Strongly regular and pseudo geometric graphs

M. Mitjana ${ }^{1,2}$
Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya
Barcelona, Spain
E. Bendito, Á. Carmona, A. M. Encinas ${ }^{1,3}$
Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya
Barcelona, Spain

Abstract

Very often, strongly regular graphs appear associated with partial geometries. The point graph of a partial geometry is the graph whose vertices are the points of the geometry and adjacency is defined by collinearity. It is well known that the point graph associated to a partial geometry is a strongly regular graph and, in this case, the strongly regular graph is named geometric. When the parameters of a strongly regular graph, Γ, satisfy the relations of a geometric graph, then Γ is named a pseudo geometric graph. Moreover, it is known that not every pseudo geometric graph is geometric. In this work, we characterize strongly regular graphs that are pseudo geometric and we analyze when the complement of a pseudo geometric graph is also pseudo geometric.

Keywords: Strongly regular graph, partial geometry, pseudo geometric graph.

1 Strongly regular graphs

A strongly regular graph with parameters (n, k, λ, μ) is a graph on n vertices which is regular of degree k, any two adjacent vertices have exactly λ common neighbours and two non-adjacent vertices have exactly μ common neighbours.

We recall that antipodal strongly regular graphs are characterized by satisfying $\mu=k$, or equivalently $\lambda=2 k-n$, which in particular implies that $2 k \geq n$. In addition, any bipartite strongly regular graph is antipodal and it is characterized by satisfying $\mu=k$ and $n=2 k$.

It is well-known that distance-regular graphs with degree $k \geq 3$ other than bipartite and antipodal are primitive, see for instance [2, Th. 4.2.1].

We recall that if Γ is a primitive strongly regular graph with parameters (n, k, λ, μ), then its complement graph, $\bar{\Gamma}$, is also a primitive strongly regular graph with parameters $(n, n-k-1, n-2-2 k+\mu, n-2 k+\lambda)$, which in particular implies that $\mu \geq 2(k+1)-n$. Note that the complement of an antipodal strongly regular graph Γ is the disjoint union of m copies of a complete graph K_{r} for some positive integers m and r. Therefore, Γ is the complete multipartite graph $K_{m \times r}$. On the other hand, strongly regular graphs with the same parameters as their complement are called conference graphs and then, their parameters are $(4 m+1,2 m, m-1, m)$ where $m \geq 1$. Moreover, it is known that such a graph exits iff $4 m+1$ is the sum of two squares, see [4].

2 Partial geometries

Many strongly regular graphs appears associated with the so-called partial geometries. A partial geometry with parameters $s, t, \alpha \geq 1, p g(s, t, \alpha)$, is an incidence structure of points and lines such that every line has $s+1$ points, every point is on $t+1$ lines, two distinct lines meet in at most one point and given a line and a point not in it, there are exactly α lines through the point which meet the line. The number of points and lines in $p g(s, t, \alpha)$ are $n=\frac{1}{\alpha}(s+1)(s t+\alpha)$ and $\ell=\frac{1}{\alpha}(t+1)(s t+\alpha)$, respectively. Therefore, the parameters of a partial geometry satisfy the inequalities $1 \leq \alpha \leq \min \{t+$ $1, s+1\}$ and moreover, α divides both $s t(t+1)$ and $s t(s+1)$. We refer the

[^0]reader to the surveys $[1,3,4,5]$ for the main features.
The point graph of $p g(s, t, \alpha)$ has the points as vertices and two vertices are adjacent iff they are collinear. Therefore, it is a regular graph with degree $k=s(t+1)$. Moreover, when $\alpha=s+1$, the partial geometry is called Linear space and its point graph is the complete graph K_{n}. When $\alpha \leq s$, the point graph is a strongly regular graph with parameters
\[

$$
\begin{equation*}
(n, s(t+1), s-1+t(\alpha-1), \alpha(t+1)) . \tag{1}
\end{equation*}
$$

\]

A strongly regular graph is called pseudo geometric graph if its parameters are of the former form, where $1 \leq \alpha \leq \min \{s, t+1\}$ and α divides $s t(s+1)$.

A pseudo geometric graph is geometric iff there is a collection L of $(s+1)-$ cliques with the property that each edge lies in just one clique of L. If some edge lies in no $(s+1)$-clique then the graph is clearly not geometric, but if there are too many cliques, it is often not clear whether a suitable collection can be selected.

Next we study the point graphs associated with the most well-known families of partial geometries.
(i) Dual Linear Spaces: In this case $\alpha=t+1 \leq s$. When, $t=1$ and $s=m-2$ the corresponding pseudo geometric graph is the so-called triangular graph T_{m} whose parameters are $\left.\binom{m}{2}, 2(m-2), m-2,4\right)$. Notice, that T_{m} is also the line graph of the complete graph K_{m}.
(ii) Transversal Designs: In this case $\alpha=s \leq t+1$ and hence the corresponding pseudo geometric graph is the complete multipartite graph $K_{(s+1) \times(t+1)}$ whose parameters are $((s+1)(t+1), s(t+1),(s-1)(t+1), s(t+1))$.
(iii) Dual Transversal Designs: In this case $\alpha=t \leq s, t>1$ and hence the corresponding pseudo geometric graph is the Pseudo-Latin square graph $P L_{r}(m)$ whose parameters are $\left(m^{2}, r(m-1), r^{2}-3 r+m, r(r-1)\right)$, where $r=t+1$ and $m=s+1$.
(iv) Generalized quadrangles: In this case $\alpha=1, s>1$ and hence the parameters of the pseudo geometric graph are $((s+1)(s t+1), s(t+1), s-1, t+1)$. Note that when $t=1$ these graphs are the so-called Hamming graph $H(2, s+1)$ or Lattice. Observe that the complement of $H(2, s+1)$ is the pseudo-latin square graph $P L_{s}(s+1)$.
(v) Proper pseudo geometric: In this case $1<\alpha<\min \{t, s\}$. Within this type it is worth to mention the Kneser graphs $K(m, 2)$, where $m \geq 6$ is even, in which case $s=\frac{m}{2}-1, t=m-4$ and $\alpha=\frac{m}{2}-2$. For arbitrary $m \geq 5$, the Kneser graph $K(m, 2)$ is the graph whose vertices represent
the 2 -subsets of $\{1, \ldots, m\}$, and where two vertices are connected if and only if they correspond to disjoint subsets. The parameters of the Kneser graph $K(m, 2)$ are $\left.\binom{m}{2},\binom{m-2}{2},\binom{m-4}{2},\binom{m-3}{2}\right)$, that coincide with the parameters of the complement of T_{m}. In addition, $K(m, 2)$ for m odd is an example of strongly regular graph that is not a pseudo geometric graph, which also implies that the complement of a pseudo geometric graph is not necessarily a pseudo geometric graph, see below.

3 The characterization

The relation between triangular and Kneser graphs raises the question of when the complement of a pseudo geometric graph is also pseudo geometric. To do this we take into account that for any strongly regular graph, different from a conference graph, there exist $h \geq 1$ and $\beta \in \mathbb{Z}$ such that

$$
\begin{equation*}
(\mu-\lambda)^{2}+4(k-\mu)=h^{2} \text { and }(n-1)(\mu-\lambda-h)=2(k+h \beta) . \tag{2}
\end{equation*}
$$

As a by-product of the first equality, we get that $\mu-\lambda$ and h have the same parity and hence $h+\mu-\lambda$ is an even integer. So for any strongly regular graph different from a conference graph, we can consider the integer $\nu=\frac{1}{2}(h+\mu-\lambda) \geq 1$. In addition, the second equality in (2) implies that $(n-1) \nu=k+h(\beta+n-1)$ and hence that $n-1$ divides $k+h \beta$.
Theorem 3.1 A strongly regular graph Γ with parameters (n, k, λ, μ) is a pseudo geometric graph iff one of the following conditions hold:
(i) Γ is a conference graph with $n=\ell^{2}\left(p^{2}+q^{2}\right)^{2}$, where ℓ, p are odd integers, q is even and $\operatorname{gcd}(p, q)=1$. Moreover, μ is even and Γ is a dual transversal design whose corresponding pseudo-latin square graph is $P L_{\frac{1+\sqrt{n}}{2}}(\sqrt{n})$.
(ii) Γ is not a conference graph, ν divides both μ and k and moreover $\mu \leq \nu^{2}$. When Γ is antipodal, this property holds iff $k \leq(n-k)^{2}$.

Proof. The graph Γ is pseudo geometric iff there exist integers $s, t, \alpha \geq 1$ with $1 \leq \alpha \leq \min \{s, t+1\}$ and such that

$$
k=s(t+1), \quad \mu=\alpha(t+1) \text { and } \lambda=s-1+t(\alpha-1)
$$

and hence $t=\frac{\mu}{\alpha}-1$ and $s=\frac{k \alpha}{\mu}$, which implies $\alpha^{2}(k-\mu)-\alpha \mu(\lambda-\mu)-\mu^{2}=0$.
(i) If Γ is a conference graph $k=2 \mu, \mu-\lambda=1$ and hence

$$
\alpha=\frac{1}{2}[-1+\sqrt{1+4 \mu}] .
$$

Therefore, α is a positive integer iff $1+4 \mu=h^{2}$ with h odd. In this case, $\alpha=\frac{h-1}{2}, s=h-1$ and $t=\frac{2 \mu}{h-1}-1=\frac{h-1}{2}$. As a by-product we obtain that μ must be even and that Γ is a dual transversal design, since $\alpha=t$ and $t \geq 2$. Moreover, Γ exists iff h^{2} is the sum of two squares which implies that $h=\ell\left(p^{2}+q^{2}\right)$ where $\operatorname{gcd}(p, q)=1$.
(ii) If Γ is not a conference graph but $\mu=k$; i.e. Γ is antipodal, then $\lambda=2 k-n, \alpha=s=\frac{k}{n-k}$ and $t=n-k-1$. On the other hand, $\nu=$ $\mu-\lambda=h=n-k$ and the second equality in (2) implies that $k=-h \beta$; that is, ν divides k. Therefore Γ is pseudo geometric iff $\alpha \leq t+1$; that is iff $k \leq(n-k)^{2}$.

On the other hand, if Γ is neither a conference graph nor an antipodal graph, then $k>\mu, h>|\mu-\lambda|$ and

$$
\alpha=\frac{\mu(\lambda-\mu+h)}{2(k-\mu)}=\frac{2 \mu(\lambda-\mu+h)}{4(k-\mu)}=\frac{2 \mu(\lambda-\mu+h)}{(h+\mu-\lambda)(h+\lambda-\mu)}=\frac{\mu}{\nu},
$$

which implies that $t=\nu-1$ and $s=\frac{k}{\nu}$. Therefore, for Γ be a pseudo geometric graph these values must be integers and in consequence ν must be a divisor of both k and μ. Finally, $\alpha<s$, since $\mu<k$ and hence, Γ is pseudo geometric iff $\alpha \leq t+1$; that is $\mu \leq \nu^{2}$.

The reasoning in part (ii) of the above Theorem, shows that for any antipodal strongly regular graph $\Gamma, n-k$ divides k and moreover there exist integers $t, s \geq 1$ such that the parameters of Γ are $((s+1)(t+1), s(t+1),(s-$ $1)(t+1), s(t+1))$ and, in particular, Γ is bipartite iff $s=1$ an hence the bipartite strongly regular graphs are $K_{2 \times(t+1)}, t \geq 1$, and all of them are pseudo geometric. Finally, note that the graph $K_{(s+1) \times 2}$ is also known as Cocktail party graph that is pseudo geometric iff $s \leq 2$.

In the next result we study when the complement of a pseudo geometric graph is also pseudo geometric. We can assume that $\alpha \leq s-1$, since otherwise Γ is antipodal.

Corollary 3.2 If Γ is a pseudo geometric graph with parameters ($n, s(t+$ 1), $s-1+t(\alpha-1), \alpha(t+1)), t, \alpha \geq 1, s \geq 2$ and $1 \leq \alpha \leq \min \{s-1, t+1\}$, then $\bar{\Gamma}$ is also a pseudo geometric graph iff α divides st and $(s-\alpha)(t-\alpha) \leq \alpha$.

Moreover, the geometrical parameters of $\bar{\Gamma}$ are $\left(\frac{s t}{\alpha}, s-\alpha, \frac{t(s-\alpha)}{\alpha}\right)$.
Let us study when some well-known families of strongly regular graphs, other than antipodal, are pseudo geometric graphs.

Corollary 3.3 The following results hold:
(i) The Kneser graph $K(m, 2), m \geq 4$, is pseudo geometric iff m is even.
(ii) The Negative-Latin square $N L_{r}(m)$, whose parameters are

$$
\left(m^{2}, r(m+1), r(r+3)-m, r(r+1)\right),
$$

where $1 \leq r<m \leq r(r+3)$ is pseudo geometric iff $m-r$ divides both $r(r+1)$ and $r(m+1)$ and moreover $r(r+1) \leq(m-r)^{2}$.
(iii) If Γ is a symmetric balanced incomplete block design there exist integers $t, s \geq 1$ such that $t+2 \leq s$ and the parameters of Γ are

$$
(n, s(t+1),(s-t-1)(t+1),(s-t-1)(t+1)) .
$$

Therefore, Γ is pseudo geometric iff $t+2 \leq s \leq 2(t+1)$.
(iv) The graphs $N L_{r}(2 r), r \geq 1$, are the unique negative-latin squares that are symmetric balanced incomplete block designs and they are not pseudo geometric.

References

[1] Bose, R. C., Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. Math. 13 (1963), pp. 389-419.
[2] Brouwer, A. E., A. M. Cohen and A. Neumaier, "Distance-regular graphs", Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 18, Springer-Verlag, Berlin, 1989, xviii+495 pp.
[3] Brouwer, A. E. and J. H. van Lint, Strongly regular graphs and partial geometries, in: Enumeration and design (Waterloo, Ont., 1982), Academic Press, Toronto, ON, 1984 pp. 85-122.
[4] P.J. Cameron, Strongly regular graphs, in: Topics in Algebraic Graph Theory, L.W. Beineke, R.J. Wilson (eds.), Cambridge University Press, 2004 pp. 203-221.
[5] De Clerck, F. and H. Van Maldeghem, Some classes of rank 2 geometries, in: Handbook of incidence geometry, North-Holland, Amsterdam, 1995 pp. 433-475.

[^0]: ${ }^{1}$ Research supported by Spanish Research Council (Comisión Interministerial de Ciencia y Tecnología) under projects MTM2008-06620-C03-01 and MTM2007-62551.
 ${ }^{2}$ Email: margarida.mitjana@upc.edu
 ${ }^{3}$ Email: \{enrique.bendito, angeles.carmona, andres.marcos.encinas\}@upc.edu

