Strongly regular and pseudo geometric graphs

M. Mitjana^{1,2}

Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya Barcelona, Spain

E. Bendito, Á. Carmona, A. M. Encinas^{1,3}

Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya Barcelona, Spain

Abstract

Very often, strongly regular graphs appear associated with partial geometries. The point graph of a partial geometry is the graph whose vertices are the points of the geometry and adjacency is defined by collinearity. It is well known that the point graph associated to a partial geometry is a strongly regular graph and, in this case, the strongly regular graph is named *geometric*. When the parameters of a strongly regular graph, Γ , satisfy the relations of a geometric graph, then Γ is named a *pseudo geometric* graph. Moreover, it is known that not every pseudo geometric graph is geometric and we analyze when the complement of a pseudo geometric graph is also pseudo geometric.

Keywords: Strongly regular graph, partial geometry, pseudo geometric graph.

Strongly regular graphs 1

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices which is regular of degree k, any two adjacent vertices have exactly λ common neighbours and two non–adjacent vertices have exactly μ common neighbours.

We recall that antipodal strongly regular graphs are characterized by satisfying $\mu = k$, or equivalently $\lambda = 2k - n$, which in particular implies that $2k \geq n$. In addition, any bipartite strongly regular graph is antipodal and it is characterized by satisfying $\mu = k$ and n = 2k.

It is well-known that distance–regular graphs with degree $k \geq 3$ other than bipartite and antipodal are primitive, see for instance [2, Th. 4.2.1].

We recall that if Γ is a primitive strongly regular graph with parameters (n, k, λ, μ) , then its complement graph, $\overline{\Gamma}$, is also a primitive strongly regular graph with parameters $(n, n - k - 1, n - 2 - 2k + \mu, n - 2k + \lambda)$, which in particular implies that $\mu \geq 2(k+1) - n$. Note that the complement of an antipodal strongly regular graph Γ is the disjoint union of m copies of a complete graph K_r for some positive integers m and r. Therefore, Γ is the complete multipartite graph $K_{m \times r}$. On the other hand, strongly regular graphs with the same parameters as their complement are called *conference* graphs and then, their parameters are (4m + 1, 2m, m - 1, m) where $m \ge 1$. Moreover, it is known that such a graph exits iff 4m + 1 is the sum of two squares, see [4].

$\mathbf{2}$ Partial geometries

Many strongly regular graphs appears associated with the so-called partial geometries. A partial geometry with parameters $s, t, \alpha \geq 1$, $pg(s, t, \alpha)$, is an incidence structure of points and lines such that every line has s + 1 points, every point is on t+1 lines, two distinct lines meet in at most one point and given a line and a point not in it, there are exactly α lines through the point which meet the line. The number of points and lines in $pg(s, t, \alpha)$ are $n = \frac{1}{\alpha}(s+1)(st+\alpha)$ and $\ell = \frac{1}{\alpha}(t+1)(st+\alpha)$, respectively. Therefore, the parameters of a partial geometry satisfy the inequalities $1 \le \alpha \le \min\{t+1\}$ 1, s + 1 and moreover, α divides both st(t + 1) and st(s + 1). We refer the

¹ Research supported by Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología) under projects MTM2008-06620-C03-01 and MTM2007-62551.

Email: margarida.mitjana@upc.edu

³ Email: {enrique.bendito,angeles.carmona,andres.marcos.encinas}@upc.edu

reader to the surveys [1,3,4,5] for the main features.

The point graph of $pg(s, t, \alpha)$ has the points as vertices and two vertices are adjacent iff they are collinear. Therefore, it is a regular graph with degree k = s(t+1). Moreover, when $\alpha = s+1$, the partial geometry is called *Linear* space and its point graph is the complete graph K_n . When $\alpha \leq s$, the point graph is a strongly regular graph with parameters

(1)
$$(n, s(t+1), s-1+t(\alpha-1), \alpha(t+1)).$$

A strongly regular graph is called *pseudo geometric graph* if its parameters are of the former form, where $1 \le \alpha \le \min\{s, t+1\}$ and α divides st(s+1).

A pseudo geometric graph is geometric iff there is a collection L of (s+1)cliques with the property that each edge lies in just one clique of L. If some edge lies in no (s + 1)-clique then the graph is clearly not geometric, but if there are too many cliques, it is often not clear whether a suitable collection can be selected.

Next we study the point graphs associated with the most well–known families of partial geometries.

- (i) Dual Linear Spaces: In this case $\alpha = t + 1 \leq s$. When, t = 1 and s = m 2 the corresponding pseudo geometric graph is the so-called triangular graph T_m whose parameters are $\binom{m}{2}, 2(m-2), m-2, 4$. Notice, that T_m is also the line graph of the complete graph K_m .
- (ii) Transversal Designs: In this case $\alpha = s \leq t+1$ and hence the corresponding pseudo geometric graph is the complete multipartite graph $K_{(s+1)\times(t+1)}$ whose parameters are ((s+1)(t+1), s(t+1), (s-1)(t+1), s(t+1)).
- (iii) Dual Transversal Designs: In this case $\alpha = t \leq s, t > 1$ and hence the corresponding pseudo geometric graph is the Pseudo-Latin square graph $PL_r(m)$ whose parameters are $(m^2, r(m-1), r^2 3r + m, r(r-1))$, where r = t + 1 and m = s + 1.
- (iv) Generalized quadrangles: In this case $\alpha = 1, s > 1$ and hence the parameters of the pseudo geometric graph are ((s+1)(st+1), s(t+1), s-1, t+1). Note that when t = 1 these graphs are the so-called Hamming graph H(2, s+1) or Lattice. Observe that the complement of H(2, s+1) is the pseudo-latin square graph $PL_s(s+1)$.
- (v) Proper pseudo geometric: In this case $1 < \alpha < \min\{t, s\}$. Within this type it is worth to mention the Kneser graphs K(m, 2), where $m \ge 6$ is even, in which case $s = \frac{m}{2} 1$, t = m 4 and $\alpha = \frac{m}{2} 2$. For arbitrary $m \ge 5$, the Kneser graph K(m, 2) is the graph whose vertices represent

the 2-subsets of $\{1, \ldots, m\}$, and where two vertices are connected if and only if they correspond to disjoint subsets. The parameters of the Kneser graph K(m, 2) are $\binom{m}{2}, \binom{m-2}{2}, \binom{m-4}{2}, \binom{m-3}{2}$, that coincide with the parameters of the complement of T_m . In addition, K(m, 2) for m odd is an example of strongly regular graph that is not a pseudo geometric graph, which also implies that the complement of a pseudo geometric graph is not necessarily a pseudo geometric graph, see below.

3 The characterization

The relation between triangular and Kneser graphs raises the question of when the complement of a pseudo geometric graph is also pseudo geometric. To do this we take into account that for any strongly regular graph, different from a conference graph, there exist $h \ge 1$ and $\beta \in \mathbb{Z}$ such that

(2)
$$(\mu - \lambda)^2 + 4(k - \mu) = h^2$$
 and $(n - 1)(\mu - \lambda - h) = 2(k + h\beta).$

As a by-product of the first equality, we get that $\mu - \lambda$ and h have the same parity and hence $h + \mu - \lambda$ is an even integer. So for any strongly regular graph different from a conference graph, we can consider the integer $\nu = \frac{1}{2}(h + \mu - \lambda) \ge 1$. In addition, the second equality in (2) implies that $(n-1)\nu = k + h(\beta + n - 1)$ and hence that n - 1 divides $k + h\beta$.

Theorem 3.1 A strongly regular graph Γ with parameters (n, k, λ, μ) is a pseudo geometric graph iff one of the following conditions hold:

- (i) Γ is a conference graph with $n = \ell^2 (p^2 + q^2)^2$, where ℓ, p are odd integers, q is even and gcd(p,q) = 1. Moreover, μ is even and Γ is a dual transversal design whose corresponding pseudo-latin square graph is $PL_{\frac{1+\sqrt{n}}{2}}(\sqrt{n})$.
- (ii) Γ is not a conference graph, ν divides both μ and k and moreover $\mu \leq \nu^2$. When Γ is antipodal, this property holds iff $k \leq (n-k)^2$.

Proof. The graph Γ is pseudo geometric iff there exist integers $s, t, \alpha \ge 1$ with $1 \le \alpha \le \min\{s, t+1\}$ and such that

$$k = s(t+1), \ \mu = \alpha(t+1) \ \text{and} \ \lambda = s - 1 + t(\alpha - 1),$$

and hence $t = \frac{\mu}{\alpha} - 1$ and $s = \frac{k\alpha}{\mu}$, which implies $\alpha^2(k-\mu) - \alpha\mu(\lambda-\mu) - \mu^2 = 0$.

(i) If Γ is a conference graph $k = 2\mu$, $\mu - \lambda = 1$ and hence

$$\alpha = \frac{1}{2} \Big[-1 + \sqrt{1+4\mu} \Big].$$

Therefore, α is a positive integer iff $1 + 4\mu = h^2$ with h odd. In this case, $\alpha = \frac{h-1}{2}, s = h-1$ and $t = \frac{2\mu}{h-1} - 1 = \frac{h-1}{2}$. As a by-product we obtain that μ must be even and that Γ is a dual transversal design, since $\alpha = t$ and $t \ge 2$. Moreover, Γ exists iff h^2 is the sum of two squares which implies that $h = \ell(p^2 + q^2)$ where gcd(p, q) = 1.

(ii) If Γ is not a conference graph but $\mu = k$; *i.e.* Γ is antipodal, then $\lambda = 2k - n$, $\alpha = s = \frac{k}{n-k}$ and t = n - k - 1. On the other hand, $\nu = \mu - \lambda = h = n - k$ and the second equality in (2) implies that $k = -h\beta$; that is, ν divides k. Therefore Γ is pseudo geometric iff $\alpha \leq t + 1$; that is iff $k \leq (n-k)^2$.

On the other hand, if Γ is neither a conference graph nor an antipodal graph, then $k > \mu$, $h > |\mu - \lambda|$ and

$$\alpha = \frac{\mu(\lambda - \mu + h)}{2(k - \mu)} = \frac{2\mu(\lambda - \mu + h)}{4(k - \mu)} = \frac{2\mu(\lambda - \mu + h)}{(h + \mu - \lambda)(h + \lambda - \mu)} = \frac{\mu}{\mu}$$

which implies that $t = \nu - 1$ and $s = \frac{k}{\nu}$. Therefore, for Γ be a pseudo geometric graph these values must be integers and in consequence ν must be a divisor of both k and μ . Finally, $\alpha < s$, since $\mu < k$ and hence, Γ is pseudo geometric iff $\alpha \leq t + 1$; that is $\mu \leq \nu^2$.

The reasoning in part (ii) of the above Theorem, shows that for any antipodal strongly regular graph Γ , n - k divides k and moreover there exist integers $t, s \geq 1$ such that the parameters of Γ are ((s+1)(t+1), s(t+1), (s-1)(t+1), s(t+1)) and, in particular, Γ is bipartite iff s = 1 an hence the bipartite strongly regular graphs are $K_{2\times(t+1)}, t \geq 1$, and all of them are pseudo geometric. Finally, note that the graph $K_{(s+1)\times 2}$ is also known as *Cocktail party graph* that is pseudo geometric iff $s \leq 2$.

In the next result we study when the complement of a pseudo geometric graph is also pseudo geometric. We can assume that $\alpha \leq s-1$, since otherwise Γ is antipodal.

Corollary 3.2 If Γ is a pseudo geometric graph with parameters $(n, s(t + 1), s - 1 + t(\alpha - 1), \alpha(t + 1)), t, \alpha \ge 1, s \ge 2$ and $1 \le \alpha \le \min\{s - 1, t + 1\},$ then $\overline{\Gamma}$ is also a pseudo geometric graph iff α divides st and $(s - \alpha)(t - \alpha) \le \alpha$. Moreover, the geometrical parameters of $\overline{\Gamma}$ are $\left(\frac{st}{\alpha}, s-\alpha, \frac{t(s-\alpha)}{\alpha}\right)$.

Let us study when some well-known families of strongly regular graphs, other than antipodal, are pseudo geometric graphs.

Corollary 3.3 The following results hold:

- (i) The Kneser graph $K(m, 2), m \ge 4$, is pseudo geometric iff m is even.
- (ii) The Negative-Latin square $NL_r(m)$, whose parameters are

$$(m^2, r(m+1), r(r+3) - m, r(r+1)),$$

where $1 \le r < m \le r(r+3)$ is pseudo geometric iff m-r divides both r(r+1) and r(m+1) and moreover $r(r+1) \le (m-r)^2$.

(iii) If Γ is a symmetric balanced incomplete block design there exist integers $t, s \geq 1$ such that $t + 2 \leq s$ and the parameters of Γ are

$$(n, s(t+1), (s-t-1)(t+1), (s-t-1)(t+1)).$$

Therefore, Γ is pseudo geometric iff $t + 2 \leq s \leq 2(t + 1)$.

(iv) The graphs $NL_r(2r)$, $r \ge 1$, are the unique negative-latin squares that are symmetric balanced incomplete block designs and they are not pseudo geometric.

References

- Bose, R. C., Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), pp. 389–419.
- [2] Brouwer, A. E., A. M. Cohen and A. Neumaier, "Distance-regular graphs", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 18, Springer-Verlag, Berlin, 1989, xviii+495 pp.
- Brouwer, A. E. and J. H. van Lint, Strongly regular graphs and partial geometries, in: Enumeration and design (Waterloo, Ont., 1982), Academic Press, Toronto, ON, 1984 pp. 85–122.
- [4] P.J. Cameron, Strongly regular graphs, in: *Topics in Algebraic Graph Theory*, L.W. Beineke, R.J. Wilson (eds.), Cambridge University Press, 2004 pp. 203–221.
- [5] De Clerck, F. and H. Van Maldeghem, Some classes of rank 2 geometries, in: Handbook of incidence geometry, North-Holland, Amsterdam, 1995 pp. 433–475.