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Abstract

A well–known property of an irreducible non–singular M–matrix is that its inverse
is positive. However, when the matrix is an irreducible and singular M–matrix it is
known that it has a generalized inverse which is non–negative, but this is not always
true for any generalized inverse. We focus here in characterizing when the Moore–
Penrose inverse of a symmetric, singular, irreducible and tridiagonal M–matrix is
itself a M–matrix.
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1 Statement of the Problem

The matrices that can be expressed as L = kI − A, where k > 0 and A ≥ 0,
appear in relation with systems of equations or eigenvalue problems in a broad
variety of areas including finite difference methods for solving partial differ-
ential equations, input–output production and growth models in economics
or Markov processes in probability and statistics. Of course, the combinato-
rial community can recognize within this type of matrices, the combinatorial
Laplacian of a k–regular graph where A is the adjacency matrix.

If k is at least the spectral radio of A, then L is called an M–matrix.
A well–known property of an irreducible non–singular M–matrix is that its
inverse is non–negative, [3]. However, when the matrix is an irreducible and
singular M–matrix it is known that it has a generalized inverse which is non–
negative, but this is not always true for any generalized inverse. For instance,
it may happens that the Moore–Penrose inverse has some negative entries. We
focus here at characterizing when the Moore–Penrose inverse of a symmetric,
singular, irreducible and tridiagonal M–matrix is itself a M–matrix. This
problem has been widely studied for several types of matrices, see for instance
[2,5,6,7].

Given n ≥ 2, c = (c1, . . . , cn−1) ∈ (0,+∞)n−1 and d = (d1, . . . , dn) ∈
[0,+∞)n we look for conditions under which the tridiagonal matrix
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is a singular M–matrix. Moreover, when M satisfies this property we are also
interested in characterizing when its Moore-Penrose inverse, M†, is also a M-
matrix. In particular, the matrix obtained by choosing d1 = c1, dn = cn−1 and
di = ci−1+ci for i = 2, . . . , n−1 is nothing but the combinatorial Laplacian of
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y Tecnoloǵıa) under project MTM2008-06620-C03-01.
3 Email: {enrique.bendito,angeles.carmona,andres.marcos.encinas}@upc.edu
4 Email: margarida.mitjana@upc.edu



Γ, the weighted path on n vertices whose conductances are given by the values
c1, . . . , cn−1. Therefore, M can be considered as a perturbed Laplacian of Γ in
the sense of [1] and also as one of the so–called discrete Schrödinger operators
of Γ, see for instance [4] and references therein for several physical interpreta-
tions. So, we ask which perturbed Laplacians or Schrödinger operators of Γ,
are singular, positive semi–definite and such that their Moore–Penrose inverse
are also M–matrices.

In the sequel, any c = (c1, . . . , cn−1) ∈ (0,+∞)n−1 and w = (w1, . . . , wn) ∈
(0,+∞)n such that w2

1 + . . . + w2
n = 1 are called conductance and weight,

respectively. The set of weights is denoted by Ω(n) and e is the vector whose
entries are all equal to 1.

The authors proved in [2] that the matrix given in (1) is a singular M–
matrix iff there exists w ∈ Ω(n) such that

d1 =
c1ω2

ω1

, dn =
cn−1ωn−1

ωn

and dj =
1

ωj

(cjωj+1 + cj−1ωj−1)(2)

for any j = 2, . . . , n− 1. Moreover the weight w is uniquely determined by d

and c. For this reason we denote by M(c,w) the matrix given in (1) where the
diagonal entries are determined by (2).

Given a conductance c, the set of weights such that M†(c,w) is a M–matrix
is denoted by Ω(c), whereas given a weight w, the set of conductances such
that M†(c,w) is a M–matrix is denoted by C(w). Therefore, w ∈ Ω(c) iff
c ∈ C(w). We drop w in all the expressions when w is constant; that is when

w = n− 1
2 e.

2 Characterization of M†(c,w) as a M–matrix

Given a conductance c and a weight w, our analysis is based in the following
expression of M†(c,w) = (gij), where

gji = gij = wiwj
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for any 1 ≤ i ≤ j ≤ n that was obtained in [2, Corollary 5.2] and on the fact
that the Moore–Penrose inverse of a symmetric and positive semi–definite
matrix is itself symmetric and positive semi–definite.



Theorem 2.1 Given a conductance c and a weight w, then M†(c,w) is a M–
matrix iff gii+1 ≤ 0 for any i = 1, . . . , n− 1, that is; iff
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The above result determines a set of nonlinear inequalities involving the
conductance and the weight that seems difficult to treat. In the literature,
one can only find results for the constant weight. In fact, the conclusion of
the above Theorem for w constant was given in [5, Lemma 3.1].

Corollary 2.2 When the weight is constant, then M
†(c) is a M–matrix iff

n ≤ 4 and moreover either
1

2
≤ c1

c2
≤ 2 when n = 3 or c1 = c3 and c2 = 2c1

when n = 4.

The above result is implicitly contained in [2] and it was also obtained
in [5] by using a different approach. When n = 2, then M†(c,w) is always a
M–matrix. In fact, for any c > 0 and any 0 < x < 1, if w = (x,

√
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get
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Corollary 2.3 When n = 3, M†(c,w) is a M–matrix iff
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Moreover, for any conductance c, it is satisfied that
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.

The cases w constant and n = 2, 3 are the only ones in which we tackle
directly the system of inequalities in Theorem 2.1. For n ≥ 4 we will follow a



different way that also works for n = 2, 3. For the sake of simplicity we only
analyze here the case n = 4. So, given w ∈ Ω(4) we consider the irreducible
Z-matrix

A(w) =
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whose determinant is D(w) =
w1w4
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2w
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4). Observe that A(w) can

be interpreted as the coefficient matrix of the inequalities system. Then, if
D(w) 6= 0 we get
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If for a conductance c, we define c−1 = (c−1
1 , c−1

2 , c−1
3 )T , then from Theorem

2.1, M†(c,w) is a M–matrix iff A(w)c−1 ≥ 0. Therefore, by applying well-
known properties about Z-matrices, see [3], if C(w) 6= ∅ for a weight w, then
A(w) is a M–matrix. Conversely when A(w) is a non singular M–matrix then
c ∈ C(w) iff c−1 = A−1(w)a, where a ≥ 0 is non null, since A−1(w) > 0. So, our
next aim is to characterize when A(w) is a M–matrix for a given w ∈ Ω(4).

Theorem 2.4 Given w ∈ Ω(4) if c(w) =
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,

then A(w)c−1(w) = D(w)e. Therefore, the following properties hold:

(i) C(w) = ∅ iff w1w4 > w2w3.

(ii) A(w) is a singular M–matrix iff w1w4 = w2w3. In this case, we get that
C(w) = {tc(w)}

t>0 and moreover,
⋃

w∈Ω(4)
w1w4=w2w3

C(w) = {c : c22 ≥ 4c1c3}.

(iii) A(w) is an invertible M–matrix iff w1w4 < w2w3 and then c ∈ C(w) iff



there exists a1, a2, a3 ≥ 0 such that a1 + a2 + a3 > 0 and
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In particular, {tc(w)}t>0 ⊂ C(w).

References

[1] Bapat, R.B., S.J. Kirkland, and S. Pati. The perturbed Laplacian matrix of a

graph, Linear Multinear Algebra, 49 (2001) 219–242.

[2] Bendito, E., A. Carmona, A.M. Encinas, and M. Mitjana. Generalized inverses

of symmetric M-matrices, Linear Algebra Appl., 432 (2010), 2438–2454.

[3] Berman,A., and R.J. Plemons. “ Nonnegative matrices in the mathematical
sciences”, Classics in Applied Mathematics, vol. 9, SIAM, 1994.
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