency basis W of H there exist vertices with adjacency
representations entirely 1 and entirely 2 with respect to W , then β(G[H]) =
β(G[H]) = n(β2(H) + 1) − ι(G).

Theorem 3.4 Let G be a connected graph of order n and H be an arbitrary
graph. If H has the following properties

(i) for each adjacency basis of H there exist a vertex with adjacency repre-
sentation entirely 1,

(ii) there exist an adjacency basis W of H such that there is no vertex with
adjacency representation entirely 2 with respect to W ,

then β(G[H]) = nβ2(H) + a(G) − ι
K
(G).

Theorem 3.5 Let G be a connected graph of order n and H be an arbitrary
graph. If H has the following properties

(i) for each adjacency basis of H there exist a vertex with adjacency repre-
sentation entirely 2,



(ii) there exist an adjacency basis W of H such that there is no vertex with
adjacency representation entirely 1 with respect to W ,

then β(G[H]) = nβ2(H) + b(G) − ι
N
(G).

Corollary 3.6 If G has no pair of twin vertices, then β(G[H]) = nβ2(H).

Corollary 3.7 Let G = Pn, n ≥ 4 or G = Cn, n ≥ 5. Then, β(G[Pm]) =
β(G[Cm]) = β(G[P m]) = β(G[Cm]) = nb2m+2

5
c. And,

β(G[Km1,m2,...,mt
]) = β(G[Km1,m2,...,mt

]) =







n(m − r − 1) if r 6= t,

n(m − r) if r = t,

where m1,m2, . . . ,mr are at least 2, mr+1 = · · · = mt = 1, and
∑t

i=1
mi = m.

Corollary 3.8 Let H = Km1,m2,...,mt
, where m1,m2, . . . ,mr are at least 2,

mr+1 = · · · = mt = 1, and
∑t

i=1
mi = m. Then,

β(Kn[H]) =







n(m − r) − 1 if r 6= t,

n(m − r) if r = t.
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